Flow Scheduling in Data
Center Networks (Il)

Ming Liu
mgliu@cs.wisc.edu

Outline

 Last lecture
* Flow scheduling in data center networks ()

* Joday

* Flow scheduling in data center networks (lI)

e Announcements

* Project proposal due 10/02/2025 11:59 PM
* Lab1 due 10/08/2025 11:59 PM

Unsolved Issued in Hedra

* #1. Networking bandwidth capacity (supply) is ephemeral!

» #2: Flow demand and flow # are unpredictable!

» #3. Real-time global view is hard to maintain!

How does CONGA help?

CONGA Technique #1

* #1:. Networking bandwidth capacity (supply) is ephemeral!

« #2: Flow demand and flow # are unpredictable!

» #3. Real-time global view is hard to maintain!

Discounting Rate Estimator (DRE)

Discounting Rate Estimator (DRE)

* Per-egress port register (R)
* Additive increase: R = R + packet_size, triggered every packet
* Multiplicate decrease: R = R x (1 - alpha), triggered periodically (T_dre)

Discounting Rate Estimator (DRE)
* Per-egress port register (R)

* Additive increase: R = R + packet_size, triggered every packet
* Multiplicate decrease: R =R x (1 - alpha), triggered periodically (T_dre)

* First-order low pass filter applied to packet arrival

* React quickly to traffic bursts
* Increments take immediately upon packet arrival

CONGA Technique #2

* #1. Networking bandwidth capacity (supply) is ephemeral!

» #2: Flow demand and flow # are unpredictable!

CONGA Technigque #2

* #1: Networking bandwidth capacity (supply) is ephemeral!

i But,
e How large is a flow?

e What is a flow size distribution?
e How many concurrent flows?

Flowlet

* Bursts of packets from a flow separated by large enough gaps
* “gap” is defined by time

Flowlet

* Bursts of packets from a flow separated by large enough gaps
* “gap” is defined by time

==Flow (250ms)
Flowlet (500
—Flowlet (10@us) -

E+01 1.E+03 1.E+05 1.E+07 1.E+09
Size (Bytes)

Flowlet

* Bursts of packets from a flow separated by large enough gaps
* “gap” is defined by time

g 1 | «—=Flow (250ms)
08 |

o
5 0.4

§0.2

e 250ms: 50% of bytes are in a flow (> ~30MB)

® 500us: 50% of bytes are in a flow (> ~500KB)
® Fine-grained low balancing is possible

How do we detect a FlowLet?

Flowlet Detection

» “Smart” edge switch
* FlowLet ID = Hash (5-tuple)
* Port Number: forwarding port
* Valid Bit: 1 if the FlowLet is active
* Age Bit: 1 if the entry is expired

FlowLet ID Port Number Valid Bit Age Bit
1234 4 1 1

5678 5 0 0

Flowlet Detection

» “Smart” edge switch

Is this enough?

* Age Bit: 1 if the entry is expired

FlowLet ID Port Number Valid Bit Age Bit
1234 4 1 1

5678 5 0 0

Congestion Awareness

(a) Static (ECMP) (b) Congestion-Aware: (c) Congestion-Aware:
Local Only Global (CONGA)

Congestion Awareness

* Timely link utilization
* Based on DRE
* DRE Register / Link Capacity, quantized into 3-bits

» Congestion should be global

NoWNCN

/ 50 / “40 " < 66

@z i@« i@« T

\40; \40¢ % 3

j 40 j 740 $3-3 70

(a) Static (ECMP) (b) Congestion-Aware: (c) Congestion-Aware:
Local Only Global (CONGA)

CONGA Technique #3

* #1. Networking bandwidth capacity (supply) is ephemeral!

» #2: Flow demand and flow # are unpredictable!

» #3. Real-time global view is hard to maintain!

10

Distributed Load Balancing and In-Network

11

Distributed Load Balancing and In-Network

* Why distributed, not central?
* Data center traffic is very bursty and unpredictable
* Data center topology Is regular

11

Distributed Load Balancing and In-Network

* Why distributed, not central?
* Data center traffic is very bursty and unpredictable
* Data center topology Is regular

* Why in-network, not host?
* The endhost cannot capture Burstiness
* The transport stack is already fat with many functionalities
» Kernel-bypass I/0O systems emerge

11

Distributed Load Balancing and In-Network

* Why distributed, not central?
* Data center traffic is very bursty and unpredictable
* Data center topology Is regular

* Why in-network, not host?
* The endhost cannot capture Burstiness
* The transport stack is already fat with many functionalities
» Kernel-bypass |/0 systems emerge

Make the load-balancing decision for the first

packet of a FlowlLet at the edge switch

11

Combine Everything Together

* #1:. Networking bandwidth capacity (supply) is ephemeral! \/
* #2: Flow demand and flow # are unpredictable! \/

* #3: Real-time global view is hard to maintain! \/

How does Conga work?

12

CONGA — Host Server

13

CONGA — Host Server

» Hosts send TCP/IP traffic
* No load balancing decision is made

13

CONGA — Source Leaf Switch

14

CONGA — Source Leaf Switch

FlowlLet Table

--

L 234 4

1. FlowLet detection

14

CONGA — Source Leaf Switch

1. FlowLet detection
2. Choose the path (load balancing)

FlowlLet Table

--

L 234 4

Congestion-To-Leaf Table

0b000 0b000 Ob111

Ob111 0b110 Ob101

14

CONGA — Source Leaf Switch

FlowlLet Table

--

L 234 4

| Congestion-To-Leaf Table
1. FlowLet detection

§ 2. Choose the path (load balancing) Dst Leaf| Path1 | Path2 | Path k
~—L O bOOO O b-l 1 1

14

CONGA — Source Leaf Switch

e Source Leaf switches forward traffic
» Setup the FlowLet table
* Perform load balancing, i.e., minimal load
* Update the link load

FlowlLet Table

--

L 234 4

ongestion-To-Leaf Tabl
1. FlowLet detection C 9 O o-Leat Table

4 2. Choose the path (load balancing) Dst Leaf| Path1 | Path2 | Path k
'-’;ﬂ:ﬂ::u;.f=r=z%z’r’.%;ff;.&;.ﬂ::u:r:;r'%s:rzsr;-f';’.:"J.;":;D;-";:"sr';:';:%":'

3. Update the link load 0b000 0b000 0b111

Ob111 0b110 Ob101

14

CONGA — Spine Switch

»
=

EmSrem peyrewm Ceew ey
e

Sip) i e . —

. -
-
. |

CONGA — Spine Switch

15

CONGA — Spine Switch

(a) Static (ECMP) (b) Congestion-Aware: (c) Congestion-Aware:
Local Only Global (CONGA)

15

CONGA — Spine Switch

» Spine switches forward traffic
* Directly choose the next hop based on the existing LB choice
* Bookkeep the link load

1. Reuse the load-balancing decision
2. Encode the link load

- =I=i=l=i=i=i=ﬁ

15

CONGA — Spine Switch

* Spine switches forward traffic
* Directly choose the next hop based on the existing LB choice
* Bookkeep the link load

1. Reuse the load-balancing decision
2. Encode the link load

.cat

|
S -

15

Path Revisit: Server —> Leaf —> Spine

How does CONGA perform addressing and routing?

16

Path Revisit: Server —> Leaf —> Spine

* VXLAN tunneling between source and destination leaf

MAC | MAC | 802.1Q | Ethernet

Type

-

Protocol

Outer
Ethernet
header

Outer
IP
header

Outer
UDP
header

8 bits

Y

"‘“';»:':"'j"" header | header

Ethernet P

Payload

24 bits 24 bits 8 bits

Source
Port

DestPort UDP
(VXLAN Port) | Length

UDP
Checksum

16 bits

16 bits

16 bits

16 bits

MAC_A,IP_A 30000 50000 Local
MAC_B,IP_B 30000 50000 IP_V2

r‘ ~
¢ \
[
-
| O—
.=
TeeRe

MAC_B,IP_B 30000 50000 Local

_ MACA,IP_.A 30000 50000 1P V1

Host A
(MAC_A, IP_A)
VNI 30000

Host B
(MAC_B, IP_B)
VNI 30000

16

Special Packet Header

* LBTag (4 bits)
* Set by the source leaf when making the LB decision

* CE (3 bits)
* Indicate the path congestion extent
* Set by every traversed switch along the path

 FB_LBTag (4 bits)
* Used by the destination leaf switch to piggyback which LBTag is taken

» FB_Metric (3 bits)
* Used by the destination leaf switch to piggyback the path CE value

16

Revist CONGA — Host Server

 Hosts send TCP/IP traffic

* No load balancing decision is made
* Build the VXLAN packet header

17

Revisit CONGA — Source Leaf Switch

e Source Leaf switches forward traffic
» Setup the FlowLet table

* Perform load balancing, i.e., minimal load FlowLet Table
» Update the link load -
* Modify the conga packet header BE -

| Congestion-To-Leaf Table
1. FlowLet detection

4 2. Choose the path (load balancing) Dst Leaf| Path1 | Path2 | Path k
'-’;ﬂ:ﬂ::u;.f=r=z%z’r’.%;ff;.&;.ﬂ::u:r:;r'%s:rzsr;-f';’.:"J.;":;D;-";:"sr';:';:%":'

3. Update the link load 0b000 0b000 0b111
4. Encode the LB decision -
2 Ob111 Ob110 Ob101

18

Revisit CONGA — Spine Switch

* Spine switches forward traffic
* Directly choose the next hop based on the existing LB choice
* Bookkeep the link load

1. Reuse the load-balancing decision
2. Encode the link load

OCTETRY | "I] TR *---un:

ml =] .,..‘,_ ===

e Use the LBTag to forward

e Conditional update the CE value

19

CONGA — Destination Leaf Switch

=I==I=— ﬂ": |

CONGA — Destination Leaf Switch

* Destination leaf switches return the load status opportunistically

* Reuse the ACK packets

- Not Timely

1. Piggyback the load balancing decision
F 2. Piggyback the CE value

Congestion-From-Leaf Table

0b000 0b000

i1 0110 0510

19

CONGA — Destination Leaf Switch

* Destination leaf switches return the load status opportunistically

* Reuse the ACK packets
* Not Timely

Why not update the CE value along the reply path?

19

CONGA — Destination Leaf Switch

* Destination leaf switches return the load status opportunistically

* Reuse the ACK packets
* Not Timely

Why not update the CE value along the reply path?
SRC->DST and DST->SRC are not the same!

19

CONGA — Leaf/Spine Switch

iy

20

CONGA — Leaf/Spine Switch

» Source leaf switches update the congestion-to-leaf table

Congestion-To-Leaf Table

0b000 0b000 Ob111

Ob111 0b110 Ob101

20

Communication Path in CONGA

* Hosts send TCP/IP traffic
* Build the VXLAN packet header

» Source Leaf switches forward traffic
» Setup the FlowLet table
* Perform load balancing, i.e., minimal load
* Update the link load and congestion-to-leaf table

* Spine switches forward traffic
* Directly choose the next hop based on the existing LB choice
* Bookkeep the link load

* Destination leaf switches return the load status opportunistically
* Reuse the ACK packets

21

Communication Path in CONGA

* Hosts se
¢ BU'Id th‘ ‘-BTag
CE=4
e Source L Per-link DREs ior\:::(d
. . t t
» Setup tt nere B A etenar a
FB_Metric=5
 Perform Reverse]
Path Pkt
* U pdate Leaf A : Leaf B
_ (Sender) O\ 1\ 2f 3 (Receiver)
¢ Splne SW AN AN AN AN Per-uplink
: Uplink DREs LBTag _
° D|reCt|y 01 - k_IN/ . 01 - k-1 olce
* Bookke: E)B 2[5 3 ;f B 2[5 3
. | .%).: & (--)\?/f-‘* g -
¢ DeStlnat| ° ' LB Decision A DOrtunIStha”y
C ion-To-Leaf Congestion-From-Leaf
*Reuset | "rae Table. e e

CONGA is a distributed, in-network, global
congestion-aware load balancer based on leaf-to-
leaf feedback and flowlet switching.

22

CONGA s a in-network, global
congestion-aware load balancer based on leaf-to-
leaf feedback and flowlet switching.

22

CONGA s a global
congestion-aware load balancer based on leaf-to-
leaf feedback and flowlet switching.

22

CONGA s a global
congestion-aware load balancer based on leaf-to-
leaf feedback and flowlet switching.

22

CONGA s a global
congestion-aware load balancer based on leaf-to-

leaf feedback and flowlet switching.

(a) Static (ECMP) (b) Congestion-Aware: (c) Congestion-Aware:
Local Only Global (CONGA)

22

(a) Static (ECMP) (b) Congestion-Aware:

Local Only

(c) Congestion-Aware:
Global (CONGA)

mL-

Gongestion-aware load balancer based on 6af-£6"

0o

G

Fraction of Data Bytes
_ O N B O

[T
J

.E+01 1.E+03 1.E405 1.E+07 1.E+09

Size (Bytes)

22

Flow Scheduling Problem Solved?

23

Flow Scheduling Problem Solved?

* #1: No-trivial hardware support

» #2:. Micro-second traffic under 100+Gbps requires timely reaction

* #3: VXLAN has poor flexibility and requires lots of manual efforts

23

Summary

* Joday

* Flow scheduling in data center networks (lI)

* Next two lectures
* Load balancers in the data centers
* Maglev (NSDI’16)
* Duet (SIGCOMM’14)

24

