
Programmable Calendar Queues for High-speed Packet Scheduling
Naveen Kr. Sharma∗ Chenxingyu Zhao∗ Ming Liu∗ Pravein G Kannan† Changhoon Kim‡

Arvind Krishnamurthy∗ Anirudh Sivaraman§

Abstract
Packet schedulers traditionally focus on the prioritized trans-
mission of packets. Scheduling is often realized through
coarse-grained queue-level priorities, as in today’s switches,
or through fine-grained packet-level priorities, as in recent
proposals such as PIFO. Unfortunately, fixed packet priorities
determined when a packet is received by the traffic manager
are not sufficient to support a broad class of scheduling al-
gorithms that require the priorities of packets to change as
a function of the time it has spent inside the network. In
this paper, we revisit the Calendar Queue abstraction and
show that it is an appropriate fit for scheduling algorithms
that not only require prioritization but also perform dynamic
escalation of packet priorities. We show that the calendar
queue abstraction can be realized using either dataplane prim-
itives or control-plane commands that dynamically modify
the scheduling status of queues. Further, when paired with
programmable switch pipelines, we can realize programmable
calendar queues that can emulate a diverse set of scheduling
policies. We demonstrate the power of this abstraction us-
ing three case studies that implement variants of LSTF, Fair
Queueing, and pFabric in order to provide stronger delay
guarantees, burst-friendly fairness, and starvation-free priori-
tization of short flows, respectively. We evaluate the benefits
associated with these scheduling policies using both a custom
simulator and a small-scale testbed.

1 Introduction
Many network scheduling algorithms today require a notion
of dynamic priority, where the priority of individual pack-
ets within a flow varies over the lifetime of the flow. These
packet priorities generally change with either the amount of
bytes sent by the flow, how fast the flow is transmitting, or
time spent by the packet inside the network. Such scheduling
algorithms enable richer application-level prioritization and
performance guarantees, such as shortest-job first to minimize
average flow completion time, earliest deadline first to enable
timely delivery of all messages, or fair-queueing, as illustrated
by a long list of proposed scheduling algorithms (e.g., pFab-
ric [4], PIAS [5], WFQ [14], FIFO+ [13], LSTF [17], and
EDF [18]).

Switch-level support for multiple fine-grained priority lev-
els (as in PIFO [28], pHeap [7]) can aid the realization of these
scheduling algorithms. However, there are still several chal-

∗University of Washington
†School of Computing, National University of Singapore
‡Barefoot Networks
§NYU

lenges in faithfully implementing these algorithms efficiently
and at line rate. First, implementing strict and fine-grained
priority levels is expensive, especially at scale involving high
bandwidths and hundreds or thousands of unique flows at
multiple terabits per second. Second, and more crucially, ex-
isting switch support for priorities does not allow for dynamic
changes to the priority of a packet during its stint inside the
switch buffer. Fixed packet priorities cannot effectively emu-
late the ageing property required by many of the scheduling
algorithms, wherein the priority of a packet increases with
the time it spends inside a queue.

Consider, for instance, the Least Slack Time First
(LSTF [17]) scheduling discipline wherein each packet main-
tains a delivery deadline, and the switch emits from its buffer
the packet with the least slack at a given instant. LSTF cannot
be realized using fixed packet priorities that are determined
when the packets are inserted into a priority queue. Notably,
given a packet that has a deadline of current_time+ slack, a
switch scheduler that maps this deadline to a priority level
would quickly exhaust a finite number of priority levels. As
long as there are packets buffered inside the switch, packets
received with later deadlines would have to be progressively
assigned lower priority levels, and the switch will eventually
run out of priority levels to use for incoming packets.

In this paper, we argue that what is needed is a scheduling
mechanism that supports both prioritization and implicit es-
calation of a packet’s priority as it spends more time inside
the switch buffer. We observe that a mechanism similar to
Calendar Queues [10] would be a more appropriate fit for
implementing these scheduling algorithms. Calendar Queues
allow events (or packets) to be enqueued at a priority level or
rank corresponding to a future time, and this rank gradually
changes as time moves forward. A scheduling algorithm sim-
ply decides how far in the future a packet must be processed
and then controls how time is advanced, say based on the
switch’s physical clock (i.e., physical time) or the number of
communication rounds across flows (i.e., logical time).

Calendar queues have certain properties that make them
amenable to efficient hardware realization, especially on up-
coming programmable switch hardware. A calendar queue
consists of multiple physical switch queues, and at any point
in time, only one of the queues in a calendar queue is active.
Further, a calendar queue imposes a fixed rotation order for
activating queues. We describe how the activation of queues
in a fixed order can be achieved by periodically modifying
the priority and active status of queues, either through data-
plane primitives expected in future programmable switches
or through today’s control-plane operations, albeit at a higher

latency. When combined with the stateful and flexible packet
processing capabilities of a programmable switch (such as
Barefoot’s Tofino and Cavium’s Xpliant), we can customize
the calendar queue abstraction to realize a broad class of
scheduling algorithms that capture both physical and logical
notions of time.

We demonstrate the power and flexibility of the calendar
queue abstraction using three case studies. First, we use a cal-
endar queue to perform deadline-aware scheduling of aggre-
gate flows (or co-flows) and further use the same underlying
calendar queue to implement fair queuing for the background
traffic. The programmable switch pipeline performs the ac-
counting operations required to keep track of the slack avail-
able for a packet and computes its rank as it traverses a net-
work path. In our second case study, we use calendar queues
to implement fair queueing and its variants that can tolerate
a limited amount of burstiness, thereby providing a config-
urable balance between fairness and burst-friendliness. Here,
the programmable switch pipeline maintains the flow state to
perform the accounting operations required for scheduling.
For our third case study, we realize pFabric and its variant
that can provide a configurable amount of starvation preven-
tion. We use a programmable pipeline to ensure the in-order
transmission of packets even as the switch attributes higher
priorities to later packets transmitted within a flow. We use a
small-scale testbed comprising of Barefoot Tofino switches
and a custom event-driven simulator to evaluate the benefits
of these different scheduling algorithms.

2 Background
In this section, we discuss background material related to
reconfigurable switches, the structure of the traffic manager
(which is the same for both fixed-function and today’s recon-
figurable switches), and prior work on programmable packet
scheduling.

2.1 Reconfigurable Switches

In this work, we assume that this programmable scheduling
is used in conjunction with a reconfigurable switch, such
as the Reconfigurable Match Table (RMT) model described
in [8, 9]. A reconfigurable switch can operate at terabits/s by
providing a restricted match+action (M+A) processing model:
match on arbitrary packet header fields and perform simple
packet processing actions. When a packet arrives at the switch,
relevant headers fields are extracted via a user-defined parser
and passed into a pipeline of user-defined M+A stages. Each
stage matches on a subset of extracted headers and performs
simple processing primitives or actions on any header. After
traversing the ingress pipeline stages, packets are deposited
in one of the multiple queues, typically 32–64, associated
with the egress port for future transmission. On transmission,
the packet goes through a similar egress pipeline undergoing
further modifications.

In addition to a programmable parser and pipeline stages,

these switches provide several hardware features to imple-
ment more complex use-cases: (1) a limited amount of stateful
memory, such as counters and meters, which can be read and
updated to maintain state across packets, (2) computation
primitives, such as simple arithmetic operations and hash-
ing, which can perform a limited amount of processing on
header fields and data retrieved from stateful memory, and (3)
the ability to recirculate or generate special datapath packets
using timers that can be used to modify Traffic Manager sta-
tus as well as synchronize the ingress and egress pipelines.
Further, switch metadata, such as queue lengths, congestion
status, and bytes transmitted, can also be used in packet pro-
cessing. The complete packet processing, including parsing
and match+action stages, can be configured using a high-
level language, such as P4 [8]. A number of such switches,
e.g., Cavium XPliant [11], Barefoot Tofino [6] and Intel Flex-
pipe [20], are available today.

A single pipeline’s throughput is limited by the clock fre-
quency achievable using today’s transistor technology (typ-
ically about 1 GHz). To scale to higher packet-processing
rates, which is required for switches with aggregate switch
capacity in the Tbit/s range, the switch consists of multiple
identical pipelines where the programmable stateful memory
is local to each pipeline.

2.2 Traffic Manager

We now briefly describe the architecture of the traffic manager
(TM) on merchant-silicon switches (e.g., Barefoot’s Tofino
and Broadcom’s Trident series). The TM is responsible for
two tasks: (1) buffering packets when more than one input
port is trying to send packets to the same output port simulta-
neously, and (2) scheduling packets at each output port when
the link attached to the port is ready to accept another packet.

Buffering: The TM is organized as a fixed number of first-in,
first-out (FIFO) queues per output port. The ingress pipeline
of the switch is responsible for determining both the FIFO
queue and the output port that the packet should go to. Once
the packet exits the ingress pipeline, the TM checks if there is
sufficient space in the packet buffer to admit the new packet.
Once the packet has been admitted to the buffer, it can not
be dropped later because dropping a previously enqueued
packet requires additional memory accesses to the packet
buffer, which is expensive at line rate.

Scheduling: Packets are eventually dequeued from the buffer
when the link attached to an output port goes idle and requests
a new packet. During dequeue, the TM has to pick a particular
FIFO at that output port, remove the earliest packet at that
queue, and transmit it. The TM uses a combination of factors
to determine which queue to dequeue from. First, each queue
has a priority; queues with higher priority are strictly preferred
to those with lower priorities. Next, within a priority level,
the queues are scheduled in weighted round-round robin order
(using an algorithm like DRR [26]). Lastly, each queue can
be limited to a maximum rate and is paused and removed

from consideration for scheduling if it has exceeded this rate
over some time interval. Queues can also be paused because
of a PFC [16] pause frame from a downstream switch.

To perform buffering and scheduling, the TM maintains a
per-queue priority level, a per-queue pause status flag, and
counters that track buffer occupancy on a per-input-port, per-
PFC-class, per-output-port, and per-output-FIFO basis. These
are required both to decide when and whether to admit pack-
ets and which queues to schedule. Because the status flag and
counters support limited operations (e.g., toggling or incre-
ment/decrement), they can be implemented very efficiently in
hardware, allowing simultaneous access from multiple ingress
and egress switch pipelines in a single clock cycle (unlike
state within the pipeline that can only be accessed once per
clock cycle). It is important to note that these hardware mech-
anisms appear in traffic managers in both fixed-function and
programmable switches.

2.3 Programmable Scheduling

The discussion above focused on a fixed-function TM that
supports a small menu of scheduling algorithms (typically
priorities, weighted round-robin, and traffic shaping). Recent
proposals for programmable scheduling [2, 19, 23, 27–29]
propose additional switch hardware in the TM to make the
scheduling decision programmable, assuming the existence
of a programmable ingress and egress switch pipeline like
RMT. Of the proposals for programmable scheduling, we
describe the PIFO work because it targets a switch similar to
our paper, and it is representative of the hardware consider-
ations associated with programmable scheduling. We defer
a detailed comparison of both expressiveness and feasibility
with prior work to later sections.

PIFOs enable programmable scheduling by using a pro-
grammable priority queue to express custom scheduling algo-
rithms. Some external computation (either on the end host or
a programmable switch’s ingress pipeline) sets a rank for the
packet. This rank determines the packet’s order in the priority
queue. By writing different programs to compute different
kinds of packet ranks (e.g., deadlines or virtual times), differ-
ent scheduling algorithms can be expressed using PIFOs.

While PIFOs are flexible, they have two shortcomings.
PIFOs not only require the development of new hardware
blocks that can scale with line rate (as we discuss below), but
they are also limited given their support for a finite priority
range (as we discuss in the next section). The scaling chal-
lenge arises out of needing to maintain a priority queue. The
PIFO paper assumes that ranks within flows are naturally in
strictly increasing order (i.e., flows are FIFOs), requiring the
switch to only find the minimum rank among the head pack-
ets across all flows. While this reduces the sorting/ordering
requirement of PIFO, sorting the total number of flows in the
buffer is still challenging. The PIFO work provides a custom
hardware primitive, the flow scheduler, which maintains a
sorted array of a few thousand flows and can process tens of

flows per output port across about 64 output ports on a single
pipeline for an aggregate throughput of 640 Gbit/s. Scaling
this primitive to higher speeds and a multi-pipeline switch
can be challenging. Thus, a key goal of our programmable
scheduling proposal is that it should be realized without in-
creasing the temporal and spatial complexity of existing TM
implementations.

3 Packet Scheduling using Programmable
Calendar Queues

In this section, we begin by describing the Calendar Queue
concept as introduced by Randy Brown in 1988 [10]. We then
consider the abstraction of a Programmable Calendar Queue
that combines the calendar queue scheduling mechanism with
programmable packet processing pipelines. This combination
allows for flexibility and extensibility, and we show how we
can instantiate different variants of Programmable Calendar
Queues to emulate different scheduling algorithms that appear
in the literature.

3.1 Motivating Calendar Queues

Calendar Queues: The Calendar Queue was first intro-
duced for organizing the pending event set in a discrete event
simulation. It is a type of priority queue implementation that
has low insertion and removal costs for certain priority dis-
tributions. Calendar Queues (CQs) are analogous to desk
calendars used for storing future events for the next year in
an ordered manner. A CQ consists of an array of buckets or
queues, each of which stores events for a particular day in
sorted order. Events can be scheduled for a future date by
inserting the event in the bucket corresponding to the date. At
any point, events are dequeued and processed from the current
day in sorted order. Once all events are processed from the
current day, we stop processing events for the current day and
move onto the next day. The emptied bucket is then used to
store tasks that need to be performed a year from now.

Drawbacks of existing priority queueing schemes: Prior
work has made the observation that, scheduling algorithms
make two decisions: in what order packets should be sched-
uled (in the case of work-conserving algorithms) or when
they should be scheduled (in the case of non-work-conserving
algorithms). For most scheduling algorithms, these decisions
can be made at packet enqueue time. Comparison-based
fine-grained priority queueing schemes, such as pHeap [7] or
PIFO [28], can realize some of these algorithms by comput-
ing an immutable rank for a packet at packet enqueue time
and dequeuing packets in increasing rank order. Eiffel [23]
further observes that packet ranks often have a specific range
(which can be expressed as integers) and that a large number
of packets share the same rank. These characteristics make a
bucket-based priority queue an efficient and feasible solution
for implementing various scheduling algorithms.

We observe that many scheduling algorithms cannot be
realized using fine-grained priority queuing schemes if the

Day N-1

physical
switch
queues

dequeue
order

high to
low

priority

Day N

Day 1 (current day)

Day 2

Day N-2

Figure 1: Example of a Programmable Calendar Queue.

computed rank needs to fall within a finite range. Consider the
example of fair queuing (as in WFQ or STFQ), where for each
arriving packet, a finishing round is computed based on the
current round number and the finishing round of the previous
packet in that packet’s flow. Packets are then transmitted in
order of increasing finishing round numbers. Further, the al-
gorithm periodically increases the current round number. One
could attempt to realize fair queuing using a fine-grained pri-
ority queuing scheme by mapping a packet’s finishing round
number to an immutable rank. Since the ranks of buffered
packets cannot be changed, the mapping function needs to
be monotonic, i.e., it needs to map higher finishing rounds to
higher ranks. The mapping function would then exhaust any
finite range of ranks, and the switch would then not be able
to attribute a meaningful rank for incoming packets.

Similarly, in the case of the earliest deadline first (EDF),
each packet in a flow is associated with a wall-clock dead-
line, and packets need to be scheduled in increasing order of
deadlines. If one were to compute the rank of a packet as a
monotonic function of the packet’s deadline, the switch would
exhaust the rank space as the wall-clock time progresses.

It is worth noting that, when the switch has no buffered
packets, the mapping function could execute a "reset" and
start reusing lower ranks. However, an implementation cannot
assume that the switch would ever enter such a state, let alone
periodically (i.e., within a bounded period of time before the
rank space is exhausted).

Utility of Calendar Queues: We propose to use the Calen-
dar Queues abstraction as a mechanism to realize scheduling
algorithms such as EDF and fair queuing. A CQ is an attrac-
tive option for implementing these algorithms as it allows for
implicit and en-masse escalation of the priorities of buffered
packets when the CQ moves from one day to another. For
instance, when a CQ completes processing the events for Day
k and performs a rotation to Day k+1, it implicitly increases
the priority of all days except Day k, which now occupies
the lowest priority in the priority range. This rotation mecha-
nism allows scheduling algorithms to escalate the priorities
of buffered packets with time (as is the case with EDF and
fair queuing) and reuse emptied buckets for incoming packets
with low priority.

3.2 Programmable Calendar Queues (PCQs)

We now describe Programmable Calendar Queues in the con-
text of reconfigurable switches. The programmable packet

processing pipelines on these switches allow us to customize
not only the rank computation but also the CQ rotation pro-
cess. Just like a calendar has 365 days, we assume our Cal-
endar Queue abstraction has a fixed number of buckets or
FIFO queues, say N, each of which stores packets scheduled
for next N periods (see Figure 1). Any network scheduling
algorithm using CQs must then make the following key de-
cisions. First, the scheduling algorithm must decide how far
in the future the incoming packet should be scheduled, i.e.,
choose a future period from [0, N-1] to enqueue the packet
into. This is similar to rank computation in PIFO. Second, it
must periodically decide when and how to advance time, i.e.,
decide when a period is over and move onto the next period.
This stops the enqueueing of packets in the current period
and allows the reuse of the corresponding queue resource for
the period that is N periods into the future. Third, when the
CQ advances to the next period, the pipeline state has to be
suitably modified to ensure the appropriate computation of
ranks for incoming packets.

The advancing of time can be done using a physical clock,
i.e., the CQ moves onto the next queue after a fixed time
interval periodically; we call this a Physical Calendar Queue.
Alternatively, the CQ can advance to the next queue when-
ever the current queue is empty, i.e., it happens logically
depending on metrics such as bytes sent or number of com-
munication rounds; we call this a Logical Calendar Queue.
A Physical Calendar Queue lets us implement both work-
conserving schemes, such as EDF, and non-work-conserving
schemes, such as Leaky Bucket Filter, Jitter-EDD, and Stop-
and-Go, whereas a Logical Calendar Queue can implement
work-conserving schemes, such as LSTF, WFQ, and SRPT.

We now list the interface methods exposed to the packet
processing pipelines that enable these forms of customization.

• CQ.enqueue(n): Used by the ingress pipeline to schedule
the current packet n periods into the future.

• CQ.dequeue(): Used by the egress pipeline to obtain a
buffered packet, if any, for the current period.

• CQ.rotate(): Used by the pipelines to advance the CQ so
that it can start transmitting packets for the next period.

We observe that PCQs have certain properties that allow
for efficient implementations. (In Section 3.4, we describe
how to realize this abstraction in hardware.) When individual
CQ periods are mapped to separate physical switch queues, a
CQ scheduler needs to maintain state only at the granularity
of switch queues (e.g., the queue corresponding to the current
period). The scheduler does not require expensive sorting or
comparisons to determine packet transmission order. More
importantly, a CQ rotation involves a deterministic and pre-
dictable transition from one switch queue to another at the
end of each period. This transition can be realized either using
data-plane primitives in upcoming reconfigurable hardware
(as we discuss in Section 3.4) or through the switch’s control
plane (as is the case with our prototype).

3.3 Programmable Scheduling using PCQs

We now show how various scheduling algorithms can be
realized using Calendar Queues in conjunction with a pro-
grammable packet processing pipeline. We describe three
different algorithms, each of which differs in the way it uti-
lizes CQs. First, an approximate variant of WFQ that uses
a Logical CQ. Next, we implement approximate EDF us-
ing LSTF scheduling that uses a work-conserving Physical
CQ. Finally, we realize a Leaky Bucket Filter that utilizes a
non-work-conserving Physical CQ.

3.3.1 Weighted Fair Queueing

Weighted Fair Queueing (WFQ) scheduling achieves max-
min fair allocation among flows traversing a link by emulating
a bit-by-bit round-robin scheme where each active flow trans-
mits a single bit of data each round. This emulation is realized
at packet granularity by assigning each incoming packet a de-
parture round number based on the current round number
and the total bytes sent by the flow. All buffered packets are
dequeued in order of increasing departure round numbers.

Packet State
weight : Packet flow’s weight

Switch State
bytes[f] : Number of bytes sent by flow f
round : Current round number
BpR : Bytes sent per round for each flow

Rank Computation & Enqueueing
bytes[f] = max(bytes[f], round * BpR * weight)
n = (bytes[f] + pkt.size) / (BpR * weight) - round
CQ.enqueue(n)

Queue Rotation
if CQ.dequeue() is null

CQ.rotate()
round = round + 1

Figure 2: WFQ implementation using a Logical CQ.

We implement WFQ using Logical CQs closely following
the round number approximation described in [25]. We use
coarse-grain rounds that are only incremented after all active
flows have transmitted a configurable quantum of bytes. The
rank computation is done in such a way that each fair queuing
round is mapped to a day (queue) in the Calendar Queue and,
whenever a day finishes (i.e., the queue is drained completely),
the round number is incremented by one. The complete switch
state and computation required is shown in Figure 2. Note
that this is an approximation of the WFQ algorithm where the
round numbers are not as precise or faithful to the original
algorithm, and there can be situations in which packets are
transmitted in an unfair order. However, this unfairness has
an upper-bound and is controlled by the BpR variable in the
rank computation. As we show later in the evaluation, this
approach closely approximates ideal fair queueing.

3.3.2 Earliest Deadline First

In Earliest Deadline First (EDF) scheduling, each packet from
a flow is assigned a deadline or expected time of reception.
At each network hop, the packet with the closest deadline is
transmitted first. We implement EDF using Least Slack Time
First scheduling, where each packet carries a slack value of
the time remaining till its deadline. The slack is initialized
to deadline-arrivalTime at the source and updated at each
hop along the way (i.e., each switch subtracts the time spent at
the hop from the slack). The implementation uses a Physical
CQ, as shown in Figure 3, which we describe next.

Packet State
slack : Initialize to flow_deadline - arrival_time

Switch State
dT : Time interval of each queue
delta : Skew between ideal and measured time
lastRot : Timestamp of last rotation

Rank Computation & Enqueueing
n = (slack - delta + (currentTime - lastRot)) / dT
CQ.enqueue(n)

Queue Rotation
if CQ.dequeue() is null
CQ.rotate()
delta = delta + (dT - (currentTime - lastRot))
lastRot = currentTime

Figure 3: EDF using a work-conserving Physical CQ.

We choose a fixed time interval for each day or queue for
our Physical CQ, say dT . Packets with an effective slack
of 0− dT are assigned to queue 1, slack of dT − 2 · dT are
assigned to queue 2, and so on. This assignment ensures that
packets with closer deadlines are prioritized. Queue rotation
occurs when the current queue becomes empty. Since we can
spend a longer or shorter time than dT in any queue depend-
ing on the traffic pattern, we require some additional state to
ensure that new packets are inserted in the correct queue with
respect to the deadlines of already enqueued packets. The
delta variable keeps track of how far ahead the CQ is com-
pared to the ideal time. If we spend less than dT for a queue,
delta increases, and if we spend more than dT , it decreases.
The delta is then incorporated in the rank computation and
is reset to 0 whenever there are zero buffered packets. Note
that the programmable switch pipeline allows us to perform
not only the rank computation but also decide when to per-
form the CQ rotation and how to update switch state after a
rotation.

3.3.3 Leaky Bucket Filter

A Leaky Bucket Filter (LBF) is a non-work-conserving
scheduling algorithm that rate limits a flow to a specified
bandwidth and a maximum backlog buffer size. An LBF can
be realized using a Physical Calendar Queue by storing a
fixed quantum of bytes per flow in each queue and rotating

Packet State
rate : Output rate limit
size : Maximum bucket size

Switch State
dT : Time interval size of each queue
bytes[f] : Bytes sent by flow f
round : Current round number

Rank Computation & Enqueueing
bytes[f] = max(bytes[f], round * rate * dT)
n = bytes[f] / (rate * dT) - round
if n > size / (rate * dT)
drop packet

else
CQ.enqueue(n)

Queue Rotation
if dT time has elapsed

CQ.rotate()
round = round + 1

Figure 4: A Leaky Bucket Filter using a non-work-conserving
Physical CQ.

queues at fixed time intervals, very similar to the WFQ exam-
ple discussed earlier. However, we do not dequeue packets
from the next queue even if the current queue is empty, which
gives us the desired non-work-conserving behavior. The byte
quantum depends on the rate limit set for the flow and the
configured time interval dT of each queue. If the number of
enqueued bytes for a flow exceeds the bucket size, we simply
drop the packet. This scheme lets us realize multiple filters
using the same underlying CQ, as shown in Figure 4.

We assume the configured rate and size parameters for
the filter are in the packet header, but they can be stored at the
switch as well. For each flow, we keep track of bytes sent so
far and compute the queue id by dividing it with the quantum,
which is the configured filter rate times the queue interval
dT . We assume that the cumulative rate of all flows does not
exceed the line rate at the switch; if that happens, all flows
will be slowed down in proportion to their configured rates
equally.

3.4 Implementing PCQs in Hardware

We now describe how Calendar Queues can be implemented
on programmable switches. We assume an RMT model
switch (as described in Section 2) with an ingress pipeline, fol-
lowed by the traffic manager, which maintains multiple packet
queues, and finally an egress pipeline. Implementing a CQ in
this model is non-trivial because the packet enqueue decision
(i.e., which queue to insert the packet into) is made in the
ingress pipeline, but the queue status (i.e., occupancy, depth)
is available in the egress pipeline after the packet traverses
the traffic manager. Since these modules are implemented
as separate hardware blocks, we need to synchronize state
among them to achieve the CQ abstraction.

We can realize CQs on programmable switches using mu-
table switch state, multiple FIFO queues, the ability to create
and recirculate packets selectively, and the ability to pause/re-
sume queues or alter queue priorities directly in the data plane.

All these capabilities are either already available in today’s
programmable switches except for the data-plane-based queue
pausing, resuming, and priority updating. However, we con-
firmed with experts in switching ASIC design that adding
such a capability is relatively straightforward because doing
so doesn’t change the order of temporal or spatial complex-
ity of existing TM implementations. Existing TMs already
support several per-packet metadata to expose controllable
features or statistics. Moreover, PFC already requires a sim-
ilar queue pausing/resuming capability triggered by certain
protocol messages in the data plane anyway. This new feature
exposes a similar functionality only in a programmatic way
by exposing such knobs to the programmable pipeline. More-
over, even in the absence of data-plane support for priority
changes, we can still approximate this functionality using the
control plane (as we do in our testbed).

Implementation Overview: We first provide a high-level
description of our scheme. Each period in the CQ is mapped
to a single FIFO queue within a set of queues associated with
the outgoing port. The ingress pipeline computes which pe-
riod or queue each incoming packet is enqueued into. We
assume a TM that allows the pipeline to enqueue incoming
packets into any of the available FIFO queues. At any given
time, the queue settings satisfy the following properties: (a)
The queue corresponding to the current period has the highest
priority level, so that its packets can be transmitted immedi-
ately. We refer to this queue as the head queue. (b) The queue
corresponding to the next period has a lower priority level
and is active/unpaused. (c) All other queues corresponding to
future periods are at the lowest priority level and are paused.
This specific configuration has two desirable properties. First,
since the next period’s queue is also active, the switch can
start transmitting packets from the next period’s queue as soon
as the head queue becomes empty. Second, when we perform
a CQ rotation, we need to perform only a small number of
changes to queue priorities and active statuses.

The CQ cycles or rotates through available queues one at
a time, making each queue the head queue. The rotation is
triggered when the head queue is empty (in case of a logical
CQ) or the CQ time interval has elapsed (in case of a physical
CQ). When a rotation happens, we need to make sure all
packets from the head queue are drained completely and that
it is empty before changing its priority to lowest. Once the
priority is set, the head queue can be reused to store packets
for future periods.

Implementation Details: We break down the implemen-
tation of CQs into the following three steps. Appendix A
provides additional details.

Step 1 - Initiate Rotation: This step detects when a rotation
needs to happen and initiates the rotation by informing the
ingress pipeline using a recirculation packet. In the case of
a logical CQ, we initiate rotation when the head queue is
empty. This can be detected in two ways. First, in some

C
A

D

Traffic Manager
Ingress

headQ = 1

tailQ = N

1

2

N

Step 1: Initiate Rotation Step 2: Drain Queue Step 3: Finish Rotation

CD
1

2

N

CD2

3

N

BB High
Med

High
Med

LowLow

1 Low
Egress

headQ = 2

Traffic Manager Traffic Manager
Ingress

headQ = 2

tailQ = N

Egress

headQ = 2

Ingress

headQ = 2

tailQ = 1

Egress

headQ = 2

E E E

Figure 5: Step 1, the egress pipeline tries to dequeue from the current headQ, and if it is the last packet, it initiates rotation by
creating and recirculating a rotate (red packet) to the ingress pipeline. Step 2, the ingress pipeline on receiving this packet, updates
the headQ and enqueues a marker packet as the last packet into the old headQ. Finally in Step 3, when the egress pipeline receives
the marker packet, it updates the queue priority and notifies the ingress pipeline that it is safe to reuse the queue for future packets
by updating the tailQ.

programmable switches, the traffic manager metadata could
provide the egress pipeline information regarding the depth of
the queue from which the packet was dequeued. If it is zero,
this is the last packet from the head queue, and we initiate
rotation. Second, we can check the queue id from which
the packet was dequeued to infer whether the head queue is
empty. Since the successor head queue is also unpaused with
a lower priority, a packet dequeued from it implies the head
queue is empty. We use the latter method in our prototype as it
imposes fewer requirements on the traffic manager metadata
available to the switch pipeline. In the case of a physical CQ,
the rotation happens at fixed time intervals and is configured
through timers or packet generators. When a rotation begins,
we recirculate a special rotate packet to the ingress pipeline
so that it stops enqueuing packets in the head queue and
begins draining it, which happens in Step 2.

Step 2 - Drain Queue: This step ensures that the head queue is
completely drained, and no more packets are enqueued into it
till the rotation finishes. On receiving the rotate recirculation
packet, the ingress pipeline advances the head queue pointer,
essentially stopping any new packets from being enqueued
into it. But, there could still be some packets in the pipeline
currently making their way into the head queue. To make sure
these are transmitted in the right order, the ingress enqueues a
special marker packet into the head queue after updating the
head of the calendar queue. This packet is the last packet to
be enqueued into the head queue, and its arrival at the egress
pipeline means the queue is completely drained, and we can
proceed with finishing the rotation described in Step 3.

Step 3 - Finish Rotation: The marker packet is recirculated
back to the ingress pipeline, and this informs the ingress
pipeline that it is safe to reuse the queue for future periods.
The ingress changes the priority of the just emptied queue
to lowest and also pauses it, essentially pushing the queue
to the end of the CQ. The ingress also unpauses the queue
associated with the next period to ensure that there are no
transmission stalls after the current period ends. The queue
configuration change can be achieved in two ways depend-
ing on the underlying hardware support. The marker packet
can be pushed up to the control plane CPU, which can alter
the queue configurations using traffic manager APIs. This

approach incurs a latency overhead before the drained queue
can be used for packets associated with future periods. Al-
ternatively, if the hardware supports priority change in the
datapath, the processing of the marker packet with the appro-
priate metadata tags affects the configuration change almost
immediately.

We now briefly highlight some of the attributes of PCQ
that aid in efficient hardware realization. First, CQs maintain
state at the granularity of physical switch queues instead of
individual packets or flows. Second, at any given point in
time, there is a designated head queue that is responsible
for providing the packets that are to be transmitted. Third,
the rotation operation involves changing just the metadata of
queue and that too of at most three queues. This combination
of factors allows us to bolt-on the PCQ abstraction on to a
traditional TM.

3.5 Analysis and Extensions

We now analyze our PCQ abstraction and compare it to both
fine-grained priority queuing schemes and an ideal Calen-
dar Queue along different dimensions. We also provide an
extension that expands the scheduling capability of the PCQ.

Expressiveness: From a theoretical perspective, a static pri-
ority mechanism (e.g., PIFO) with infinite priority levels is
equivalent to a Calendar Queue with infinite buckets, and
most scheduling algorithms can be expressed in both these
hypothetical schemes. However, a practical PIFO has finite
priority levels, and a practical CQ has finite buckets, which
affects the feasibility and the fidelity of scheduling algorithms.
An algorithm can be implemented using PIFOs if all packets
throughout the "lifetime" of the algorithm have ranks strictly
in the priority queue range. This is true for algorithms like
pFabric where packet rank is solely a function of flow size, but
not true for WFQ or EDF where packet ranks are computed
based on a round number or current time, which is mono-
tonically increasing. As discussed earlier, the priority-level
space will roll over eventually, and the ordering of enqueued
packets will be violated. On the other hand, our realization of
PCQs requires that the enqueued packets’ ranks at any instant
fit within the available buckets or queues, which makes it
challenging to implement algorithms that require both a large

packet rank range as well as high fidelity in distinguishing
between the packet ranks; we can extend the range of a CQ by
bucketing several packet ranks together, but that introduces
approximations which we discuss next.

Approximations: There are two sources of approximations
that arise in a PCQ. First, inversions within a FIFO queue.
The original Calendar Queue [10] maintains events in a single
bucket in sorted order, whereas we simply use a FIFO queue.
This can lead to inversions if multiple ranks are assigned to
the same bucket, i.e., a higher priority packet is scheduled
after a lower priority packet. This presents a feasibility vs.
accuracy trade-off for the scheduling algorithm, and if the
bucket intervals are chosen carefully, the approximation is
acceptable as we show later in the evaluation. It is worth
noting that one could borrow some of the mechanisms from
the SP-PIFO work [2] to reduce rank inversions, but we leave
that to future work. Second, the PCQ imposes a limit on
the range of the CQ. Since the number of FIFO queues is
limited, there is a possibility that packets will arrive with
a rank beyond the range of the CQ. One can theoretically
increase the bucket size to include a larger priority schedule
such packets that are very far in the future. However, this will
lead to an increase in inversions and reduce the accuracy of
the priority queuing mechanism. Another option is to store
overflowing packets into a separate queue and recirculate
them into their appropriate queue when they get close to
their service time. Furthermore, the range of a CQ can be
significantly increased by employing a hierarchical structure,
and we describe this next.

Hierarchical Calendar Queues: One way to extend the
range of a CQ is to employ a hierarchical structure among the
available FIFO queues, similar to hierarchical timing wheels,
at the cost of recirculating some data packets. To create a
2-level hierarchical calendar queue (HCQ), we split the N
FIFO queues into two groups of sizes n1 and n2, respectively.
The two groups run independent calendar queues CQ1 and
CQ2 on top of them, however with different bucket intervals:
CQ1 having an interval of one time period and CQ2 having
an interval of n1 time periods, as shown in Figure 6. The
idea is that a single queue of CQ2 has an interval equivalent
to the full rotation of all n1 queues of CQ1. A packet with a
scheduled time between 1 to n1 is inserted into the appropriate
queue in CQ1, packets with time between n1 +1 to 2×n1 are
inserted into the first queue of CQ2, packets with 2×n1+1 to
3×n1 are inserted into the second queue of CQ2, and so on.
This approach provides a total range of n1 ×n2 time periods,
whereas just using a single CQ over N queues would give a
range of just n1 +n2.

However, this comes at the cost of recirculating any data
packet that is enqueued in CQ2. When a full rotation of all
n1 queues in CQ1 finishes, all packets from the head queue of
CQ2 are recirculated and deposited into appropriate queues
in CQ1. Note that this approach is still significantly better

Day 1

Day 2

Day 3

Day N

1st level CQ
with N queues

Days (0,N]

Days (N,2*N]

Days ((M-1)*N,M*N]

2nd level CQ
with M queues

Figure 6: Example of a 2-level Hierarchical CQ. Packets are
enqueued into the higher level CQ if they are too far into the
future and recirculated into the finer level CQ periodically.

than the approach described in [10], where packets scheduled
too far in the future are simply enqueued in the scheduled
queue modulo N, and recirculated if the scheduled time has
not arrived; Brown’s scheme can recirculate a packet multiple
times, whereas an HCQ recirculates a packet only once lead-
ing to more efficient use of bandwidth. Implementing HCQs
also requires storing and managing extra state for both CQs
and more complex computations when determining the des-
tination queue for a packet. With 32 FIFO queues, a 2-level
HCQ can be implemented with 16×16 queues to achieve a
reach of 256 time periods or a 3-level HCQ with 16×8×8
queues with a total reach of 1024, which is significantly larger
than 32.

Limitations: Similar to PIFOs, CQs compute the enqueue
rank only on packet arrival. Therefore, the relative order of
already buffered packets cannot be changed after enqueuing.
This limitation prevents CQs from realizing mechanisms such
as pFabric’s starvation prevention technique [4], where the de-
queue order of multiple previously received packets changes
on an enqueue; a later packet within a flow would signal that
there are fewer remaining bytes within the flow and, thereby,
increase the priority of the flow’s previously enqueued pack-
ets. CQs do allow us to realize other, arguably stronger, forms
of starvation prevention, as we will see in Section 4.5. An-
other limitation of CQs is that we can schedule packets only
in the future. If the computed rank is before the current CQ
time, the resulting packet schedule will be different from the
desired ordering. Essentially, this means that CQs cannot
correctly order packets that have ranks in the past. One could
address this limitation by not immediately reusing a queue
for a future period as soon as we perform a CQ rotation and
allowing some number of queues from the past to be active.
Finally, CQs have an upper limit on the range of ranks they
can enqueue at a time. If a scheduling algorithm requires a
large range, it cannot be implemented accurately using CQs;
the hierarchical scheme outlined above can increase a CQ’s
range, but it comes with an approximation cost.

4 Evaluation
We evaluate the practical feasibility, expressiveness, and per-
formance of Calendar Queues by implementing them on a

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

N
o
rm

a
liz

e
d
 F

lo
w

 C
o
m

p
le

ti
o
n
 T

im
e

Load (%)

(a) Average over all flows (uniform)

Droptail
CQ-WFQ
CQ-EDF

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

Load (%)

(b) Average over all flows (datamining)

Droptail
CQ-WFQ
CQ-EDF

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

Load (%)

(c) 99%tile of short flows (datamining)

Droptail
CQ-WFQ
CQ-EDF

Figure 7: Average and tail latencies for both synthetic and datamining workloads with WFQ and EDF policies implemented using
Calendar Queues on top of Barefoot Tofino switch in the hardware testbed.

programmable Barefoot Tofino switch and realizing two clas-
sical scheduling algorithms using CQs. Next, using large
scale packet-level simulations, we demonstrate the flexibility
of the Calendar Queue abstraction with three case studies.
First, we instantiate a physical calendar queue that performs
deadline-aware scheduling of both aggregate flows (or co-
flows) and individual flows. Second, we instantiate a logical
calendar queue that implements a variant of fair-queueing that
can tolerate a limited amount of burstiness, thereby providing
a configurable balance between fairness and flow comple-
tion time for short flows. Finally, we implement a variant
of pFabric that prevents long flows from starving by gradu-
ally increasing the priority of all enqueued packets. None of
these scheduling algorithms can be realized using traditional
priority queuing schemes such as PIFO.

4.1 Hardware Prototype Implementation

We implement and evaluate programmable calendar queues
on the Barefoot Tofino 100BF-32X switch. As the current
Tofino switch does not support updating a queue’s priority
on the datapath, we implement CQs using a combination of
in-built packet generator, packet re-circulation, and control
plane operations to drain packets in the correct order.

First, we use the in-built packet generator on the switch to
periodically generate probe packets and detect when a queue
rotation needs to be performed. The egress pipeline tracks
the current head of the CQ, and when a packet is dequeued
from the next queue (signifying the current queue is empty),
it re-circulates the probe packet back to the ingress to initiate
a rotation. Next, the ingress pipeline updates the current head
of the CQ and enqueues the probe packet into the queue being
rotated out to drain it fully, and no more packets are inserted
into it. When the egress pipeline receives the probe packet
again, it is safe to update the priority of the drained queue,
and we achieve this by setting a flag in the egress pipeline.
Finally, the control CPU polls on this flag variable, and when
set, it makes an API call to update the queue’s priority and
notifies the ingress pipeline that it is safe to use this queue to
store the future packets.

Testbed and Workload We implement two scheduling al-
gorithms, WFQ [14] and EDF [18] using Calendar Queues

and compare them against standard FIFO droptail scheduling
in a 2-level fat-tree topology, consisting of 2 ToR switches, 2
aggregation switches, and 4 servers by using loopback links
with ingress-port based virtualization to divide the 32 phys-
ical ports into multiple switches. All links in the network
are 40Gbps with 80µs end-to-end latency. Each server opens
80 concurrent long-running connections to other servers and
generates flows according to a Poisson process at a rate con-
figured to achieve the desired network load. We tested a
synthetic workload that draws flow sizes at uniform with a
max size of 12.5 MB and the data mining workload from [4].

Performance Figure 7 shows the average and 99th per-
centile latencies. Across both workloads, we can see the
WFQ and EDF implementations performing better than sim-
ple droptail queues. The difference is more significant at
higher network load when queues build up at the switch due
to bursty arrivals. This is when the prioritization and correct
scheduling of packets leads to a visible difference in FCTs.
However, the important point here is that we were able to
realize these scheduling policies at a line-rate of 40 Gbps
without being limited by the number of flows. We further
measured the extra physical switch resources consumed by
our implementation of WFQ and EDF using CQs, and report
them in Appendix B.

4.2 Packet-level Simulations

We study our use-cases in a large-scale cluster deployment
using an event-driven, packet-level simulator. We extend the
mptcp-htsim simulator [21] to implement Calendar Queues
and several other comparison schemes. The simulation con-
sists of 256 servers connected in a 3-level fat-tree topology
consisting of 8 ToR switches, 8 aggregation switches, and 4
core switches. Each ToR switch is connected to 32 servers
using 10 Gbps links, and all other switches are connected
to each other using 40 Gbps links. Next, we describe each
case-study and evaluate them.

4.3 Use Case 1: Coflow scheduling using Least Slack
Time First (LSTF) scheduling

Distributed applications running inside datacenters generate
network traffic patterns that require optimizing the perfor-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.2 0.4 0.6 0.8 1

C
o
fl
o
w

 C
o
m

p
le

ti
o
n
 T

im
e
 (

µ
s)

Network Load (%)

(a) Average completion time of all coflows

Droptail
Fair Queue

Ideal CQ
Aprx CQ

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.2 0.4 0.6 0.8 1

Network Load (%)

(b) 99%tile completion time of coflows

Droptail
Fair Queue

Ideal CQ
Aprx CQ

 0

 200

 400

 600

 800

 1000

 1200

< 20k 40k 60k 80k 100k

Coflow size in bytes

(c) Coflow completion time at 75% network load

Droptail
Fair Queue

Ideal CQ
Aprx CQ

Figure 8: Coflow completion time when running a mix of background and coflow traffic with coflows prioritized over background
flows. (a) average CCT for all coflows, (b) 99th percentile CCT for all coflows, and (c) average and 99th percentile (using error bar)
for various coflow size buckets at 75% network load.
mance on a collection of flows [12], called coflows, rather
than individual flows, e.g., partition-aggregate or bulk syn-
chronous programming tasks such as multi-get Memcached
queries and MapReduce jobs. The performance of such appli-
cations depends on the last finishing flow among the collection
and prior work [1] has shown that near-optimal performance
can be achieved by ordering coflows using a Shortest Remain-
ing Processing Time (SRPT) first mechanism and ensuring
that any packet from any flow of a coflow X ordered before
coflow Y is transmitted before any packet from coflow Y.

We implement the above approach using LSTF scheduling
on top of Calendar Queues to optimize coflow completion
times (CCT). However, instead of using the complex BSSI al-
gorithm in [1], which decides priorities based on other coflows
in the system, we choose a much simpler heuristic to order
coflows as they arrive. We compute a deadline for the whole
coflow, assuming the largest sub-flow in the coflow is the bot-
tleneck and will be the last to finish. Therefore, the deadline
is simply the largest sub-flow size divided by endhost link
speed. All we need to do is assign this deadline to all packets
of all flows in the coflow and ensure that packets with the
earliest deadline are transmitted first at each switch.

We calculate each packet’s slack as the time remaining
until the deadline of its corresponding coflow. The slack
is initialized in the packet header at the endhost, and as the
packet traverses the network, each switch enqueues the packet
in the Calendar Queue based on this slack value. The higher
the slack value, the farther in future the packet is scheduled
for transmission. On departure, the switch deducts the time
spent at the switch from the slack and updates the packet
header. As a result, critical flows with lower slack values
and closer deadlines are dynamically prioritized over non-
critical flows with larger slack values and farther deadlines.
Note that this scheme could have been implemented using an
exact priority queue (such as PIFO) with absolute deadlines
embedded in the packet header, but that would require clocks
to be synchronized. More importantly, the switch would
run out of priority levels eventually and would not be able
to enforce deadlines. We, therefore, implement the scheme
using LSTF on top of Calendar Queues.

We measure the performance of the above coflow schedul-
ing mechanism using event-driven simulations and compare
it with the following queueing schemes:

• Droptail: Traditional switch with a single FIFO queue that
drops packets from the tail when full.

• Fair Queue: Bit-by-bit round-robin algorithm from [14]
that achieves max-min fairness.

• Ideal Calendar Queue: A CQ with infinite buckets that
also transmits packets in sorted order within each bucket.

• Approx Calendar Queue: Our implementation of CQs
that uses 32 FIFO queues and 10µs round interval.

In all the above schemes, we use the same end-host flow
control protocol, DCTCP, with the additional embedding of
slack value based on the coflow deadline.

Workload and Performance Metric We use a mix of
background traffic, which is the enterprise workload in [3]
and a synthetic coflow workload derived from a Facebook
trace [1]. Coflows, on average, have ten sub-flows and a total
size of 100 KB. The ratio of background traffic to coflow
traffic is 3:1. Flows and coflows arrive according to a Pois-
son process at randomly and independently chosen source-
destination server pairs with an arrival rate chosen to achieve
the desired level of utilization in the aggregation-core switch
links. We evaluate the performance in terms of flow comple-
tion time (FCT) or, in case of coflows, the coflow completion
time (CCT), which is the maximum FCT of comprising sub-
flows and report both mean and 99th percentile numbers.

Since we have a mix of background flows and coflows, we
must decide how they co-exist together and are scheduled
inside the network. One trivial way is to treat background
traffic as a separate class with a lower priority than coflow
traffic. This configuration is evaluated in Setup 1. Another
option made possible by CQs is to treat background traffic
as fair-queued and coflow traffic as deadline-aware using the
same underlying CQ to schedule packets belonging to both
classes. This demonstrates the flexibility of CQs in realizing
multiple scheduling policies at once, and we evaluate this
configuration in Setup 2.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1

Fl
o
w

 C
o
m

p
le

ti
o
n
 T

im
e
 (

u
s)

Network Load (%)

(a) Average over short flows

Ideal FQ
FQ with 8 burst

FQ with 16 burst

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1

Network Load (%)

(b) 99%tile of short flows

Ideal FQ
FQ with 8 burst

FQ with 16 burst

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.2 0.4 0.6 0.8 1

Network Load (%)

(c) 99.99%tile of short flows

Ideal FQ
FQ with 8 burst

FQ with 16 burst

Figure 9: Average and percentile flow completion times for short flows with varying network load and permissible burst size.

Setup 1: Coflows have priority over background traffic.
We treat background flows as a different traffic class with
lower priority than coflows by using a separate queue with
strictly lower priority. As a result, the background traffic
performance is not affected by the coflow scheduling policy,
and we report coflow completion times in Figure 8. The
average CCT improves by up to 3x and 99th percentile CCT by
5x at high network loads. This improvement is both because
we are emulating an SRPT policy as well as because we de-
prioritize shorter sub-flows within a coflow over other more
critical flows. Both droptail and fair-queuing finish short flows
within a coflow quickly, although they have a significant slack
till the deadline. Moreover, our CQ implementation is able to
accurately emulate an ideal calendar queue mechanism using
a limited number of FIFO queues, and the gap between ideal
CQ and our CQ is fairly negligible.

We present the results for Setup 2 in Appendix C.

4.4 Use Case 2: Weighted Fair Queueing with Burst Al-
lowance

First, we implement Fair Queueing using calendar queues
as described in Section 3.3.1, which emulates a round-robin
scheme wherein each active flow transmits a fixed number of
bytes each round (BpR). The departure round computed for
each packet is mapped to a future day (or queue) in the CQ,
which transmits the packets in the correct order. This scheme
has been shown to emulate Fair Queuing accurately [25] and
while it implements Start Time Fair Queueing at a coarse
granularity, it is often desirable to allow a burst of packets
from a single flow to be transmitted back-to-back to achieve
a better latency for short flows and improve tail latency [13].
This only affects fairness at very short timescales while main-
taining fairness at larger timescales.

We modify WFQ to allow short bursts to go through using
a simple modification to the enqueuing logic at the ingress. In
addition to maintaining a byte counter per flow and computing
a packet’s round number as byte counter divided by BpR, we
maintain a permitted burst size. While our original WFQ
implementation allows a flow to send at most BpR bytes per
round, the burst-friendly variant lets a flow enqueue up to a
fraction of available burst size into a single round, allowing it
to exceed its fair share allocation temporarily.

More precisely, instead of computing the round number as
R = bytes[f]/BpR, where bytes[f] is the amount of bytes
enqueued by flow f, we incorporate burst size into the calcu-
lation as follows,

R = bytes[f]/max(BpR, BurstSize - bytes[f])

where BurstSize is the configured permissible burst size.
This essentially lets BurstSize/2 bytes to be enqueued in the
current round, BurstSize/4 in the next round, and so on, as
show in Figure 10. Any enqueued bytes exceeding the burst
size are assigned the same round number as before.

We implement this burst-friendly fair-queuing scheme with
configured burst sizes of 8 and 16 packets (denoted by FQ-
8 and FQ-16), along with ideal fair-queueing on top of our
Calendar Queues and measure the impact on flow completion
times using simulations. We use the same 3-level fat-tree
topology and enterprise workload for this use case.

Figure 9 shows the flow completion times of short flows
as we increase the network load. At higher network loads,
allowing a burst of bytes to go through leads to up to 2-3x re-
duction in higher percentile latencies. Figure 11 breaks down
the latency improvement across different flow size buckets,
and it confirms that short flows in the region of burst size
show the most improvement. More importantly, larger flows
are unaffected by this temporary burst allowance.

4.5 Use Case 3: pFabric with Starvation Prevention

pFabric [4] is a transport layer designed to provide near-
optimal flow completion time by essentially emulating Short-
est Remaining Processing Time (SRPT) first scheduling at
each switch. Each flow packet carries a single number that
encodes its priority – in this case, it is set to the remaining
flow size when the packet is transmitted. All switches forward
the packet with the shortest remaining flow size at any given
time. This simple scheme can be implemented using a static
fine-grained priority scheme such as PIFO, as it does not re-
quire the gradual priority escalation. However, this leads to
potential starvation of long flows, which are always depriori-
tized compared to shorter flows, making it impractical to run
in real environments. This is shown in Table 1, where we
simulated the same 3-level fat-tree topology and ran the enter-
prise workload at 80% network load. As flow size increases,

1 2 3 4 5 6 7 8 9
Round Number

Normal Fair Queueing

Bursty Fair Queueing

Figure 10: Packet enqueuing behavior
of normal fair queueing vs bursty fair
queueing.

101

102

103

104

 < 3k 12k 48k 192k 768k

9
9
.9

 p
e
rc

e
n
ti

le
 F

C
T
 in

 µ
s

Flow size in bytes

FQ
FQ-8

FQ-16

Figure 11: 99.9 percentile latency for var-
ious flow size buckets at 90% network
load in micro-seconds.

 0

 100

 200

 300

 400

 500

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
g
e
 F

C
T
 (

u
s)

Network Load (%)

pFabric-fair
pFabric

Figure 12: Average FCT for pFabric and
pFabric-fair for enterprise workload in
our testbed.

Flowsize 10k 100k 1M 10M 100M

pFabric 679 651 670 524 265
pFabric-fair 650 642 638 543 442

Table 1: Average bandwidth in MBps achieved by flows in vari-
ous bucket sizes.
the average transmission rate decreases resulting in reduced
bandwidth available for longer flows.

If we were to think of fair queuing and pFabric as ends
of the spectrum, calendar queues would provide us with op-
tions in the middle. We implement a fairer version of pFab-
ric, called pFabric-fair, by slightly altering the enqueuing
mechanism. A packet with k bytes remaining in the flow is
enqueued f (k) periods into the future, where f (k) is a log
function. Thus, higher rounds are exponentially bigger, and
the CQ can accommodate large flow sizes. Whenever the cur-
rent head queue is empty, we rotate to the next queue, which
ensures that low priority packets from larger flows are not
permanently starved, merely deprioritized at enqueue time,
and their priorities increase with time. However, we need
some additional state to ensure that we do not enqueue a later
packet from a flow ahead of the flow’s previously received
packets, which we achieve by keeping track of the highest
queue for each flow.

Figure 12 shows the average and 99th percentile FCT for all
flows with varying network loads for pFabric and pFabric-fair.
Although pFabric-fair has a slightly higher average FCT at
higher network loads, it also provides higher bandwidth to
large-sized flows, preventing them from starving.

5 Related Work
Packet schedulers available in switching hardware today are
fixed function, supporting specific primitives such as strict pri-
ority, rate limits, round-robin fairness, although a vast number
of richer scheduling algorithms that provide stronger guar-
antees exist in the literature, such as WFQ [14], pFabric [4],
STFQ [15], SRPT [24], EDF [18].

Several recent proposals aim to provide a programmable
packet scheduler that can implement these scheduling algo-
rithms while operating at line rate of terabits per second, such
as PIFO [28], PIEO [27], and SP-PIFO [2]. All of these

proposals provide the abstraction of static and finite priority
levels, which we argue is insufficient to implement several
scheduling algorithms that require monotonically escalating
priorities. pHeap [7], PIFO and PIEO provide fine-grained
priority levels, which makes it challenging for them to scale to
large packet buffers and multi-pipeline switches. SP-PIFO is
similar to Calendar Queues as it also provides coarse-grained
priority levels using only FIFO queues, and can scale to cur-
rent line-rate switches. SP-PIFO dynamically adjusts the
priority range of individual queues by changing queueing
thresholds, which can be explored further in the context of
Calendar Queues as well.

Another chain of work proposes efficient packet scheduling
in software such as Carousel [22], Loom [29], and Eiffel [23].
These approaches rely on timing wheel data structures or
bucketed integer priority queue-like data structures for effi-
cient operation. Calendar Queue borrows ideas from similar
data structures while targeting switching hardware that can
support today’s large buffer and multi-pipeline routers.

6 Conclusion

We propose a flexible packet scheduler designed for line-rate
hardware switches, called Programmable Calendar Queues,
that enables the efficient realization of several classical
scheduling algorithms. It relies on the observation that most
algorithms require both prioritization and implicit escalation
of a packet’s priority. We show how they can be implemented
efficiently on today’s programmable switches by dynami-
cally changing the priority of queues using either dataplane
primitives or control-plane operations. We demonstrate that
PCQs can be used to realize interesting variants of LSTF, Fair
Queueing, and pFabric to provide stronger delay guarantees,
burst-friendly fairness, and starvation-free prioritization of
short flows, respectively.

Acknowledgments

We would like to thank the anonymous NSDI reviewers and
our shepherd Rachit Agarwal for their valuable feedback. This
research was partially supported by NSF Grant CNS-1714508
and Futurewei.

References
[1] AGARWAL, S., RAJAKRISHNAN, S., NARAYAN, A., AGAR-

WAL, R., SHMOYS, D., AND VAHDAT, A. Sincronia: Near-
optimal network design for coflows. In Proceedings of the
ACM SIGCOMM Conference (2018).

[2] ALCOZ, A. G., DIETMÜLLER, A., AND VANBEVER, L. SP-
PIFO: Approximating push-in first-out behaviors using strict-
priority queues. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20) (Santa Clara,
CA, 2020).

[3] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,
VAIDYANATHAN, R., CHU, K., FINGERHUT, A., LAM, V. T.,
MATUS, F., PAN, R., YADAV, N., AND VARGHESE, G.
CONGA: Distributed congestion-aware load balancing for
datacenters. In Proceedings of the ACM SIGCOMM Confer-
ence (2014).

[4] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCK-
EOWN, N., PRABHAKAR, B., AND SHENKER, S. pFabric:
Minimal near-optimal datacenter transport. In Proceedings of
the ACM SIGCOMM Conference (2013).

[5] BAI, W., CHEN, L., CHEN, K., HAN, D., TIAN, C., AND

WANG, H. Information-agnostic flow scheduling for com-
modity data centers. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation
(Oakland, CA, 2015).

[6] BAREFOOT NETWORKS. Tofino Programmable Switch.
https://www.barefootnetworks.com/technology/.

[7] BHAGWAN, R., AND LIN, B. Design of a High-speed Packet
Switch with Fine-grained Quality-of-Service Guarantees. In
Proceedings of the IEEE International Conference on Commu-
nications (June 2000), vol. 3, pp. 1430–1434 vol.3.

[8] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKE-
OWN, N., REXFORD, J., SCHLESINGER, C., TALAYCO, D.,
VAHDAT, A., VARGHESE, G., AND WALKER, D. P4: Pro-
gramming protocol-independent packet processors. ACM SIG-
COMM Computer Communication Review 44, 3 (July 2014).

[9] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G.,
MCKEOWN, N., IZZARD, M., MUJICA, F., AND HOROWITZ,
M. Forwarding metamorphosis: Fast programmable match-
action processing in hardware for SDN. In Proceedings of the
ACM SIGCOMM Conference (2013), pp. 99–110.

[10] BROWN, R. Calendar queues: A fast 0(1) priority queue
implementation for the simulation event set problem. Commu-
nications of the ACM 31 (1988), 1220–1227.

[11] CAVIUM. XPliant Ethernet switch prod-
uct family. http://www.cavium.com/
XPliant-Ethernet-Switch-Product-Family.html.

[12] CHOWDHURY, M., ZHONG, Y., AND STOICA, I. Efficient
coflow scheduling with varys. In Proceedings of the ACM
SIGCOMM Conference (2014), SIGCOMM ’14, pp. 443–454.

[13] CLARK, D. D., SHENKER, S., AND ZHANG, L. Supporting
real-time applications in an integrated services packet network:
Architecture and mechanism. In Proceedings on the ACM
SIGCOMM Conference (1992).

[14] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and
simulation of a fair queueing algorithm. In Proceedings on the
ACM SIGCOMM Conference (1989).

[15] GOYAL, P., VIN, H. M., AND CHEN, H. Start-time fair queue-
ing: A scheduling algorithm for integrated services packet
switching networks. In Proceedings of the ACM SIGCOMM
Conference (1996), SIGCOMM ’96, pp. 157–168.

[16] IEEE. Priority based flow control. IEEE 802.11Qbb (2011).

[17] LEUNG, J. Y.-T. A new algorithm for scheduling periodic,
real-time tasks. Algorithmica 4, 1-4 (1989), 209.

[18] LIU, C. L., AND LAYLAND, J. W. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM
20, 1 (Jan. 1973), 46–61.

[19] MITTAL, R., AGARWAL, R., RATNASAMY, S., AND

SHENKER, S. Universal packet scheduling. In 13th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 16) (Santa Clara, CA, 2016).

[20] OZDAG, R. Intel® Ethernet Switch FM6000 Series-Software
Defined Networking. http://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/
ethernet-switch-fm6000-sdn-paper.pdf.

[21] RAICIU, C. MPTCP htsim simulator. http://nrg.cs.ucl.
ac.uk/mptcp/implementation.html.

[22] SAEED, A., DUKKIPATI, N., VALANCIUS, V., THE LAM,
V., CONTAVALLI, C., AND VAHDAT, A. Carousel: Scal-
able traffic shaping at end hosts. In Proceedings of the ACM
SIGCOMM Conference (2017), SIGCOMM ’17, pp. 404–417.

[23] SAEED, A., ZHAO, Y., DUKKIPATI, N., ZEGURA, E., AM-
MAR, M., HARRAS, K., AND VAHDAT, A. Eiffel: Efficient
and flexible software packet scheduling. In 16th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 19) (Boston, MA, 2019), pp. 17–32.

[24] SCHRAGE, L. E., AND MILLER, L. W. The queue m/g/1 with
the shortest remaining processing time discipline. Oper. Res.
14, 4 (Aug. 1966), 670–684.

[25] SHARMA, N. K., LIU, M., ATREYA, K., AND KRISHNA-
MURTHY, A. Approximating fair queueing on reconfigurable
switches. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18) (Renton, WA, 2018),
pp. 1–16.

[26] SHREEDHAR, M., AND VARGHESE, G. Efficient fair queue-
ing using deficit round robin. In Proceedings on the ACM
SIGCOMM Conference (1995).

[27] SHRIVASTAV, V. Fast, scalable, and programmable packet
scheduler in hardware. In Proceedings of the ACM SIGCOMM
Conference (2019), SIGCOMM ’19, pp. 367–379.

[28] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M.,
CHOLE, S., CHUANG, S.-T., AGRAWAL, A., BALAKRISH-
NAN, H., EDSALL, T., KATTI, S., AND MCKEOWN, N. Pro-
grammable packet scheduling at line rate. In Proceedings of
the ACM SIGCOMM Conference (2016).

[29] STEPHENS, B., AKELLA, A., AND SWIFT, M. Loom: Flex-
ible and efficient NIC packet scheduling. In 16th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 19) (Boston, MA, 2019), pp. 33–46.

https://www.barefootnetworks.com/technology/
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html

A Detailed Implementation Notes for Realiz-
ing PCQs in Hardware

We now present the traffic manager API and how it is invoked
by the different steps involved in transitioning a CQ from one
period to another.

Traffic Manager API
• tm_enqueue(packet, queue): Enqueues a packet in

the given queue.

• tm_pause(queue): Stop or pause queue from transmit-
ting any packets until unpause is called on the same
queue.

• tm_unpause(queue): Resume queue, allowing it to send
out packets until pause is called.

• tm_setPriority(queue, p): Set priority of queue to p

(one of different levels supported by the TM)

• tm_dequeue() (called from egress): Returns a packet
from the highest priority unpaused queue, along with the
queue id from which it was dequeued.

The exact details of enqueue/dequeue and rotation are
described in the pseudocode below. In addition, we store
the following state at ingress and egress to keep track of
Calendar Queue status and perform queue rotations. The
special recirculation packets also contain metadata regarding
which queue is being rotated out.

Ingress State
currQ: queueId currently at the head of the CQ
prevQ: queueId that was just rotated out and is draining
nextQ: queueId that will be unpaused next

Egress State
currQ: queueId at the head of the CQ (egress)

Packet Enqueue Function
packet_enqueue(pkt, X) (called from ingress)
// According to desired scheduling algorithm.
x = compute_rank(pkt)
// Enqueue packet in queue (currQ + x) % N
tm_enqueue(pkt, (currQ + x) % N)

// process initiate rotate packet
if packet == rotate:

ingress.prevQ = ingress.currQ
ingress.currQ = ingress.nextQ
ingress.nextQ = (ingress.nextQ + 1) % N
tm_enqueue(marker, ingress.prevQ)
tm_setPriority(prevQ, High)
tm_setPriority(currQ, Medium)

// process marker packet
if packet == marker:

tm_pause(marker.queueId)
tm_unpause(nextQ)
tm_setPriority(nextQ, Low)

Packet Dequeue Function
packet_dequeue() (called from egress)
// Returns the highest priority packet
pkt, queueId = tm_dequeue()

// Need to initiate rotation
if queueId != egress.currQ:

create and circulate a rotate packet on egress.currQ
egress.currQ++

// Normal packet dequeue
if queueId == egress.currQ:

perform normal packet processing

if pkt == marker:
recirculate marker back to ingress

Note that, if no more packets remain to be transmitted, then
rotate packet is never sent out and currQ remains the same.
This avoids unnecessary rotations when the link traffic is less
than the link bandwidth.

B Resource Overhead of Implementing CQs
Table 2 shows the additional overhead of implementing CQs
along with various scheduling policies, as reported by the P4
compiler. First, since we were able to compile CQs directly
onto the Tofino hardware, we can support an arbitrary number
of flows at the configured line-rate of 40 Gbps, and are not
scale limited in any way. We do require some additional
state that is proportional to the number of CQs instantiated
across all ports and the number of queues in each CQ. Each
scheduling policy also keeps extra state for rank computation,
which takes extra resources, e.g., keeping flow byte counters
for WFQ results in 50% increase in SRAM usage.

Resource Baseline CQ w/ CQ w/ CQ w/
EDF WFQ EDF+WFQ

Pkt Header Vector 356 356 356 356
Pipeline Stages 9 9 12 12
Match Crossbar 50 54 63 68
Hash Bits 113 124 140 150
SRAM 27 29 46 48
TCAM 2 2 2 2
ALU Instruction 11 12 13 14

Table 2: Summary of resource usage for a Calendar Queue im-
plementation with 32 physical queues on top of P4 switch.

C Scheduling Deadline-aware and Back-
ground Traffic using the same CQ

In Setup 2 described in Section 4.3, we use the same un-
derlying Calendar Queue to schedule background flows as
fair-queued traffic and coflows as deadline or slack based
traffic. For a background flow packet, which is fair-queued,
we compute its departure queue based on bytes enqueued by
the flow using the WFQ implementation described in Sec-
tion 3.3.1. For a deadline-aware coflow packet, we calculate

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 0.2 0.4 0.6 0.8 1

Fl
o
w

 C
o
m

p
le

ti
o
n
 T

im
e
 (

µ
s)

Network Load (%)

(a) Average CCT of all coflows

Droptail
Fair Queue
Calendar Q

 0

 500

 1000

 1500

 2000

 2500

 0 0.2 0.4 0.6 0.8 1

Network Load (%)

(b) 99%tile CCT of all coflows

Droptail
Fair Queue
Calendar Q

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 0.2 0.4 0.6 0.8 1

Network Load (%)

(c) Average FCT of background traffic

Droptail
Fair Queue
Calendar Q

Figure 13: CCT and FCT when scheduling background traffic as fair-queued and coflow traffic as deadline-aware using the same
Calendar Queue.
its departure queue using the slack inside the packet header
by dividing it with the configured bucket interval as described
in Section 3.3.2. We can control the relative priority of back-
ground vs. coflow traffic by changing the bucket interval. A
higher bucket interval will accommodate more bytes from
deadline traffic compared to fair-queued traffic. We use a
default value of 10µs as the bucket interval and 1 MSS as the
bytes quantum per round for fair queueing.

Figure 13 shows the coflow completion times and FCT of
background flows in this setup. The average CCT shows up

to 2.5x and 1.5x improvement compared to droptail and fair
queuing, respectively. This benefit again comes from the fact
that we are able to schedule shorter coflows before longer
coflows, as well as de-prioritize shorter sub-flows within a
coflow over other more critical sub-flows. The 99th percentile
shows a similar improvement of 3x over droptail queues.
Moreover, the average FCT of background flows stays roughly
the same and is unaffected by the coflow scheduling being
done by the Calendar Queue.

