
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

RpcNIC: Enabling Efficient Datacenter RPC
Offloading on PCIe-attached SmartNICs

Jie Zhang1,†, Hongjing Huang1,†, Xuzheng Chen1, Xiang Li1, Jieru Zhao2, Ming Liu3, Zeke Wang1,∗
Zhejiang University1, Shanghai Jiao Tong University2, University of Wisconsin-Madison3

{carlzhang4, huang hj, chenxuz, lixiang3}@zju.edu.cn, zhao-jieru@sjtu.edu.cn, mgliu@cs.wisc.edu, wangzeke@zju.edu.cn

Abstract—The emerging microservice/serverless-based cloud
programming paradigm and the rising networking speeds leave
the RPC stack as the predominant data center tax. Domain-
specific hardware acceleration holds the potential to disentangle
the overhead and save host CPU cycles. However, state-of-the-
art RPC accelerators integrate RPC logic into the CPU or use
specialized low-latency interconnects, hardly adopted in commod-
ity servers. To this end, we design and implement RpcNIC, a
software-hardware co-designed SmartNIC that enables efficient
RPC layer offloading and reconfigurable RPC kernel offloading.
RpcNIC connects to the server through the most widely used
PCIe interconnect. To grapple with the ramifications of PCIe-
induced challenges, RpcNIC introduces three techniques: (a)
a target-aware deserializer that effectively batches cross-PCIe
writes on the SmartNIC’s SRAM using compacted hardware data
structures; (b) a memory-affinity CPU-SmartNIC collaborative
serializer, which trades additional host memory copies for slow
cross PCIe-transfers; (c) an automatic field update technique that
transparently codifies the schema based on dynamic reconfigure
RPC kernels to minimize superfluous PCIe traversals. We proto-
type RpcNIC using the Xilinx U280 FPGA card. On HyperPro-
toBench, RpcNIC achieves an average of 2.3× lower RPC layer
processing time than a comparable RPC accelerator baseline and
demonstrates 2.6× achievable throughput improvement in the
end-to-end cloud workload.

I. INTRODUCTION

Remote Procedure Call (RPC) is a paramount service block
of today’s cloud system stacks [20], [37], [46], [69]. It
abstracts remote computing resources and provides a simple
and familiar programming model. Developers only prescribe
type information for each remote procedure, and a compiler
generates a stub code linked to an application to pass argu-
ments via message. The RPC model has been widely adopted
in many distributed applications, such as cloud storage [18],
[86], file systems [43], [89], data analytics [77], consensus
protocols [87], [88], and machine learning systems [49], [57].

The RPC stack comprises two key components: (a) RPC
protocol handling that parses the RPC headers, identifies the
triggered message and the carried payload, and determines the
target function; (b) serialization and deserialization, transform-
ing between in-memory data fields and architecture/language-
agnostic formats. A recent study from Google Cloud [69]
reports that the RPC processing occupies ∼7.1% of CPU
cycles across the entire fleet. Thus, it is important to accelerate
the RPC execution, reduce this data center tax, and release
more CPU cycles for revenue-generated applications.

†Contributes equally
∗Corresponding author

Domain-specific hardware acceleration is a promising so-
lution to build performant computing systems in the post-
Moore’s Law era. However, designing an RPC hardware
accelerator is very challenging because the RPC stack is
tightly coupled with the networking stack and application
layer, whose processing should be efficiently streamlined
into the data plane. As a result, researchers propose to use
specialized on-chip interconnects and closely integrate the
RPC acceleration module in the host CPU chips [36], [38],
[46], [63], [64]. For example, Cereal [36] introduces a special
memory access interface to allow low-latency host memory
accesses from the RPC accelerator. Dagger [46] leverages Intel
UPI [35] interconnect to facilitate RPC stack processing.

Unfortunately, none of these proposals can be easily adopted
on commodity servers due to the lack of interconnect support.
RPC stack is continuously and rapidly evolving. For example,
widely used gRPC [20] has 9 major releases over the last
twelve months. As such, integrating RPC logic into the real
host CPU lacks enough flexibility. Besides, developing a
function- and performance-capable interconnect that can be
integrated into a server system takes many years of engineering
efforts, such as the ECI bus from the pioneering Enzian
platform [11]. The emerging Compute Express Link [12] looks
promising, but its physical layer runs atop PCIe, yielding sub-
microsecond access latency [48], [73], which cannot satisfy
the latency requirement of the above accelerators. This leads
to an interesting question: How to accelerate RPC on top of
de facto and predominant server interconnect, i.e., PCIe?

In this paper, we design and implement RpcNIC, a software-
hardware co-designed PCIe-attached SmartNIC for reconfig-
urable RPC offloading. RpcNIC’ hardware part comprises
three building blocks: (1) a target-aware deserializer that takes
RPC requests, deserializes the messages, and forwards the
results to the host or SmartNIC memory; (2) a memory-affinity
serializer, which fetches computed data from both the host
and SmartNIC memory, performs serialization, and fabricates
the response; (3) programable computing units, dynamically
offloading RPC computing kernels. In sum, RpcNIC is a low-
profile immediately deployable PCIe-attached SmartNIC with
a software abstraction to load the RPC stack and related
computing kernels on demand.

Building RpcNIC is non-trivial because of the high cross-
PCIe overheads, jeopardizing the interaction performance be-
tween the RPC stack and other system layers. First, the RPC
deserialization process needs to write deserialized results in

a field-by-field scheme, whose throughput is bounded by the
number of PCIe transactions. For example, our empirical eval-
uation using HyperProtoBench [38] shows that this limitation
can degrade the attainable deserialization throughput by 2.8×
in geometric mean. RpcNIC proposes a target-aware deserial-
izer that temporarily batches the deserialized fields within one
RPC message in the SmartNIC’s SRAM and performs cross-
PCIe writes only when necessary. We realize this by designing
two compacted hardware data structures (schema table and
temp buffer) and revamping the deserialization process.

Second, the RPC serialization process is hindered by the
high PCIe latency. A nested RPC message or dereference
field (strings/bytes/repeated/sub-messages) would require mul-
tiple memory accesses in a pointer-chasing manner since the
memory location of the sub-fields can only be known after
the parent’s content is fetched. The sub-microsecond latency
of PCIe would significantly increase the overall serialization
time (∼4.6× compared with an on-chip SmartNIC). RpcNIC
designs a memory-affinity CPU-SmartNIC collaborative seri-
alizer that trades additional host memory copies for slow cross-
PCIe transfer. We introduce a lightweight pre-serialization
phase to materialize the data layout on the host memory and
facilitate the SmartNIC-side serialization execution. Besides,
we leverage the memcpy (memory copy) engines [34], [45]
residing in modern CPUs [33] to alleviate host CPU usage for
large fields’ copy.

Third, computation partition between host and RPC kernels
within the RPC handler would cause suboptimal data place-
ment and incur superfluous PCIe traversals. People eagerly
co-locate domain-specific logic along with the RPC stack
to maximize the hardware specialization benefits [19], [39],
[54], [66], [86]. However, unlike on-chip cache-coherent in-
terconnects, dynamic splitting computation logic across the
host and SmartNIC over PCIe is inflexible and cause inferior
data placement. Therefore, RpcNIC develops an automatic
field update technique that transparently codifies the schema
based on host/RPC kernel layout. As such, the SmartNIC
deserializer can place the fields in suitable locations to avoid
PCIe traversals.

We built RpcNIC over an Xilinx Alevo U280 FPGA and
evaluated it in several real-world scenarios. In a cloud image
compression application, RpcNIC increases the achievable
throughput by 2.6× and reduces the average (99th percentile)
latency by 2.6× (1.9×) compared with an RPC accelerator
baseline. Using Google’s HyperProtoBench [38], RpcNIC
reduces the data serialization time by 4.3× in geometric mean.
RpcNIC achieves similar performance as prior specialized
on-chip accelerators from the literature. The source code is
available at https://github.com/RC4ML/RPCNIC.

II. BACKGROUND AND MOTIVATION

A. Remote Procedure Calls
A typical RPC layer consists of two execution logics: RPC

protocol handling and de/serialization.
• RPC protocol handling. In the transmitting path (TX), the

protocol handling mainly involves creating an RPC header.

In the receiving path (RX), the protocol handling involves
parsing the RPC header and dispatching the deserialized
message to an idle CPU core to execute the target caller
function. This process is usually lightweight compared with
RPC payload processing;

• Serialization and deserialization. Object serialization and
deserialization are heavyweight operations and exist in
RPC TX/RX, respectively. RPC serialization transforms the
in-memory fields into architecture and language-agnostic
formats that can traverse through the network [76]. Deseri-
alization operates conversely.

Protobuf. We focus on the Protocol Buffer serialization li-
brary [21], widely used by many cloud applications.
• Protobuf message definition. It defines the logical trans-

formation between the in-memory format and the wire
format. A protobuf message is a collection of fields, usually
called “schema”. Each message field has a type, name, field
number, and labels (e.g., “repeated”). Field types can be
(a) basic scalar types such as integers and strings; or (b)
a nested user-defined message, also called a sub-message.
Based on the memory layout, these fields can be further
classified into two classes. One uses direct addressing,
meaning that the value is within the memory location of its
parent message, such as doubles and integers. The other uses
indirect addressing (dereferences), indicating that their ac-
tual value is in a pointer-referenced memory location, such
as strings, bytes, or sub-messages. In real-world applications
the RPC message’s depth can reach up to a dozen levels or
more [38];

• Varint encoding of protobuf. Data decoding/encoding is
one of the most time-consuming operations in the de/se-
rialization process [38], especially for small data fields.
Data encoding widely exists in many popular serialization
frameworks [5], [21] for message reduction. Protobuf uses
variable-length integer encoding (known as varint). The
encoding uses the most significant bit in each byte to
indicate if the next byte is part of the same integer and the
remaining 7 bits are used to store the actual value. Protobuf
uses the tag-length-value format (TLV) [22] for length-
delimited fields (such as string and sub-message) and tag-
value format (TV) for varints or fixed-length fields (such as
double). Handling these byte-wise and bit-wise operations
on general-purpose modern CPUs is costly [38], [64], [76],
but can be easily accelerated via hardware specialization.

B. Prior Hardware RPC Acceleration

Researchers have developed several hardware-accelerated
RPC solutions [36], [38], [46], [63], [64] to reduce the RPC
stack processing overheads and save host CPU cycles. For
example, Cereal [36] introduces a special memory access
interface, enabling low-latency host memory access from the
RPC accelerator. Dagger [46] leverages a cache-coherent on-
chip interconnect (UPI) to facilitate collaborative RPC stack
processing between an FPGA-based SmartNIC and the host
CPU. However, Dagger does not support nested structures

https://github.com/RC4ML/RPCNIC

Fig. 1: High-level system architecture and request workflow
of a PCIe-attached RPC-offloaded SmartNIC.

or pointers, which are heavily used in today’s applications.
Optimus Prime [63] and Cerebros [64] place an on-chip
accelerator for handling the de/serialization phase of the RPC
stack. ProtoACC [38] then develops a near-core de/serializa-
tion accelerator for Protobuf using a RISC-V SoC.

Limitation. As shown in Table I, all existing solutions require
on-chip design or specialized interconnects for low latency.
The main challenge of on-chip accelerator solutions is that
integrating a specialized but not generalized function (e.g.,
RPC) into the commercial CPUs is very intrusive to the server
CPU design. Considering that RPCs are evolving rapidly while
the CPU design cycle takes years, integrating RPCs into the
CPU chip is very costly and impractical. As a result, none can
be easily employed on commodity servers and immediately
deployed at scale. Therefore, we aim to build an immedi-
ately deployable PCIe-attached RPC-acclerated SmartNIC
that offers the same programmability and comparable
performance as prior on-chip designs.
C. Challenges

Integrating a specialized function into the PCIe-attached
NIC is much easier, takes much less engineering effort, and has
been proven to be practical in many production systems. For
example, Google integrates their transport protocol “Falcon”
into the Intel IPU [23], and AWS integrates storage function
into their Nitro SmartNIC [4].

Anathor option is to implement a standalone PCIe-based
RPC accelerator. However, both the transmitting and receiv-
ing paths incur multiple redundant cross-PCIe RPC message
movements between the RPC accelerator and the NIC. There-
fore, we prefer integrating the RPC accelerator in the NIC.

Figure 1 sketches such a high-level PCIe-attached SmartNIC
design that offloads the RPC stack. When an RPC request
arrives at the SmartNIC (1), the message is first deserialized
via the hardware engine, where the deserialized fields are
written into the host memory (2). Next, the host (3) and
RPC kernel (4 and 5) are triggered collaboratively to process
the RPC message. Then, the serialization engine retrieves the
processing results, performs the serialization task (6), and
sends back data through the network (7). The overall design
seems straightforward but imposes three unique challenges.
C1: The limited number of concurrent PCIe transactions
hinders the deserialization throughput. The deserialization
engine writes back deserialized results into the host memory
in a field-by-field manner [38], [64]. However, these writing
objects are small, incurring numerous DMA writes and small-
sized PCIe transactions, quickly saturating the PCIe transac-
tion rate. We built a deserialization accelerator (on the Xilinx

Fig. 2: Normalized serialization time when increasing the
simulated PCIe latency for different messages.

U280 FPGA) based on ProtoACC [38], and enforced it to
put deserialized results into either the host memory (crossing
PCIe) or the FPGA off-chip memory. Our evaluations on Hy-
perProtoBench [38] show that cross-PCIe deserialization can
only achieve 5.6× lower throughput compared with writing
results to the FPGA’s off-chip memory.
C2: The high PCIe interconnect latency drastically deceler-
ates the serialization performance. As described in §II-A, an
RPC message can be a deeply nested memory object, causing
multiple pointer-chasing memory accesses under retrieval dur-
ing the serialization phase (6), which is extremely inefficient
when crossing PCIe (taking sub-microseconds).

To illustrate this, we implement a protobuf serialization
accelerator based on ProtoACC [38]. We measure the se-
rialization time when varying interconnect latency through
the Xilinx Vivado simulator [79]. Figure 2 illustrates the
normalized serialization time for all messages of Bench2 in
HyperProtoBench [38]. As expected, when the interconnect
latency increases from DDR5’s 70ns latency to commercial
PCIe’s 1250ns, the end-to-end serialization’s time increases by
3.4× in geometric mean, due to the complex nested message
structure. The exception is that the two messages (M4 and
M10) only present a marginal increase. This is because when
the RPC message becomes large and flat (1.6MB and 0.6MB),
the serialization performance is dominated by the data transfer
time and is not sensitive to the interconnect latency.
C3: Suboptimal data placement causes superfluous PCIe
accesses from host/RPC kernels. People eagerly offload
domain-specific logic along with the RPC stack for core
savings and performance maximization [19], [39], [46], [54],
[66], [86]. These offloadable kernels are generally parallel-
friendly with less data dependency. For example, researchers
place a data compression engine for the cloud block storage
application [86]. Ideally, one should divide incoming data and
place them accordingly, such that the host and the offloaded
RPC kernels only access their data locally. However, in reality,
since the offloaded kernels (5) are only part of the RPC
handler and the offloaded kernels may dynamically change in
a multi-tenant environment, it becomes extremely challenging
to design a clean and optimal partition. A suboptimal data
placement is very costly for a PCIe SmartNIC considering its
high latency for cross-PCIe traversals.

To illustrate this, we develop an RPC-based network func-
tion accelerator that co-locates with a PCIe-attached NIC. It
serves as the cloud gateway [59]. It performs L2/L3 protocol
processing, network address translation (NAT), and packet

System Interconnect Latency Throughput Accelerated RPC Stack Accelerated RPC Kernels
Cereal [36] MAI 40 ns 76.8 GB/s Customized De/Serialization N/A

Optimus Prime [63] 2D mesh NoC 45 ns 64 GB/s Protobuf/Thrift-based De/Serialization N/A
Cerebros [64] 2D mesh NoC 45 ns 64 GB/s Thrift-based De/Serialization, RPC protocol N/A

ProtoACC [38] TileLink System Bus 30 ns N/A Protobuf-based De/Serialization N/A
Dagger [46] Intel UPI 125 ns 19.2 GB/s Customized De/Serialization, RPC protocol, Yes

RpcNIC PCIe 1250 ns 12.8 GB/s Protobuf-based De/Serialization, RPC protocol Yes

TABLE I. Hardware specification comparison.

de/encryption. We explore different computing-driven data
placement strategies and find out that the worst-case placement
can decrease the achievable throughput by 2.2× than the best-
case placement.

III. RPCNIC: DESIGN AND IMPLEMENTATION

A. Overview

RpcNIC is a software-hardware co-designed PCIe-attached
SmartNIC that allows offloading RPC layer and user-defined
RPC kernels. Figure 3 provides the system overview. The hard-
ware part consists of 1) a target-aware deserializer (§III-B) that
takes RPC requests, deserializes the messages, and forwards
the results to the host or SmartNIC; 2) a memory-affinity
serializer (§III-C), which fetches computed data, performs
serialization, and fabricates the response; 3) programable com-
puting units (§III-D), dynamically offloading RPC computing
kernels; and 4) a transport layer. RpcNIC adopts a RoCE-based
transport layer [71], which is entirely offloaded to the NIC just
like an RDMA NIC. The RPC acceleration logic is in the NIC
and sits between the transport layer and the PCIe controller.
When the RPC message is fabricated in the NIC RPC layer,
the hardware will send the message using an “RDMA Send”
verb and the remote side uses an “RDMA Recv” verb to
receive incoming RPC requests. The benefit of putting the RPC
acceleration and transport layer together in NIC hardware is
to avoid redundant data movement or PCIe traversals between
the transport processing and RPC processing.

We place (1), (2), and (4) in the board static region, while (3)
in the partial reconfiguration region. Our software stack (§III-E
and §III-F) of RpcNIC consists of (a) a compiler that takes the
user-defined RPC message specification and outputs both the
message structure and hardware-friendly configurations; and
(b) a rich set of APIs to describe the RPC kernel task.

B. Target-aware Deserializer

To address challenge #1 (§II-C), we develop a target-aware
deserialization engine that forwards deserialized fields to the
host or SmartNIC memory accordingly. Our deserialization
logic has 4 independent computing lanes (i.e., deserializers).
Each deserializer processes RPC requests one by one. Each
deserializer executes the deserialization logic and converts the
results into in-memory C++ objects.

We introduce two hardware data structures (described be-
low) and revamp the deserialization process based on them.

• Schema Table. It is an SRAM region that stores the
message structure of incoming RPC messages. For each
field of an RPC class, we use one bit to indicate its target
location type for the deserialized results. Fields used by
the offloaded RPC kernel (host kernel) are forwarded to

the SmartNIC off-chip memory (host CPU memory). The
“Schema Table” is shared by all deserializers and serializers.
Section III-E describes how this bit is set and how the
“Schema Table” is constructed;

• Temp Buffer. Deserialized results used by RPC kernels are
directly written to the SmartNIC off-chip memory. For oth-
ers, we use a per-deserializer SRAM buffer (“Temp Buffer”)
to store the deserialized fields temporarily. The buffer is
4KB and operates in an append-only mode, simplifying the
buffer management. The buffer size is configurable. When
the buffer is full or the current RPC request’s deserialization
is finished, the deserializer triggers a DMA write and copies
data to the intended host CPU memory. We call this batching
mechanism “One-shot DMA write”. Note that this batching
mechanism would barely increase the deserialization la-
tency, since it only batches the fields within an RPC request
instead of batching fields from different requests.

Deserialization Procedure. An incoming RPC message is
assigned to an idle deserializer or buffered when there are
no idle deserializers. To avoid software allocation overhead,
we reserve a host CPU memory region and a SmartNIC off-
chip memory region for the deserializer. These two memory
regions are divided into 4KB 1 chunks. There is a 16K-entry
TLB2 to perform host CPU memory address translation on
the SmartNIC. We use two SRAM-based FIFOs (called free-
list FIFOs) to store the free chunks of the host/SmartNIC
memory region. Allocating/freeing memory is translated to
poping/pushing a 4KB chunk from/into the FIFO, simplifying
hardware complexity.

The deserializer first pre-allocates a host CPU memory
chunk and a SmartNIC off-chip memory chunk. It then parses
the RPC header to obtain the RPC message class ID and
message length and queries the “Schema Table” based on the
class ID, which returns the schema of this message class. The
SmartNIC then deserializes the message data in a field-by-field
manner accordingly. When encountering a dereference sub-
message, the deserializer pushes the current message schema
into an SRAM-based stack and deserializes the sub-message
recursively.

During the deserialization, each deserialized field has one
of the two target locations:

14KB chunks lead to a small allocation time (0.68% of the total deserializa-
tion time) and a small fragmentation overhead (3.6% in HyperProtoBench).
The size is configurable at system initialization and the users can choose a
suitable value that balances both allocation time and memory fragmentation.

2 We adopt a simple TLB implementation, which can only store pages
with contiguous virtual addresses. 16K entries only occupy 0.29% of the
total SRAM resources in our FPGA prototype.

Fig. 3: Software stack and hardware architecture of RpcNIC.

Fig. 4: Compaison of three serialization strategies.

• Host CPU memory: The deserialized result is assigned a
CPU memory location from the pre-allocated CPU memory
chunk. As described above, we would temporarily save it
in the “Temp Buffer”.

• SmartNIC off-chip memory: The deserialized data is as-
signed a SmartNIC memory location from the pre-allocated
off-chip memory chunk. Then the result would be directly
written to this location. The corresponding field pointer in
the parent message would be updated to point to this off-
chip memory location.
When the deserializer exhausts the pre-allocated chunks, it

allocates a new chunk from one of the two free-list FIFOs.
When exhausting pre-allocated host CPU memory chunks,
the deserializer additionally uses a DMA write to flash the
“Temp Buffer” into the corresponding host CPU memory.
Upon deserialization completion, the SmartNIC then notifies
the host CPU of an incoming RPC message.
Summary. Compared with the traditional field-by-field deseri-
alization scheme [38], [63], [64], our target-aware deserializer
uses effective batching and reduces unnecessary PCIe traffic by
storing certain fields in the SmartNIC local off-chip memory.
Besides, we directly store the fields that are not needed by
the host CPU in the SmartNIC’s off-chip memory, greatly
reducing unnecessary PCIe transactions.
C. Memory-affinity Serializer

We next discuss how to address challenge #2 (§II-C) in
RpcNIC. There are two general serialization design choices:
• Option#1: CPU-only Serialization. Figure 4-a depicts the

process of CPU-only serialization. Upon the compute unit
(CU) finishing computation, it writes the result back to the
host CPU memory (1). The CPU then retrieves all the fields
and serializes them (2), writing them into a DMA-safe

memory region. At last, the SmartNIC reads data from the
DMA-safe region, fabricates the RPC response, and sends
it to the network (3). As CPU memory access latency is
very low (∼70ns), this approach can tolerate nested RPC
messages well. However, it wastes host CPU cycles on
CPU-inefficient encoding, while wasting PCIe bandwidth
(GB/s, not transaction rate) drastically in stage 1 ;

• Option #2: SmartNIC-only Serialization. Figure 4-b
shows how a SmartNIC performs serialization indepen-
dently. Compared with CPU-only serialization, the differ-
ence is that the serialization is fully offloaded to the NIC
hardware. SmartNIC-only serialization consumes minimal
host CPU cycles. However, as discussed in §II-C, the high
cross-PCIe latency would jeopardize the serialization time,
especially for deeply nested RPC messages.

Our approach: Memory-affinity CPU-SmartNIC Collabo-
rative Serialization (Option #3). To address the limitations
of the above two, we distribute the serialization logic across
the host CPU and SmartNIC, aiming to achieve the best of two
worlds: minimizing PCIe transfers while consuming the fewest
host CPU cycles. Our key idea is to add a lightweight CPU
pre-serialization phase to the host to materialize the data layout
for fields residing in the host memory, which trades additional
fast host memory copies for slow PCIe accesses. Figure 4-c
highlights the process. The compute unit writes results into the
SmartNIC memory instead of the host memory (1). Then the
host CPU retrieves all local fields and pre-serializes them (2)
without CPU-inefficient encoding. Next, the CPU sends the
pre-serialized data to the serializer (3), which encodes these
data and further serializes fields that reside in the SmartNIC
memory (4). At last, the serialization module merges the CPU
and SmartNIC memory fields and sends the merged result
out to the network as an RPC response (5). Modern server
CPUs [33] are integrated with on-chip memcpy engines (Data
Stream Accelerator [34], [45]) and the pre-serialization process
offload the copies of large fields to the memcpy engines to save
host CPU cycles during the pre-serialization..

Next, we discuss the detailed serialization procedure:

Stage 1: CPU Pre-serialization. We maintain a small DMA-
safe buffer to store the CPU pre-serialization output. The
process iterates the to-be-serialized object in a field-by-field
manner. The process scans each encountered field and writes

the non-contiguous results into the contiguous DMA-safe
buffer. Upon finishing, the software uses an MMIO write to
notify the SmartNIC of the address and length of the pre-
serialized data, and other required information to construct an
RPC header. The pre-serialization has three unique properties
that can help reduce CPU cycles:

• Memcpy Offload. The copy of large CPU memory fields
in the host CPU memory can be offloaded to the memcpy
engines. The CPU asynchronously invokes the memcpy
engines to reduce the required CPU cycles at most.

• Encoding Offload. The pre-serialization process would not
perform CPU-inefficient encoding, which would be deferred
to the SmartNIC.

• Skipping SmartNIC Fields. The pre-serialization only
pre-serializes fields residing in the host CPU memory. If
encountering a field residing in the SmartNIC, it only writes
the pointer value and data length into the DMA-safe buffer.

Stage 2: SmartNIC Serialization. When the SmartNIC is
notified after the completion of CPU serialization, the Smart-
NIC constructs an RPC header in an SRAM region, which is
called “TX Arena” and is used to store the final RPC message
that is to be sent to the network. The hardware serializer then
uses a DMA read to fetch the pre-serialized data from the
host CPU memory, iterates pre-serialized data, and performs
varint encoding. The serializer encodes the pre-serialized data
in a per-512-bit manner. For each 512-bit, the encoding can
be done within one cycle.

If a pointer referring to the SmartNIC off-chip memory is
found, the serializer reads the referred data from the SmartNIC
off-chip memory, serializes it, and writes the result into the
“TX Arena”.

After fetching the data from the SmartNIC off-chip memory,
the engine serializes it, writes the result to the corresponding
address in the “TX Arena”, and continues the iteration. When
the iteration finishes, the RPC header, and the serialization
results now lie contiguously in the “TX Arena”. The transport
layer can transmit these data into the network.
Summary. Our memory-affinity CPU-SmartNIC collaborative
serializer trades fast host memory copies for slow cross-PCIe
transfer. It introduces a lightweight pre-serialization phase to
materialize the data layout and facilitate the SmartNIC-side
serialization execution. To further reduce CPU overhead dur-
ing pre-serialization, we leverage memcpy engines to perform
data copies of large fields.

D. Compute Unit

In addition to accelerating the RPC stack itself, RpcNIC
allows user to program the compute units (CUs) with their
hardware logic to further offload compute-intensive computa-
tions in the RPC requests. We call these offloaded computa-
tions as RPC kernels. A compute unit in RpcNIC is a partially
reconfigurable FPGA block. Each CU has a memory interface
connected to the SmartNIC off-chip memory.

CUs interact with the host software uniformly and provide
a set of APIs (Table II). Each CU has a descriptor ring in

the SmartNIC SRAM and a notification ring in the host CPU
memory. To activate a CU, the host software has to submit
a descriptor to the descriptor ring using an MMIO write
(“submitTask()”). After submission, the address of an available
entry in the notification ring would be returned to the software.
Submitting computation tasks is an asynchronous process, and
the software can poll the returned address to be aware of
this task’s completion (“poll()”), akin to the BlueFlame [81]
mechanism in the Mellanox NICs.

• Descriptor Ring. Entries in the descriptor ring are submit-
ted by the host CPU software, where each entry consists of
the input address, input length, output address, and output
buffer size. When a CU becomes idle, it fetches the next
ready descriptor from the ring, and reads data from the off-
chip memory using the input address and input length;

• Notification Ring. When computation finishes, the CU first
writes the results into the output address. Then the result
length and the completion signal would be written into the
corresponding notification entry in the host CPU memory
using one DMA write.

In addition to submitting tasks to the CU and polling the
completion, the user can use “.program()” to reprogram the CU
with a given FPGA bit file and use “getType()” to check the
currently supported computation of the compute unit. In the
current implementation, we create four PR blocks of the same
size. Equal-size PR blocks expose limitations on flexibility.
It’s also possible to leverage the techniques proposed in prior
works [42], [82], [83] to dynamically manage the PR region
and this could be our future work.
E. RpcNIC Software Stack

RpcNIC provides a compiler toolchain and programming
APIs that enable dynamic and reconfigurable RPC stack and
computing kernel offloading.

1) RpcNIC Compiler: Our compiler takes a user-provided
.proto file that contains the RPC message structure, and
generates (1) a header file for applications running on the host
CPU and (2) a schema definition stored in the “Schema Table”
of the RpcNIC SmartNIC for orchestrating RPC request flow.

RpcNIC fully supports Protobuf3 [21] format. Programmers
first define the RPC message format in the .proto file and
specify a field with labels such as “optional” and “repeated”.
In RpcNIC, the user can additionally specify a dereference
field (string/bytes/repeated/sub-message) with a custom label
“Acc”3. The compiler first scans the .proto file, recording
the structures of each message and attribute of each field. Then
the compiler generates a header file and a schema definition
based on the scanned results.

The header file mainly consists of generated RPC message
classes including de/serialization functions and three unique
member functions (i.e., “moveToNIC”, “moveToCPU”, and
“isInNIC”) for each dereference field (Table III). “isInNIC”
checks whether the pointer refers to the SmartNIC off-chip
memory. “moveToNIC” moves data from the pointed CPU

3“Acc” represents the SmartNIC’s off-chip memory.

Member Function Parameter Description

.program()
The file location of the bitstream
(bitFilePath), the programmed RPC
kernel (kernelType)

Program the compute unit with the provided bit file; the compute unit is labeled as “kernelType”.

.getType() N/A Return the string of the labeled “kernelType”.

.submitTask()
Address of input to the CU (inputAddr),
input size in bytes (inputSize), address of
output result (outputAddr), output size in
bytes (outputBufSize)

Submit a new task to the compute unit, and an asynchronous task event will be returned. The
CU would fetch inputSize bytes from the SmartNIC memory address inputAddr. When the engine
completes, it writes the result into the SmartNIC memory address outputAddr.

.poll() The completion signal of the compute unit
(taskEvent) Busy polling the taskEvent until it completes.

TABLE II. Member functions of compute units in RpcNIC.

Member Function Description
.isInNIC() Check whether the data is in the SmartNIC memory.

.moveToNIC() Move data to the SmartNIC memory, and the field’s
pointer will be updated to this new location.

.moveToCPU() Move data to the host CPU memory, and the field’s
pointer will be updated to this new location.

TABLE III. Dereference fields functions in RpcNIC.

memory to the SmartNIC off-chip memory while “move-
ToCPU” operates reversely.

The schema definition stores the RPC message structure and
the attributes of each field. The schema definition is stored
in the SmartNIC “Schema Table”. During the deserialization,
the deserializer selectively puts the deserialized field in the
host/SmartNIC memory based on whether the field has an
“NIC” label.

2) RpcNIC Programming Interface: We take an RPC-based
compression accelerator as an example. Listing 1 shows the
pseudo implementation. The RPC request message (User)
and response message (Photo) are defined in Figure 3. This
application is representative as it involves a lightweight host
kernel (authorization) and a compute-intensive RPC kernel
(compression). The authorization only involves lightweight
processing and usually has many data dependencies. The
compression is compute-intensive, easy to parallelize, and does
not have data dependencies.

Next, we show how to realize the application using the pro-
vided programming interfaces assuming that the compression
bit file is ready and has been programmed in the CU. When an
RPC request arrives, the software first checks whether the user
is authorized (L1). After authorization, the software checks
whether the CU can perform compression (L4).

• If so (L5-10), the application first ensures that the raw avatar
data of the request is put in the SmartNIC memory (L5).
Otherwise, it moves the data to SmartNIC memory (L6). It
then invokes the compute unit to execute the compression
RPC kernel (L8), poll the result (L9), and set the size in
the RPC response (L10);

• Otherwise (L13-16), we first ensure that the raw avatar data
is in the CPU memory (L13). If not, we move the data to
the host memory (L14). We then perform CPU compression
and set the compressed image size (L16).

Finally, the RPC response is fabricated (L18). RpcNIC allows
developers to focus on high-level application logic instead of
dealing with the RPC layer and host-SmartNIC interactions.

Algorithm 1: RPCNIC PROGRAMMING EXAMPLE

Define : req: RPC request,
res: RPC response,
cu: compute unit

1 if isIdAuthorized(req.id) == false then
/* Host kernel, omitted */

2 end
3 reqData = req.avatar.image;
4 if cu.getType() == ”compress” then
5 if reqData.isInNIC() == false then
6 reqData.moveToNIC();
7 end
8 e = cu.submitTask(...);
9 poll(e);

10 res.size = e.size;
11 end
12 else
13 if reqData.isInNIC() == true then
14 reqData.moveToCPU();
15 end
16 res.size = compressOnCPU(...);
17 end
18 return res;

F. Automatic Field Updating

At default, developers manually assign “Acc” labels for data
fields, indicating that they are likely to be used by a compute
unit in the SmartNIC. This approach works well for pre-known
request traffic because one can profile the data access pattern
and devise an optional data placement scheme. However, such
an assumption is no longer held in the cloud setting [55],
[86], where computing demand varies continuously. Thus,
developers would reprogram the computing unit and determine
which RPC kernels would benefit the most from hardware
acceleration, completely breaking the established data partition
layout and causing unnecessary PCIe traversals across two
computing domains.

We instead propose an automatic field updating mechanism
that allows modifying message schema at runtime. Specifi-
cally, it automatically adds/removes the “Acc” label for all
dereference fields at runtime when calling “moveToNIC” and
“moveToCPU” member functions.

When “moveToNIC” or “moveToCPU” is invoked, not only
an MMIO would be issued to notify the SmartNIC to move the
field’s content across PCIe, but also the corresponding entry
in the “Schema Table” would be updated. If “moveToNIC” is
called, it indicates that the field should be added with a “Acc”
label, while “moveToCPU” would remove the “Acc” label of
this field. In this way, when the next same RPC arrives, the

deserializer can use the updated “Schema Table” to deserialize
RPC messages, thus avoiding redundant data movement within
subsequent RPC requests.
Limitation. If a field is needed by both the CPU and the
RpcNIC compute unit, the field must be fetched over the PCIe
bus. This is unavoidable in the current design as the CPU
and PCIe device are not in a coherent domain. However, we
believe this is relatively rare as users should try to ensure that
the offloaded function is a standalone logic and does not reuse
the CPU-side data.
Summary. Automatic field updating poses three benefits. First,
it frees users from the tedious task of manual and explicit
assignment of “Acc” labels in .proto file. Second, our .proto
file can be completely the same as Protobuf3. As such, existing
applications can easily adopt RpcNIC without modification of
.proto files. Third, it can accommodate partial reconfiguration’s
dynamic offloading. When the RPC kernels change from
CPU execution to compute unit execution or reversely, the
deserializers can place the corresponding fields correctly after
one incorrect placement.

IV. EVALUATION

Our evaluations aim to answer the following questions:
• How effective is the target-aware deserializer (§IV-B)?
• How effective is the memory-affinity serializer (§IV-C)?
• How does the performance of RpcNIC compare to that of

an SoC SmartNIC (§IV-D), Dagger (§IV-E), and an on-chip
accelerator (§IV-F)?

• How can automatic field updating address the data layout
problem under compute reconfiguration (§IV-G)?

• How much performance acceleration can RpcNIC achieve
for RPC-based workloads (§IV-H)?

• How many resources do the SmartNIC use (§IV-I)?

A. Experimental Setup

Hardware Testbed. Our hardware testbed consists of two
servers, each having two 16-core Xeon Silver 4514Y CPUs
running at 2.0GHz, 512 GiB (8x64 GiB) 4800 MHz DDR5
memory, and a 60 MiB LLC. Each core has a memcpy
engine (Intel DSA [34], [45]). Each server is equipped with
a Mellanox Dual-port ConnectX-5 100 Gb NIC (×16) and
a Xilinx U280 (×16) [78] FPGA which features an 8 GiB
off-chip high bandwidth memory (HBM).
CPU Baseline. We implement the baseline “CPU-only” (2K
LoCs of C++) that runs the entire RPC stack and all computa-
tions on the CPU. It uses the DPDK-based eRPC [37] library
and adopts Protobuf3 [21] as the de/serialization format. It is
well-optimized under optimization methods such as zero-copy,
huge page, kernel-bypass, and polling mode driver.
ProtoACC-OnChip Baseline. As no on-chip RPC accelerator
hardware exists, we implement the “ProtoACC-OnChip” sim-
ulation baseline based on ProtoACC [38]. We mainly modify
the frequency to 250 MHz /2 GHz and set the memory
access latency to 70 nanoseconds (same level as our host CPU
memory latency).

(a) All messages (b) Messages with small fields (≤1KB)

Fig. 5: Throughput speedup of one-shot DMA write.

ProtocACC-PCIe Baseline. We implement baseline
“ProtocACC-PCIe” (3K LoCs of C++ and 3.7K LoCs
of Chisel3) and prototype it on U280 FPGA hardware.
It offloads the entire RPC stack and computation kernels
to the hardware. The FPGA performs the de/serialization
logic following ProtoAcc [38], the difference is that our
implementation uses PCIe interconnect. The serialization
presedure is similar to the “SmartNIC-only” approach
as introduced in § III-C. The RPC protocol is close to
eRPC [37] and the transport layer adopts a modified version
of Strom [71]. The RPC/transport logic runs at 250 MHz.
BF3 Baseline. We implement baseline “BF3” that offloads the
RPC layer to SoC SmartNIC Bluefield-3 [58]. The software
stack is the same as the CPU baseline.
RpcNIC Implementation. We prototype RpcNIC in the U280
FPGA (3K LoCs of C++ and 3.5K LoCs of Chisel3). The
RPC protocol is similar to eRPC [37]. The transport layer
adopts a modified version of StRoM [71]. It features target-
aware deserialization and memory-affinity CPU-SmartNIC co-
serialization. The RPC/transport logic runs at 250 MHz.
B. Target-aware Deserializer

We first examine the performance of our target-aware deseri-
alizer. We set all RPC data fields’ destinations to the host mem-
ory and compare RpcNIC with the conventional field-by-field
one. Figure 5 reports the deserialization throughput improve-
ment of “one-shot DMA write” over “field-by-field” when
running HyperProtoBench [38] (including six workloads, each
containing 10 messages) for messages with different average
field sizes. On average, RpcNIC outperforms the field-by-field
solution by 2.2×. For messages with small-sized fields (less
than 1KB), RpcNIC achieves a higher speedup (3.1×) because
the field-by-field solution suffers from inefficient DMA that
transfers numerous small objects. Instead, our one-shot DMA
write scheme can combine small DMA writes into one large
contiguous DMA write, yielding higher PCIe link utilization.
C. Memory-affinity Serializer

We validate the effectiveness of the memory-affinity CPU-
SmartNIC collaborative serialization scheme by measuring
the CPU cycle savings and serialization time. We use Hy-
perProtoBench [38] and five representative microservices in
DeathStarBench [17] as workloads.
Effect of Encoding/memcpy Offload. Figure 6 demonstrates
the normalized host CPU cycles with/without encoding/mem-
cpy offloading for “memory-affinity” CPU-SmartNIC co-
serialization. The memcpy offload can reduce the host CPU cy-
cles by an average of 55% (23%) in HyperProtoBench (Death-

(a) HyperProtoBench (b) DeathStarBench

Fig. 6: Normalized CPU cycles of memory-affinity serializer
with/without memcpy and encoding offload.

Fig. 7: Serialization time comparisons.

StarBench). Memcpy offload together with encoding offload
can save the host CPU cycles by an average of 74% (74%) in
HyperProtoBench (DeathStarBench). RpcNIC greatly reduces
the host CPU cycles, indicating the effectiveness of “memory-
affinity” CPU-SmartNIC co-serialization. RpcNIC trades a few
CPU cycles for the large decrease in the overall serialization
time. The pre-serialization uses a geometric mean of 22%
CPU cycles compared with performing serialization in CPUs,
while the geometric mean of the overall serialization time is
decreased by 57%.
Serialization Performance. We then use HyperProtoBench
to measure the end-to-end serialization time. We measure the
serialization time of three design choices in Figure 4. As
shown in Figure 7, “Memory-affinity” serialization spends the
least time while “CPU-only” spends the most time. “Memory-
affinity” outperforms “ProtoACC-PCIe” by 2.3× in geomet-
ric mean, because “memory-affinity” leverages the CPU or
memcpy engine to perform pre-serialization for fields residing
in the host CPU memory, instead through high-latency PCIe
interconnect. “Memory-affinity” outperforms “CPU-only” by
4.3× in geometric mean, because pure software implementa-
tion of serialization incurs significant CPU overhead.
D. Comparison to SoC SmartNIC/DPU

In this section, we evaluate how RpcNIC optimizations can
improve the performance when offloading RPC to a SoC-based
SmartNIC, i.e., Nvidia Bluefield-3. “BF3” naively offloads the
entire RPC to BF3, “BF3-MemoryAffinity” uses the host CPU
to perform a pre-serialization process and uses BF3 cores to

(a) Serialization (b) Deserialization

Fig. 8: Serialization time comparison and deserialization
speedup of “BF3-Oneshot” over “BF3”.

Fig. 9: Serialization time of applying ProtoACC/RpcNIC se-
rialization approach to Dagger.

perform encoding/decoding. “BF3-DSA” is similar to “BF3-
MemoryAffinity” and leverages the DSA memcpy engines
during the host pre-serialization. “BF3-Oneshot” offloads the
entire RPC to BF3 and coalesces small DMA requests into a
large request during the deserialization.

Figure 8a shows the normalized serialization time on six
benches of HyperProtoBench. We have three observations.
First, applying pre-serialization optimization to the BF3 can
reduce the serialization time by 1.58× on average. Second,
applying memcpy offload optimization in the pre-serialization
phase can additionally reduce the serialization time by 1.18×
on average. The main reason for the speedup is that the
pre-serialization can greatly reduce the high-latency cross-
PCIe travesals and the memcpy offload can free host CPUs
from copying large data fields. These results indicate ap-
plying RpcNIC optimizations to SoC-based SmartNIC/DPU
can effectively reduce the overall serialization time. Third,
RpcNIC still outperforms well-optimized BF3 implementation,
this is mainly because RpcNIC uses hardware to perform CPU-
inefficient encoding, while BF3 does this in the Arm cores.

Figure 8b shows the deserialization throughput improve-
ment of “BF3-Oneshot” over “BF3”. Averagely applying one-
shot DMA write optimization to BF3 can improve the deseri-
alization throughput by 1.78×, because one-shot DMA write
can coalesce small DMA writes into a single large DMA
write, improving PCIe transaction rate utilization. RpcNIC
averagely achieves 5.9× higher deserialization throughput than
“BF3-Oneshot”. This is mainly because RpcNIC additionally
offloads memory management and decoding to hardware.

The above experiments indicate that RpcNIC optimizations
can also works well on a SoC-based SmartNIC.

E. Comparison to Dagger

Dagger does not support (de)serialization of structured and
nested formats and naively adopting a hardware (de)serializer
to Dagger would also suffer from long latency issue (FPGA’s
access over UPI incurs 400ns one-way latency, still much
higher than CPU’s memory access time). However, we can
apply the optimizations proposed by RpcNIC to Dagger to
improve RPC offloading performance for structured and nested
RPC messages. We perform a cycle-accurate experiment
that simulates integrating ProtoACC/RpcNIC (de)serialization
methods into Dagger, called Dagger-ProtoACC and Dagger-
RpcNIC, respectively. Both are clocked at 2 GHz.

Figure 9 shows the serialization time for two implementa-
tions. Dagger-RpcNIC averagely reduces the serialization time
by 2.9×, because applying RpcNIC serialization methods to

(a) RX time. (b) TX time.

Fig. 10: Time spent on the RPC layer.
Dagger can eliminate many cross-UPI traversals, where UPI
has slightly lower latency than PCIe but still much higher than
the normal memory access.

For deserialization, RpcNIC’s one-shot DMA write mech-
anism can be easily adopted by Dagger to batch data
writes within one RPC request, thus improving deserialization
throughput at the cost of slightly increased deserialization
latency. We do not present a throughput simulation, because
how the PCIe/UPI transaction rate varies according to the
data size is not known and we do not have real UPI-based
hardware. However, Dagger paper has an inter-RPC batching
mechanism and the authors claim that it can help improve data
transfer efficiency. As such, we believe the intra-RPC batching
(one-shot DMA write) can increase Dagger deserialization
efficiency. Unlike throughput, the deserialization latency can
be accurately simulated with one-way UPI latency (400ns)
provided in the Dagger paper. Our evaluation on HyperPro-
toBench shows that adopting the one-shot DMA will only
slightly increase the deserialization latency (geometric mean
latency increases by 1.048x), which is acceptable considering
the potential throughput benefits.

F. Comparison to On-chip Accelerator

In this section, we compare the de/serialization time
for RpcNIC and “ProtoACC-OnChip”, using the HyperPro-
toBench. RpcNIC runs on our hardware platform while
‘ProtoACC-OnChip” reports Xilinx Vivado simulation results
as there is no real hardware. For RpcNIC at 250 Mhz, we
report the measured RPC TX/RX time measured in the real
hardware. The TX time is measured from when the CPU issues
send RPC command to when the serialized data enters the
NIC transport layer. The RX time is measured from when the
data leaves the NIC transport layer to when the deserialized
data arrives at the host CPU memory. For RpcNIC at 2 GHz,
we first simulate the time spent on the accelerator. Then we
manually add a PCIe transfer time and the time spent on the
host CPU, both of which are measured when running 250 MHz
real RpcNIC hardware. For the on-chip accelerator simulation
result, we first measure the simulated time spent on the RPC
layer. Since the on-chip accelerator does not sit in the NIC,
we then add an extra traversal time between the NIC and CPU
memory.

Figure 10 shows the time consumed in the RPC layer, in
receiving path (RX) and transmitting path (TX), respectively.
We have two observations.

First, when clocked at the same frequency, RpcNIC barely
increases RX time compared to “ProtoACC-OnChip”. This

(a) CU is preempted by other apps. (b) CU is reprogrammed by compression.

Fig. 11: Per-RPC execution time under kernel reconfiguration
for the image compression example.

is because deserialization does not require pointer-chasing
memory access, as such our PCIe-based deserializer would not
incur performance degradation compared with a low-latency
on-chip deserializer accelerator.

Second, given that PCIe’s latency (1250ns) is 17.9× higher
than the memory latency (70ns) setting of “ProtoACC-
OnChip”, “ProtoACC-OnChip” only achieves 1.4×/1.24×
lower TX time on average over RpcNIC when clocked at
250 MHz/2 GHz, respectively. This is mainly because RpcNIC
enables the CPU pre-serialization to trade fast CPU memory
copies for slow PCIe access. What’s more, when offloading an
RPC kernel in RpcNIC, skipping SmartNIC fields can effec-
tively reduce the TX time, further narrowing the serialization
time gap.

In sum, RpcNIC enables a PCIe-attached SmartNIC to
achieve nearly the same deserialization performance and close
serialization performance, compared to an on-chip de/serializa-
tion accelerator.

G. Automatic Field Updating

In this section, we evaluate automatic field updating using
the image compression example in Listing 1. The SmartNIC
is configured with one compression compute unit, which is
reconfigured to an unavailable state at runtime. It simulates the
scenario when other applications have preempted the compute
unit. When the compute unit is unavailable, the compression
would switch to host CPU execution.

At the beginning of Figure 11a, the large data field is
put at SmartNIC memory and the compression is originally
performed at the SmartNIC. After the 3rd request finishes, we
set the compute unit as unavailable for the image compression
service. The 4th request would suffer high execution latency
since the large “image” field is put at the SmartNIC memory
after serialization, CPU software has to manually move this
field to CPU memory before performing compression on
the CPU. Without automatic field updating, the execution
time would remain high. With automatic field updating, all
following requests’ execution time would drop by several
microseconds, because the explicit movement of the “image”
field would update the schema table in the SmartNIC. This
lets the deserializer put this field into the CPU memory next
time, avoiding the CPU’s explicit memory movement.

Similarly, Figure 11b shows the situation that the CU is
unavailable at the beginning and is available until the 4th

(a) Throughput. (b) Average latency.

Fig. 12: Performanc comparison of three approaches when
running an RPC-based image compression service.

request. With automatic field updating, the deserialization
module can adapt to the dynamic change of compute units
and put the field in the correct memory (CPU or SmartNIC
memory). Besides, it eliminates the need for users to manually
specify where fields should be placed after deserialization,
saving a lot of hassle. As such, the automatic field updating
mechanism yields high programmability.

H. End-to-end Application Performance

We evaluate RpcNIC using a practical cloud workload,
which provides a high-performance and secure compression
service. Our workload mainly comprises three tasks for each
RPC request: request authorization, compute-intensive com-
pression, and encryption/decryption. For the “CPU-only” base-
line, all three tasks run on the host CPU. For “ProtoACC-
PCIe” and RpcNIC, compression and encryption/decryption
run on the SmartNIC hardware, while the request authoriza-
tion task is still conducted on the host CPU. The request
authorization task is not offloaded because it usually only
involves lightweight computation and changes frequently Both
“ProtoACC-PCIe” and RpcNIC are able to process the of-
floaded tasks at line-rate (100 Gbps).

Figure 12a shows the achieved throughput using the differ-
ent numbers of host CPU cores. We observe that RpcNIC’s
achievable throughput is 2.6× higher than the “ProtoACC-
PCIe” baseline and 31.8 × higher than the “CPU-only” base-
line. “CPU-only” performs worst because running compute-
intensive compression, encryption/decryption, and RPC stack
in the software is very inefficient compared with offloading
them to hardware. RpcNIC outperforms “ProtoACC-PCIe”
mainly because RpcNIC effectively offloads the RPC stack
to a PCIe-attached SmartNIC with the proposed schemes. We
also observe that skipping SmartNIC fields in the host CPU
pre-serialization can save 65% CPU cycles. This is because
RpcNIC allows the KB-level large field to always reside in
the SmartNIC memory and the hardware is responsible for its
serialization.

Figures 12b shows the average latency of three imple-
mentations. We observe that RpcNIC can achieve 2.6 ×
(9.6 ×) lower average latency than the “ProtoACC-PCIe”
(“CPU-only”) solution under the same throughput. RpcNIC
outperforms the “ProtoACC-PCIe” baseline mainly because
target-aware deserialization avoids much redundant data move-
ment and memory-affinity serialization can greatly reduce the
serialization time over the high-latency PCIe interconnect.

Fig. 13: End-to-end execution time.
TABLE IV. FPGA resource consumption.

Name LUTs (K) REGs (K) BRAMs
ProtoACC-PCIe 221 (17%) 237(9%) 592 (29%)

RpcNIC 170 (13%) 207 (8%) 552 (27%)
Serializer 30 (2.2%) 11 (0.41%) 55 (2.7%)

Deserializer 15 (1.1%) 7.8 (0.3%) 6 (0.3%)

To prove that RpcNIC can fit small-size RPCs, we per-
form an end-to-end comparison of five representative services
(UniqueId, User, UrlShorten, SocialGraph, and ComposePost)
in the widely-used DeathStarBench microservice suit. Fig-
ure 13 shows the end-to-end execution time. We observe that
the geometric mean execution time of RpcNIC is 1.57×/1.34×
lower than the software baseline “CPU-only”/“ProtoACC-
PCIe”. This indicates that RpcNIC can also accelerate RPCs
with a small message size.

I. Hardware Resource Usage

Table IV shows the FPGA resource consumption of
“ProtoACC-PCIe” and RpcNIC. The resources of the offloaded
RPC kernel are not reported as it is application-specific. Rpc-
NIC is resource-frugal thanks to the compacted hardware data
structures (schema table and temp buffer) and the streamlined
serialization and serialization process.

V. DISCUSSION

How to Accommodate Differnt/evloving Formats. Currently,
RpcNIC focuses on the widely used Protobuf format. But it is
relatively easy to extend RpcNIC to support other formats such
as Thrift [5]. In the following, we present two modifications.
From the hardware perspective, we mainly need to modify the
deserializer/serializer module and add transformation logic for
Thrift fields. From the software perspective, we need to modify
the compiler, adding parsing logic for “.thrift” files (which is
similar to “.proto” files in Protobuf).
(De)serialization-free Formats. Formats [24], [40] such as
Cap’n Proto [40] are proposed to avoid the (de)serialization
overheads during runtime. These formats sacrifice object mu-
tability. However, the RPC message size is usually not known
when it is created, so they need to allocate a large fixed buffer
for each message which wastes memory space. Besides, the
zero elements or unset fields would still occupy the space
in the wire, incurring a larger transfer size than traditional
formats like protobuf. To avoid these limitations, these formats
also need additional designs to balance the (de)serialization
overhead and waste of memory space/transfer size. Take Cap’n
Proto as an example, to avoid memory waste, it allows a
message to be split across multiple non-contiguous memory
segments. Users can dynamically allocate more segments and
use inter-segment pointers to link these segments together.
To reduce the transfer size, Cap’n Proto adopts an operation

called packing to compress these zero bytes in the wire format
in serialization and unpack these zeros in deserialization.
The packing/unpacking operations involve many bit-wise/byte-
wise operations, and these CPU-inefficient operations incur
similar overheads to that of encoding/decoding in traditional
formats. We believe RpcNIC’s optimizations can mitigate the
inefficiency introduced by the multiple segments and CPU-
inefficient packing/unpacking. During serialization, we could
add a CPU pre-process that copies incontiguous segments
into a contiguous buffer, and the copy of large segments can
be offloaded to CPU’s on-chip memcpy engines, while the
packing can be later executed in the NIC hardware. During
deserialization, we could refer to the key idea of RpcNIC’s
one-shot DMA write and decoding offloading. The unpacking
operations can be offloaded to the NIC hardware and the
DMA writes of different segments of one RPC message can
be batched together to improve DMA transfer efficiency. In
summary, it is easy to generalize RpcNIC to other formats.
CXL. RPCAcc’s idea still works well on top of a coherent
fabric like CXL. Although the CXL coherence allows the
host to access the accelerator memory using load/store (or
reversely), the latency is still several times that of local
memory access. We believe the key ideas of RpcNIC still
hold: 1) putting the deserialized fields accordingly and letting
CPU/SmartNIC access their local memory as much as possible
during the RPC process; 2) doing intra-RPC batching during
the deserialization to improve transfer efficiency; 3) letting
CPU/SmartNIC serialize the fields in their local memory; 4)
offloading bit-wise/byte-wise decoding/encoding and memory
management to hardware. A coherent fabric like CXL will
enhance RpcNIC in two main aspects. First, we can replace the
costly MMIO-based mechanism with coherent memory access
to implement the CPU-NIC interface. As such, the transaction
rate for small RPC requests would not be bottlenecked by the
low MMIO throughput. Second, it can avoid explicit cross-
PCIe data movement at runtime. Our current implementation
has to move the field explicitly, when the deserialized field is
not in proper memory (CPU memory or SmartNIC memory).
With CXL, both the CPU and SmartNIC can access the
memory of each other using load/store instructions. CXL will
enhance RpcNIC in two main aspects. First, we can replace the
costly MMIO-based mechanism with coherent memory access
to implement the CPU-NIC interface. As such, the transaction
rate for small RPC requests would not be bottlenecked by
low MMIO throughput. Second, it can avoid explicit cross-
PCIe data movement at runtime. In the current implementation,
when the deserialized field is not in proper memory (CPU
memory or SmartNIC memory), the users have to move the
field explicitly. With CXL, both the CPU and SmartNIC can
access the memory of each other using load/store instructions.

VI. RELATED WORKS

Software-based RPC Acceleration. Cornflakes [65] leverages
the scatter-gather capability to let NIC directly read the non-
contiguous data from the host memory during the serialization.
However, it requires that the data resides in the pinned DMA-
safe region, which greatly harms memory utilization, espe-

cially in the cloud scenario. Besides, its serialization format
does not contain encoding and is not compatible with existing
applications.
Hardware-based RPC Acceleration. Prior works [36], [38],
[46], [63], [64] offload the RPC stack or de/serialization to
hardware to alleviate the CPU pressure. Cereal [36] adopts a
special memory access interface to provide low-latency host
memory access for the accelerator. Optimus Prime [63] and
Cerebros [64] place an on-chip accelerator for de/serialization
(entire RPC stack). ProtoACC [38] proposes a novel near-core
hardware accelerator for Protobuf. In contrast, RpcNIC focuses
on optimizing RPC in a PCIe-attached SmartNIC, which is
much more widely used in the modern cloud.

New Network Architecture. The nanoPU [32] is a new NIC-
CPU co-design for RPC acceleration. It adds a fast path from
the NIC directly to the CPU register file to achieve ultra-low
latency packet access (∼70ns). RAMBDA [80] uses RDMA
NICs and a standalone cache-coherent accelerator to accelerate
data center applications. RpcNIC focus on the accelerations
of RPC and de/serialization. NetDIMM [2] integrates a full-
blown NIC into the buffer device of a DIMM for fast data
remote data access. FlexDriver [13] allows the accelerator to
control the NIC execution directly for high scalability.

Offloading to SmartNIC. Many prior works [3], [6]–[10],
[14], [16], [26], [26]–[31], [41], [47], [50]–[53], [56], [60],
[62], [68], [70], [72], [74], [75], [84]–[86] offload host tasks to
SmartNICs to alleviate the host CPU pressure. None of these
works tackle the problem of RPC tax. In contrast, RpcNIC
offloads the RPC stack and computing kernels.

Header-payload Data Split. Researchers have studied the
header-payload split extensively [1], [15], [25], [44], [61],
[67]. IDIO [1] selectively disables Direct Cache Access (DCA)
for the payload of received packets while always keeping DCA
enabled for packet headers. SplitRPC [44] splits data using
a fixed offset without de/serialization. In contrast, RpcNIC
splits deserialized RPC messages according to RPC’s fields
and forwards them to either host CPU or SmartNIC memory.

VII. CONCLUSION

This paper presents RpcNIC, a hardware-software co-
designed SmartNIC allowing efficient RPC layer offloading
and reconfigurable RPC kernel offloading. To tackle the ram-
ifications of introducing PCIe, RpcNIC introduces three tech-
niques: a target-aware deserializer, a memory-affinity CPU-
SmartNIC collaborative serializer, and a runtime automatic
field updating scheme. RpcNIC is an immediately deployed
solution and provides the software abstraction to load the RPC
stack and compute kernels on demand.
Acknowledgement. The work is supported by the following
grants: the National Key R&D Program of China (Grant No.
2022ZD0119301), the National Natural Science Foundation
of China under the grant number (62472384, 62441236,
U24A20326). Zeke Wang is the corresponding author.

REFERENCES

[1] M. Alian, S. Agarwal, J. Shin, N. Patel, Y. Yuan, D. Kim, R. Wang, and
N. S. Kim, “Idio: Network-driven, inbound network data orchestration
on server processors,” in MICRO, 2022.

[2] M. Alian and N. S. Kim, “Netdimm: Low-latency near-memory network
interface architecture,” in MICRO, 2019.

[3] G. Alonso, C. Binnig, I. Pandis, K. Salem, J. Skrzypczak, R. Stutsman,
L. Thostrup, T. Wang, Z. Wang, and T. Ziegler, “Dpi: The data
processing interface for modern networks,” in CIDR, 2018.

[4] Amazon, “AWS Nitro System,” https://aws.amazon.com/cn/ec2/nitro/,
2023.

[5] Apache, “Apache Thrift,” https://thrift.apache.org/, 2021.
[6] M. Bonola, G. Belocchi, A. Tulumello, M. S. Brunella, G. Siracusano,

G. Bianchi, and R. Bifulco, “Faster software packet processing on fpga
nics with ebpf program warping,” in ATC, 2022.

[7] M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli, G. Siracusano,
G. Bianchi, A. Cammarano, A. Palumbo, L. Petrucci, and R. Bifulco,
“hxdp: Efficient software packet processing on fpga nics,” Communica-
tions of the ACM, 2022.

[8] X. Chen, L. Yu, V. Liu, and Q. Zhang, “Cowbird: Freeing cpus to
compute by offloading the disaggregation of memory,” in SIGCOMM,
2023.

[9] X. Chen, J. Zhang, T. Fu, Y. Shen, S. Ma, K. Qian, L. Zhu, C. Shi,
Y. Zhang, M. Liu, and Z. Wang, in Demystifying Datapath Accelerator
Enhanced Off-path SmartNIC, 2024.

[10] S. Choi, M. Shahbaz, B. Prabhakar, and M. Rosenblum, “λ-nic: Interac-
tive serverless compute on programmable smartnics,” in ICDCS, 2020.

[11] D. Cock, A. Ramdas, D. Schwyn, M. Giardino, A. Turowski, Z. He,
N. Hossle, D. Korolija, M. Licciardello, K. Martsenko et al., “Enzian:
an open, general, cpu/fpga platform for systems software research,” in
ASPLOS, 2022.

[12] CXL Consortium, “CXL Specification,” https://computeexpresslink.org/
cxl-specification/, 2024.

[13] H. Eran, M. Fudim, G. Malka, G. Shalom, N. Cohen, A. Hermony,
D. Levi, L. Liss, and M. Silberstein, “Flexdriver: A network driver for
your accelerator,” in ASPLOS, 2022.

[14] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein, “Nica: An
infrastructure for inline acceleration of network applications,” in ATC,
2019.

[15] A. Farshin, A. Roozbeh, G. Q. Maguire Jr, and D. Kostić, “Make the
most out of last level cache in intel processors,” in EuroSys, 2019.

[16] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K.
Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,
G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg, “Azure accelerated
networking:smartnics in the public cloud,” in NSDI, 2018.

[17] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An open-source benchmark
suite for microservices and their hardware-software implications for
cloud & edge systems,” in ASPLOS, 2019.

[18] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li, Y. Wu, S. Liu,
L. Yan, F. Feng, Y. Zhuang, F. Liu, P. Liu, X. Liu, Z. Wu, J. Wu,
Z. Cao, C. Tian, J. Wu, J. Zhu, H. Wang, D. Cai, and J. Wu, “When
cloud storage meets rdma,” in NSDI, 2021.

[19] A. Gonzalez, A. Kolli, S. Khan, S. Liu, V. Dadu, S. Karandikar,
J. Chang, K. Asanovic, and P. Ranganathan, “Profiling hyperscale big
data processing,” in ISCA, 2023.

[20] Google, “grpc,” https://grpc.io/, 2022.
[21] Google, “Protocol Buffers Documentation,” https://protobuf.dev/, 2023.
[22] Google, “Protocol Buffers Encoding,” https://protobuf.dev/

programming-guides/encoding/, 2023.
[23] Google, “Falcon: A Reliable and Low Latency Hardware Transport,”

https://netdevconf.info/0x18/docs/netdev-0x18-paper43-talk-
slides/Introduction%20to%20Falcon%20Reliable%20Transport.pdf,
2024.

[24] Google, “FlatBuffers,” https://github.com/google/flatbuffers, 2024.
[25] S. Goswami, N. Kodirov, C. Mustard, I. Beschastnikh, and M. Seltzer,

“Parking packet payload with p4,” in CoNEXT, 2020.

[26] S. Grant, A. Yelam, M. Bland, and A. C. Snoeren, “Smartnic perfor-
mance isolation with fairnic: Programmable networking for the cloud,”
in SIGCOMM, 2020.

[27] Z. Guo, J. Lin, Y. Bai, D. Kim, M. Swift, A. Akella, and M. Liu,
“Lognic: A high-level performance model for smartnics,” in MICRO,
2023.

[28] Z. Guo, H. Zhang, C. Zhao, Y. Bai, M. Swift, and M. Liu, “Leed: A low-
power, fast persistent key-value store on smartnic jbofs,” in SIGCOMM,
2023.

[29] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio: A hardware-
software co-designed disaggregated memory system,” in ASPLOS, 2022.

[30] Z. He, D. Korolija, Y. Zhu, B. Ramhorst, T. Laan, L. Petrica, M. Blott,
and G. Alonso, “ACCL+: an FPGA-Based collective engine for dis-
tributed applications,” in OSDI 24, 2024.

[31] H. Huang, Y. Li, J. Sun, X. Zhu, J. Zhang, L. Luo, J. Li, and Z. Wang,
“P4sgd: Programmable switch enhanced model-parallel training on
generalized linear models on distributed fpgas,” IEEE Transactions on
Parallel and Distributed Systems, 2023.

[32] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz, C. Kim,
and N. McKeown, “The nanopu: A nanosecond network stack for
datacenters,” in OSDI, 2021.

[33] Intel, “Intel Products formerly Sapphire Rapids,” https://ark.intel.com/
content/www/us/en/ark/products/codename/126212/products-formerly-
sapphire-rapids.html, 2024.

[34] Intel, “Intel® Data Streaming Accelerator,” https://www.intel.com/
content/www/us/en/products/docs/accelerator-engines/data-streaming-
accelerator.html, 2024.

[35] Intel, “Intel® Ultra Path Interconnect,” https://www.intel.com/content/
www/us/en/silicon-innovations/6-pillars/interconnect.html, 2024.

[36] J. Jang, S. J. Jung, S. Jeong, J. Heo, H. Shin, T. J. Ham, and J. W. Lee,
“A specialized architecture for object serialization with applications to
big data analytics,” in ISCA, 2020.

[37] A. Kalia, M. Kaminsky, and D. G. Andersen, “Datacenter rpcs can be
general and fast,” NSDI, 2019.

[38] S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolic,
K. Asanovic, and P. Ranganathan, “A hardware accelerator for protocol
buffers,” in MICRO, 2021.

[39] S. Karandikar, A. N. Udipi, J. Choi, J. Whangbo, J. Zhao, S. Kanev,
E. Lim, J. Alakuijala, V. Madduri, Y. S. Shao, B. Nikolic, K. Asanovic,
and P. Ranganathan, “Cdpu: Co-designing compression and decompres-
sion processing units for hyperscale systems,” in ISCA, 2023.

[40] Kenton Varda, “Cap’n Proto,” https://capnproto.org/, 2024.
[41] M. Khalilov, S. D. Girolamo, M. Chrapek, R. Nudelman, G. Bloch,

and T. Hoefler, “Network-offloaded bandwidth-optimal broadcast and
allgather for distributed ai,” in SC, 2024.

[42] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J.
Rossbach, “Sharing, protection, and compatibility for reconfigurable
fabric with amorphos,” in OSDI, 2018.

[43] J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kostić, Y. Kwon, S. Peter,
and E. Witchel, “Linefs: Efficient smartnic offload of a distributed file
system with pipeline parallelism,” in SOSP, 2021.

[44] A. Kumar, A. Sivasubramaniam, and T. Zhu, “Splitrpc: A control+ data
path splitting rpc stack for ml inference serving,” POMACS, 2023.

[45] R. Kuper, I. Jeong, Y. Yuan, R. Wang, N. Ranganathan, N. Rao, J. Hu,
S. Kumar, P. Lantz, and N. S. Kim, “A quantitative analysis and
guidelines of data streaming accelerator in modern intel xeon scalable
processors,” in ASPLOS, 2024.

[46] N. Lazarev, S. Xiang, N. Adit, Z. Zhang, and C. Delimitrou, “Dagger:
efficient and fast rpcs in cloud microservices with near-memory recon-
figurable nics,” in ASPLOS, 2021.

[47] B. Li, K. Tan, L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in SIGCOMM, 2016.

[48] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic,
M. Shah, S. Rajadnya, S. Lee, I. Agarwal et al., “Pond: Cxl-based
memory pooling systems for cloud platforms,” in ASPLOS, 2023.

[49] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,
J. Smith, B. Vaughan, P. Damania et al., “Pytorch distributed:
Experiences on accelerating data parallel training,” arXiv preprint
arXiv:2006.15704, 2020.

[50] Y. Liao, J. Wu, W. Lu, X. Li, and G. Yan, “Dpu-direct: Unleashing
remote accelerators via enhanced rdma for disaggregated datacenters,”
TC, 2024.

https://aws.amazon.com/cn/ec2/nitro/
https://thrift.apache.org/
https://computeexpresslink.org/cxl-specification/
https://computeexpresslink.org/cxl-specification/
https://grpc.io/
https://protobuf.dev/
https://protobuf.dev/programming-guides/encoding/
https://protobuf.dev/programming-guides/encoding/
https://netdevconf.info/0x18/docs/netdev-0x18-paper43-talk-slides/Introduction%20to%20Falcon%20Reliable%20Transport.pdf
https://netdevconf.info/0x18/docs/netdev-0x18-paper43-talk-slides/Introduction%20to%20Falcon%20Reliable%20Transport.pdf
https://github.com/google/flatbuffers
https://ark.intel.com/content/www/us/en/ark/products/codename/126212/products-formerly-sapphire-rapids.html
https://ark.intel.com/content/www/us/en/ark/products/codename/126212/products-formerly-sapphire-rapids.html
https://ark.intel.com/content/www/us/en/ark/products/codename/126212/products-formerly-sapphire-rapids.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/data-streaming-accelerator.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/data-streaming-accelerator.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/data-streaming-accelerator.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://www.intel.com/content/www/us/en/silicon-innovations/6-pillars/interconnect.html
https://capnproto.org/

[51] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and A. Akella, “Panic:
A high-performance programmable nic for multi-tenant networks,” in
OSDI, 2020.

[52] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto smartnics using ipipe,” in
SIGCOMM, 2019.

[53] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana,
“E3:energy-efficient microservices on smartnic-accelerated servers,” in
ATC, 2019.

[54] A. Lottarini, A. Ramirez, J. Coburn, M. A. Kim, P. Ranganathan,
D. Stodolsky, and M. Wachsler, “vbench: Benchmarking video transcod-
ing in the cloud,” in ASPLOS, 2018.

[55] R. Miao, L. Zhu, S. Ma, K. Qian, S. Zhuang, B. Li, S. Cheng, J. Gao,
Y. Zhuang, P. Zhang, R. Liu, C. Shi, B. Fu, J. Zhu, J. Wu, D. Cai, and
H. H. Liu, “From luna to solar: the evolutions of the compute-to-storage
networks in alibaba cloud,” in SIGCOMM, 2022.

[56] J. Min, M. Liu, T. Chugh, C. Zhao, A. Wei, I. H. Doh, and A. Kr-
ishnamurthy, “Gimbal: enabling multi-tenant storage disaggregation on
smartnic jbofs,” in SIGCOMM, 2021.

[57] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging {AI} applications,” in OSDI, 2018.

[58] Nvidia, “NVIDIA BLUEFIELD-3 DPU,” https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-
bluefield-3-dpu.pdf, 2022.

[59] T. Pan, K. Liu, X. Wei, Y. Qiao, J. Hu, Z. Li, J. Liang, T. Cheng, W. Su,
J. Lu et al., “Luoshen: A hyper-converged programmable gateway for
multi-tenant multi-service edge clouds,” in NSDI, 2024.

[60] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik,
and T. Anderson, “Floem: A programming system for nic-accelerated
network applications,” in OSDI, 2018.

[61] B. Pismenny, L. Liss, A. Morrison, and D. Tsafrir, “The benefits of
general-purpose on-nic memory,” in ASPLOS, 2022.

[62] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Br-
uschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda, F. Huici, and
G. Bianchi, “Flowblaze: Stateful packet processing in hardware,” in
NSDI, 2019.

[63] A. Pourhabibi, S. Gupta, H. Kassir, M. Sutherland, Z. Tian, M. P.
Drumond, B. Falsafi, and C. Koch, “Optimus prime: Accelerating data
transformation in servers,” in ASPLOS, 2020.

[64] A. Pourhabibi, M. Sutherland, A. Daglis, and B. Falsafi, “Cerebros:
Evading the rpc tax in datacenters,” in MICRO, 2021.

[65] D. Raghavan, S. Ravi, G. Yuan, P. Thaker, S. Srivastava, M. Murray,
P. H. Penna, A. Ousterhout, P. Levis, M. Zaharia, and I. Zhang,
“Cornflakes: Zero-copy serialization for microsecond-scale networking,”
2023.

[66] P. Ranganathan, D. Stodolsky, J. Calow, J. Dorfman, M. Guevara, C. W.
Smullen IV, A. Kuusela, R. Balasubramanian, S. Bhatia, P. Chauhan,
A. Cheung, I. S. Chong, N. Dasharathi, J. Feng, B. Fosco, S. Foss,
B. Gelb, S. J. Gwin, Y. Hase, D.-k. He, C. R. Ho, R. W. Huffman Jr.,
E. Indupalli, I. Jayaram, P. Kongetira, C. M. Kyaw, A. Laursen, Y. Li,
F. Lou, K. A. Lucke, J. Maaninen, R. Macias, M. Mahony, D. A.
Munday, S. Muroor, N. Penukonda, E. Perkins-Argueta, D. Persaud,
A. Ramirez, V.-M. Rautio, Y. Ripley, A. Salek, S. Sekar, S. N. Sokolov,
R. Springer, D. Stark, M. Tan, M. S. Wachsler, A. C. Walton, D. A.
Wickeraad, A. Wijaya, and H. K. Wu, “Warehouse-scale video acceler-
ation: co-design and deployment in the wild,” in ASPLOS, 2021.

[67] A. Sarma, H. Seyedroudbari, H. Gupta, U. Ramachandran, and
A. Daglis, “Nfslicer: Data movement optimization for shallow network
functions,” arXiv preprint arXiv:2203.02585, 2022.

[68] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy,
“Xenic: Smartnic-accelerated distributed transactions,” in ASPLOS,
2021.

[69] K. Seemakhupt, B. E. Stephens, S. Khan, S. Liu, H. Wassel, S. H.
Yeganeh, A. C. Snoeren, A. Krishnamurthy, D. E. Culler, and H. M.
Levy, “A cloud-scale characterization of remote procedure calls,” in
SOSP, 2023.

[70] H. Seyedroudbari, S. Vanavasam, and A. Daglis, “Turbo: Smartnic-
enabled dynamic load balancing of µs-scale rpcs,” in HPCA, 2023.

[71] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “Strom:
smart remote memory,” in EuroSys, 2020.

[72] M. Sun, Z. Yang, C. Liao, Y. Li, F. Wu, and Z. Wang, “Luwu:
An end-to-end in-network out-of-core optimizer for 100b-scale model-

in-network data-parallel training on distributed gpus,” 2024. [Online].
Available: https://arxiv.org/abs/2409.00918

[73] Y. Sun, Y. Yuan, Z. Yu, R. Kuper, C. Song, J. Huang, H. Ji, S. Agarwal,
J. Lou, I. Jeong et al., “Demystifying cxl memory with genuine cxl-ready
systems and devices,” in Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture, 2023, pp. 105–121.

[74] Z. Wang, H. Huang, J. Zhang, F. Wu, and G. Alonso, “Fpganic: An
fpga-based versatile 100gb smartnic for gpus,” in ATC, 2022.

[75] X. Wei, R. Cheng, Y. Yang, R. Chen, and H. Chen, “Characterizing off-
path SmartNIC for accelerating distributed systems,” in OSDI, 2023.

[76] A. Wolnikowski, S. Ibanez, J. Stone, C. Kim, R. Manohar, and R. Soulé,
“Zerializer: Towards zero-copy serialization,” in HosOS, 2021.

[77] M. Wu, S. Wang, H. Chen, and B. Zang, “Zero-change object transmis-
sion for distributed big data analytics,” in ATC, 2022.

[78] Xilinx, “Xilinx ALVEO™ U280,” https://www.xilinx.com/publications/
product-briefs/alveo-u280-product-brief.pdf, 2021.

[79] Xilinx, “Xilinx Vivado Design Suite,” https://www.xilinx.com/products/
design-tools/vivado.html, 2023.

[80] Y. Yuan, J. Huang, Y. Sun, T. Wang, J. Nelson, D. R. Ports, Y. Wang,
R. Wang, C. Tai, and N. S. Kim, “Rambda: Rdma-driven acceleration
framework for memory-intensive µs-scale datacenter applications,” in
HPCA, 2023.

[81] R. Zambre, A. Chandramowlishwaran, and P. Balaji, “Scalable commu-
nication endpoints for mpi+ threads applications,” in ICPADS, 2018.

[82] Y. Zha and J. Li, “Virtualizing fpgas in the cloud,” in ASPLOS, 2020.
[83] Y. Zha and J. Li, “Hetero-vital: A virtualization stack for heterogeneous

fpga clusters,” in ISCA, 2021.
[84] J. Zhang, X. Chen, Y. Zhang, and Z. Wang, “Dmrpc: Disaggregated

memory-aware datacenter rpc for data-intensive applications,” in ICDE,
2024.

[85] J. Zhang, H. Huang, X. Xu, X. Li, J. Zhao, M. Liu, and Z. Wang,
“Rpcacc: A high-performance and reconfigurable pcie-attached rpc
accelerator,” 2024. [Online]. Available: https://arxiv.org/abs/2411.07632

[86] J. Zhang, H. Huang, L. Zhu, S. Ma, D. Rong, Y. Hou, M. Sun,
C. Gu, P. Cheng, C. Shi, and Z. Wang, “Smartds: Middle-tier-centric
smartnic enabling application-aware message split for disaggregated
block storage,” in ISCA, 2023.

[87] S. Zhou and S. Mu, “{Fault-Tolerant} replication with {Pull-Based}
consensus in {MongoDB},” in NSDI, 2021.

[88] Y. Zhou, Z. Wang, S. Dharanipragada, and M. Yu, “Electrode: Acceler-
ating distributed protocols with {eBPF},” in NSDI, 2023.

[89] B. Zhu, Y. Chen, Q. Wang, Y. Lu, and J. Shu, “Octopus+: An rdma-
enabled distributed persistent memory file system,” TOS, 2021.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://arxiv.org/abs/2409.00918
https://www.xilinx.com/publications/product-briefs/alveo-u280-product-brief.pdf
https://www.xilinx.com/publications/product-briefs/alveo-u280-product-brief.pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://arxiv.org/abs/2411.07632

APPENDIX

A. Abstract

This artifact provides the source code of RpcNIC and scripts
to reproduce the main experimental results. The experiments
are run on one 4U AMAX server, equipped with two Intel
Xeon Silver 4214 CPUs@2.2GHz, 256GB DDR4 memory,
RpcNIC(i.e., a Xilinx Ultra-Scale+ FPGA). RpcNIC is imple-
mented on Xilinx Alveo cards U280 with Vivado 2020.1.

B. Artifact check-list
• Program: C/C++
• Compilation: g++-11.3.0, gcc-11.3.30
• Data set: HyperProtoBench
• Run-time environment: QDMA driver installed
• Hardware: Xilinx Alveo U280
• Execution: Running commands as root with sudo
• Metrics: Serialization latency and throughput, deserialization

latency and throughput
• Output: Experiments produce outputs in the console or log files
• Experiments: a) Throughput speedup of one-shot DMA write

deserializer, b) Serialization time comparisons between CPU-
only, ProtoACC-PCIe, and Memory-affinity serializer

• Disk space required: 1GB
• Time needed to prepare workflow: 1 hour
• Time needed to complete the experiments: 3 hours
• Publicly available: Yes
• Code licenses: MIT
• Data licenses: MIT

C. Description

1) How to access: The codebase can be accessed from
GitHub https://github.com/RC4ML/RPCNIC.

2) Hardware dependencies:
• Xilinx Alveo cards U280
• Intel CPU
• 20GB memory and 1GB storage

3) Software dependencies:
• Linux OS
• gcc ≥ 11.3.0
• cmake ≥ 3.0.0
• QDMA driver
• MLNX OFED ≥ 5.4.0

D. Installation

Use the following commands to clone the RpcNIC repos-
itory, install the necessary tools, download the dataset, and
build binary programs.

git clone --recursive
https://github.com/RC4ML/RPCNIC.git

Install QDMA driver
cd qdma_driver
make
sudo insmod /path/to/qdma_driver/src/qdma-pf.ko
echo ’1024’ | sudo tee -a

/sys/bus/pci/devices/0000:1a:00.0/qdma/qmax
sudo dma-ctl qdma1a000 q add idx 0 mode st dir bi
sudo dma-ctl qdma1a000 q start idx 0 dir bi

desc_bypass_en pfetch_bypass_en

Install MLNX_OFED

wget https://content.mellanox.com/ofed/MLNX_OFED
-23.04-1.1.3.0/MLNX_OFED_LINUX-23.04-1.1.3.0
-ubuntu18.04-x86_64.tgz -O mlnx.tgz
tar -zxvf ./mlnx.tgz
cd mlnx && sudo ./ofedinstall

Install required libs
sudo apt install libgflags-dev libnuma-dev

build all binary programs
cd RPCNIC && mkdir build_host && cd build_host
cmake ..
make -j

E. Experiment workflow

We provide two machines for artifact evaluation. The FPGA
machine is equipped with a Xilinx U280 FPGA machine, and
the second machine is a Vivado machine. The FPGA machine
is used for the RPCNIC experiment, and the Vivado machine
is used for deploying bitstream.

You can refer to our GitHub repo to see how to connect and
deploy bitstream on FPGA. Please reboot the FPGA machine
after programming the FPGA. And then you can run the
RPCNIC experiment on the FPGA machine.

F. Evaluation and expected results

We use one-shot DMA write deserializer experiment as an
example, you can find other evaluations in our GitHub repo.

1) Run the one-shot DMA write deserializer: Program
deser one-shot DMA.bit to the FPGA, and after rebooting
the machine, run the following command to start the experi-
ment:

sudo ../bin_host/deserialize_hw 0 8

deserialize hw program accepts two arguments: the first
argument is the number of messages, ranging from [0-9], and
the second argument is the number of outstanding req, set it
to 8 is enough.

To run different BENCH, please edit /src/deserial-
ize hw.cpp, change #define BENCH0 to #define BENCHX,
and recompile the program. The output will be like this:

total size: 91323
data_cnt: 142701027
timer_en: 1
timer_cnt: 149914182
timer_cnt: 149914182
speed: 92.9517
timer: 599656

2) Run the field-by-field DMA deserializer: Program
deser field by field.bit to the FPGA, and after rebooting the
machine, run the following command like above to start the
experiment:

sudo ../bin_host/deserialize_hw 0 8

The output will be like this:

total size: 91323
data_cnt: 142701027
timer_en: 1
timer_cnt: 149914182
timer_cnt: 149914182

https://github.com/RC4ML/RPCNIC

speed: 92.9517
timer: 599656

3) Calculate the speedup: We can calculate the speedup by
dividing the speed of the one-shot DMA deserializer by the
speed of the field-by-field DMA deserializer.

G. Notes

• You can change #define BENCH0 to #define BENCHX in
the source code to run different HyperProtoBench bench-
marks.

• Sometimes the kernel may panic. It will occur if the config-
uration is not correct. Reboot is needed when encountering
kernel panic.

	Introduction
	Background and Motivation
	Remote Procedure Calls
	Prior Hardware RPC Acceleration
	Challenges

	RpcNIC: Design and Implementation
	Overview
	Target-aware Deserializer
	Memory-affinity Serializer
	Compute Unit
	RpcNIC Software Stack
	RpcNIC Compiler
	RpcNIC Programming Interface

	Automatic Field Updating

	Evaluation
	Experimental Setup
	Target-aware Deserializer
	Memory-affinity Serializer
	Comparison to SoC SmartNIC/DPU
	Comparison to Dagger
	Comparison to On-chip Accelerator
	Automatic Field Updating
	End-to-end Application Performance
	Hardware Resource Usage

	Discussion
	Related Works
	Conclusion
	References
	Appendix
	Abstract
	Artifact check-list
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Run the one-shot DMA write deserializer
	Run the field-by-field DMA deserializer
	Calculate the speedup

	Notes

