
Ming Liu
mgliu@cs.wisc.edu

Advanced Computer Networks

CS740
https://pages.cs.wisc.edu/~mgliu/CS740/F25/index.html

Flow Scheduling in Data
Center Networks (II)

1

Outline

2

• Last lecture
• Flow scheduling in data center networks (I)

• Today
• Flow scheduling in data center networks (II)

• Announcements
• Project proposal due 10/02/2025 11:59 PM
• Lab1 due 10/08/2025 11:59 PM

Unsolved Issued in Hedra

• #1: Networking bandwidth capacity (supply) is ephemeral!

3

• #2: Flow demand and flow # are unpredictable!

• #3: Real-time global view is hard to maintain!

How does CONGA help?

4

CONGA Technique #1

• #1: Networking bandwidth capacity (supply) is ephemeral!

3

• #2: Flow demand and flow # are unpredictable!

• #3: Real-time global view is hard to maintain!

Discounting Rate Estimator (DRE)

4

Discounting Rate Estimator (DRE)

4

• Per-egress port register (R)
• Additive increase: R = R + packet_size, triggered every packet
• Multiplicate decrease: R = R x (1 - alpha), triggered periodically (T_dre)

Discounting Rate Estimator (DRE)

4

• Per-egress port register (R)
• Additive increase: R = R + packet_size, triggered every packet
• Multiplicate decrease: R = R x (1 - alpha), triggered periodically (T_dre)

• First-order low pass filter applied to packet arrival

• React quickly to traffic bursts
• Increments take immediately upon packet arrival

CONGA Technique #2

• #1: Networking bandwidth capacity (supply) is ephemeral!

5

• #2: Flow demand and flow # are unpredictable!

• #3: Real-time global view is hard to maintain!

CONGA Technique #2

• #1: Networking bandwidth capacity (supply) is ephemeral!

5

• #2: Flow demand and flow # are unpredictable!

• #3: Real-time global view is hard to maintain!

But,
• How large is a flow?
• What is a flow size distribution?
• How many concurrent flows?
• …

Flowlet

• Bursts of packets from a flow separated by large enough gaps
• “gap” is defined by time

6

Flowlet

• Bursts of packets from a flow separated by large enough gaps
• “gap” is defined by time

6

Flowlet

• Bursts of packets from a flow separated by large enough gaps
• “gap” is defined by time

6

• 250ms: 50% of bytes are in a flow (> ~30MB)
• 500us: 50% of bytes are in a flow (> ~500KB)
• Fine-grained low balancing is possible

How do we detect a FlowLet?

7

Flowlet Detection

8

FlowLet ID Port Number Valid Bit Age Bit

1234 4 1 1

5678 5 0 0

• “Smart” edge switch
• FlowLet ID = Hash (5-tuple)
• Port Number: forwarding port
• Valid Bit: 1 if the FlowLet is active
• Age Bit: 1 if the entry is expired

Flowlet Detection

8

FlowLet ID Port Number Valid Bit Age Bit

1234 4 1 1

5678 5 0 0

• “Smart” edge switch
• FlowLet ID = Hash (5-tuple)
• Port Number: forwarding port
• Valid Bit: 1 if the FlowLet is active
• Age Bit: 1 if the entry is expired

Is this enough?

Congestion Awareness

9

Congestion Awareness

• Timely link utilization
• Based on DRE
• DRE Register / Link Capacity, quantized into 3-bits

9

• Congestion should be global

CONGA Technique #3

• #1: Networking bandwidth capacity (supply) is ephemeral!

10

• #2: Flow demand and flow # are unpredictable!

• #3: Real-time global view is hard to maintain!

Distributed Load Balancing and In-Network

11

Distributed Load Balancing and In-Network

11

• Why distributed, not central?
• Data center traffic is very bursty and unpredictable
• Data center topology is regular

Distributed Load Balancing and In-Network

11

• Why distributed, not central?
• Data center traffic is very bursty and unpredictable
• Data center topology is regular

• Why in-network, not host?
• The endhost cannot capture Burstiness
• The transport stack is already fat with many functionalities
• Kernel-bypass I/O systems emerge

Distributed Load Balancing and In-Network

11

• Why distributed, not central?
• Data center traffic is very bursty and unpredictable
• Data center topology is regular

• Why in-network, not host?
• The endhost cannot capture Burstiness
• The transport stack is already fat with many functionalities
• Kernel-bypass I/O systems emerge

Make the load-balancing decision for the first
packet of a FlowLet at the edge switch

Combine Everything Together

• #1: Networking bandwidth capacity (supply) is ephemeral!

12

• #2: Flow demand and flow # are unpredictable!

• #3: Real-time global view is hard to maintain!

How does Conga work?

13

CONGA — Host Server

13

CONGA — Host Server

• Hosts send TCP/IP traffic
• No load balancing decision is made

14

CONGA — Source Leaf Switch

14

CONGA — Source Leaf Switch

1. FlowLet detection

FlowLet Port Valid Age
1234 4 1 1

5678 5 0 0

FlowLet Table

14

CONGA — Source Leaf Switch

1. FlowLet detection
2. Choose the path (load balancing)

FlowLet Port Valid Age
1234 4 1 1

5678 5 0 0

FlowLet Table

Dst Leaf Path 1 Path 2 Path k
1 0b000 0b000 0b111

2 0b111 0b110 0b101

Congestion-To-Leaf Table

14

CONGA — Source Leaf Switch

1. FlowLet detection
2. Choose the path (load balancing)

FlowLet Port Valid Age
1234 4 1 1

5678 5 0 0

FlowLet Table

Dst Leaf Path 1 Path 2 Path k
1 0b000 0b000 0b111

2 0b111 0b110 0b101

Congestion-To-Leaf Table

14

CONGA — Source Leaf Switch

1. FlowLet detection
2. Choose the path (load balancing)
3. Update the link load

FlowLet Port Valid Age
1234 4 1 1

5678 5 0 0

FlowLet Table

Dst Leaf Path 1 Path 2 Path k
1 0b000 0b000 0b111

2 0b111 0b110 0b101

Congestion-To-Leaf Table

• Source Leaf switches forward traffic
• Setup the FlowLet table
• Perform load balancing, i.e., minimal load
• Update the link load

15

CONGA — Spine Switch

15

CONGA — Spine Switch

Do we perform load balancing again?

15

CONGA — Spine Switch

Do we perform load balancing again?

15

CONGA — Spine Switch

1. Reuse the load-balancing decision
2. Encode the link load

• Spine switches forward traffic
• Directly choose the next hop based on the existing LB choice
• Bookkeep the link load

15

CONGA — Spine Switch

1. Reuse the load-balancing decision
2. Encode the link load

• Spine switches forward traffic
• Directly choose the next hop based on the existing LB choice
• Bookkeep the link load

But how?

Path Revisit: Server —> Leaf —> Spine

16

How does CONGA perform addressing and routing?

Path Revisit: Server —> Leaf —> Spine

16

• VXLAN tunneling between source and destination leaf

Special Packet Header

16

• LBTag (4 bits)
• Set by the source leaf when making the LB decision

• CE (3 bits)
• Indicate the path congestion extent
• Set by every traversed switch along the path

• FB_LBTag (4 bits)
• Used by the destination leaf switch to piggyback which LBTag is taken

• FB_Metric (3 bits)
• Used by the destination leaf switch to piggyback the path CE value

17

Revist CONGA — Host Server

• Hosts send TCP/IP traffic
• No load balancing decision is made
• Build the VXLAN packet header

18

Revisit CONGA — Source Leaf Switch

1. FlowLet detection
2. Choose the path (load balancing)
3. Update the link load
4. Encode the LB decision

FlowLet Port Valid Age
1234 4 1 1

5678 5 0 0

FlowLet Table

Dst Leaf Path 1 Path 2 Path k
1 0b000 0b000 0b111

2 0b111 0b110 0b101

Congestion-To-Leaf Table

• Source Leaf switches forward traffic
• Setup the FlowLet table
• Perform load balancing, i.e., minimal load
• Update the link load
• Modify the conga packet header

19

Revisit CONGA — Spine Switch

1. Reuse the load-balancing decision
2. Encode the link load

• Spine switches forward traffic
• Directly choose the next hop based on the existing LB choice
• Bookkeep the link load

• Use the LBTag to forward
• Conditional update the CE value

19

CONGA — Destination Leaf Switch

19

CONGA — Destination Leaf Switch

• Destination leaf switches return the load status opportunistically
• Reuse the ACK packets
• Not Timely

1. Piggyback the load balancing decision
2. Piggyback the CE value

Src Leaf Path 1 Path 2 Path k
1 0b000 0b000 0b111

2 0b111 0b110 0b101

Congestion-From-Leaf Table

19

CONGA — Destination Leaf Switch

• Destination leaf switches return the load status opportunistically
• Reuse the ACK packets
• Not Timely

1. Piggyback the load balancing decision
2. Piggyback the CE value

Why not update the CE value along the reply path?

19

CONGA — Destination Leaf Switch

• Destination leaf switches return the load status opportunistically
• Reuse the ACK packets
• Not Timely

1. Piggyback the load balancing decision
2. Piggyback the CE value

Why not update the CE value along the reply path?
SRC->DST and DST->SRC are not the same!

20

CONGA — Leaf/Spine Switch

20

• Source leaf switches update the congestion-to-leaf table

Dst Leaf Path 1 Path 2 Path k
1 0b000 0b000 0b111

2 0b111 0b110 0b101

Congestion-To-Leaf Table

CONGA — Leaf/Spine Switch

21

Communication Path in CONGA

• Hosts send TCP/IP traffic
• Build the VXLAN packet header

• Source Leaf switches forward traffic
• Setup the FlowLet table
• Perform load balancing, i.e., minimal load
• Update the link load and congestion-to-leaf table

• Spine switches forward traffic
• Directly choose the next hop based on the existing LB choice
• Bookkeep the link load

• Destination leaf switches return the load status opportunistically
• Reuse the ACK packets

21

Communication Path in CONGA

• Hosts send TCP/IP traffic
• Build the VXLAN packet header

• Source Leaf switches forward traffic
• Setup the FlowLet table
• Perform load balancing, i.e., minimal load
• Update the link load and congestion-to-leaf table

• Spine switches forward traffic
• Directly choose the next hop based on the existing LB choice
• Bookkeep the link load

• Destination leaf switches return the load status opportunistically
• Reuse the ACK packets

CONGA is a distributed, in-network, global
congestion-aware load balancer based on leaf-to-

leaf feedback and flowlet switching.

22

CONGA is a distributed, in-network, global
congestion-aware load balancer based on leaf-to-

leaf feedback and flowlet switching.

• React fast
• DCN is a regular fabric

22

CONGA is a distributed, in-network, global
congestion-aware load balancer based on leaf-to-

leaf feedback and flowlet switching.

• React fast
• DCN is a regular fabric

• Avoid transport stack modifi

22

CONGA is a distributed, in-network, global
congestion-aware load balancer based on leaf-to-

leaf feedback and flowlet switching.

• React fast
• DCN is a regular fabric

• Avoid transport stack modifi

22

CONGA is a distributed, in-network, global
congestion-aware load balancer based on leaf-to-

leaf feedback and flowlet switching.

• React fast
• DCN is a regular fabric

• Avoid transport stack modifi • Overlay network

22

CONGA is a distributed, in-network, global
congestion-aware load balancer based on leaf-to-

leaf feedback and flowlet switching.

• React fast
• DCN is a regular fabric

• Avoid transport stack modifi • Overlay network

• Flowlets are bursts of packets from a fl

22

Flow Scheduling Problem Solved?

23

Flow Scheduling Problem Solved?

23

• #1: No-trivial hardware support

• #2: Micro-second traffic under 100+Gbps requires timely reaction

• #3: VXLAN has poor flexibility and requires lots of manual efforts

Summary

• Today
• Flow scheduling in data center networks (II)

• Next two lectures
• Load balancers in the data centers
• Maglev (NSDI’16)
• Duet (SIGCOMM’14)

24

