
White-Boxing RDMA with Packet-Granular Software Control

Chenxingyu Zhao1, Jaehong Min1, Ming Liu2, Arvind Krishnamurthy1

1University of Washington, 2University of Wisconsin-Madison

Abstract
Driven by diverse workloads and deployments, numerous in-
novations emerge to customize RDMA transport, spanning
congestion control, multi-tenant isolation, routing, and more.
However, RDMA’s hardware-offloading nature poses signif-
icant rigidity when landing these innovations. Prior work-
flows to deliver customizations have either waited for lengthy
hardware iterations, developed bespoke hardware, or applied
coarse-grained control over the black-box RDMA NIC. De-
spite considerable efforts, current customization workflows
still lack flexibility, raw performance, and broad availability.

In this work, we advocate for White-Boxing RDMA, which
provides control of the hardware transport to general-purpose
software while preserving raw data path performance. To
facilitate the white-boxing methodology, we design and im-
plement Software-Controlled RDMA (SCR), a framework en-
abling packet-granular software control over the hardware
transport. To address challenges stemming from granular
control over high-speed line rates, SCR employs effective
control models, boosts the efficiency of subsystems within
the framework, and leverages emerging hardware capabili-
ties. We implement SCR on the latest Nvidia BlueField-3
equipped with Datapath Accelerators, delivering a spectrum
of new customizations not present in legacy RDMA transport,
such as Multi-Tenant Fair Scheduler, User-Defined Conges-
tion Control, Receiver-Driven Flow Control, and Multi-Path
Routing Selection. Furthermore, we demonstrate SCR’s ap-
plicability for GPU-Direct and NVMe-oF RDMA with zero
modifications to machine learning or storage code.

1 Introduction
Remote Direct Memory Access (RDMA) empowers data cen-
ter workloads with high-performance networking thanks to
hardware-offloaded transport. However, as deployments shift
from single-tenant lossless fabric to multi-tenant lossy Ether-
net and applications expand from HPC to storage and GPU
communication, a one-size-fits-all approach to RDMA hard-
ware transport is inadequate. Consequently, extensive innova-
tions have emerged to customize RDMA transport. From the
industry, Microsoft Hyperscale Deployment [1–3], Google
Falcon [4], AWS SRD [5], Meta [6], Alibaba HPN [7], and
the Ultra Ethernet Consortium (UEC) [8], among others, are
driving RDMA transport customizations at scale. This is sup-
plemented by academic contributions spanning topics such
as congestion control [9–16], multi-tenant isolation [17–19],
routing [20, 21], reliability [22–24], and more.

Although the innovations are in full swing, RDMA’s hard-
ware nature imposes significant rigidity on integrating these

customizations. Fundamentally, ASIC hardware iterations are
expensive both in terms of time and monetary cost. For in-
stance, DCQCN congestion control [2] baked into ASICs by
Microsoft and vendors of RDMA NIC (or RNIC) has persisted
for nearly a decade. Despite subsequent congestion control
innovations, the hardware rigidity has hindered the integration
of new ideas. Some cloud providers have explored bespoke
hardware or FPGA RNICs [25,26], but these solutions still re-
quire substantial efforts and lack widespread availability com-
pared to commercial RNICs. Alternatively, software-based
approaches [18, 24, 27, 28] treat RNIC hardware transport as
a black box, enforcing customizations through upper-layer
mediators. However, these software overlay mediators are
coarse-grained at the message/verb granularity (up to GB in
size) instead of the transport-layer packet granularity (typi-
cally 1024B) and introduce additional processing overhead,
leading to latency penalties and security concerns [17].

Inspired by the successful practice of white-boxing
switches [29–34], we propose white-boxing RDMA, a new
methodology to customize RDMA hardware transport. His-
torically, switch vendors tightly integrated control logic with
hardware data planes, limiting flexibility for user-defined
control. With white-box switches, control planes run in cus-
tomizable software while preserving the data plane in high-
performance hardware, sparking a series of SDN innovations
over the last decades. Similarly, we advocate the same method-
ology for the current RNIC; we expect to take transport con-
trol from the hardware into software for flexible customization
while keeping the data path in performant hardware.

Besides the need for customization, another key enabler
for white-boxing RDMA is the advancements of SmartNICs
[35–40]. SmartNICs provide two building blocks for white-
boxing RDMA: computational power and control interfaces.
Taking the latest Nvidia BlueField-3 (BF3) as one example,
it interposes general-purpose Datapath Accerlators (DPA) in
line with the data path, potentially supporting flexible control
logic without incurring host-side CPU overhead. Moreover,
DPA features heavy multi-threading capabilities to keep pace
with line-rate processing. DPA also leverages low-profile
RISC-V designs to achieve energy and cost efficiency. These
advancements pave the way for white-boxing RDMA.

Realizing the vision of white-boxing RDMA poses two
main challenges: flexibility and efficiency. In terms of flexi-
bility, we aim to accommodate diverse control functionalities
that rely on various control signals, versatile control laws,
and control actions. As for efficiency, fine-grained control
over RDMA transport encounters challenges in keeping pace
with high-speed line rates. For instance, at 100 GbE with a

1500B MTU, achieving 8.3 Mpps generates packet-granular
signals (such as ACK and TX) at the sub-µs level (120 ns!).
Processing signals at this granularity demands high efficiency,
as even single access to DDR memory (hundreds of ns) en-
tails a relatively significant time cost. Therefore, boosting
processing efficiency is essential.

In this work, we introduce a control framework called
Software-Controlled RDMA (SCR). Drawing from classical
control theory [41–43], SCR centers on two fundamental ques-
tions: What to Control and How to Control. Addressing the
first question, we propose the Dequeue Rate control model,
which regulates the rate at which the RNIC fetches messages
from memory regions associated with queue pairs. This con-
trol knob serves diverse purposes across local-host, fabric,
and peer-receiver domains (detailed in §4.2). As for How to
Control, the SCR framework comprises three subsystems: sig-
nal/event collector, event queues, and event processor. These
subsystems are carefully designed to tackle the challenges of
flexibility and efficiency. The event collector aims to gather
comprehensive signals from various domains, while event
queues enhance efficiency through coalescing signals. For
event processors, we build a Deterministic Multi-Threading
(DMT) system to achieve high-efficiency and general-purpose
processing (detailed in §4.3).

We prototype SCR on the latest Nvidia BlueField-3 Smart-
NIC. Specifically, we leverage BF3 DPA’s central architec-
ture position: DPA can interact with RNIC hardware, com-
municate with the host CPU, and inject traffic into the fab-
ric. Moreover, implementing SCR using the DPA minimizes
the host CPU’s computational burden and operates in a non-
intrusive manner for host-side applications and libraries. We
successfully deliver a spectrum of new functionalities not
present in legacy RDMA transport: 1) Achieving fair multi-
tenant QP scheduling (up to 1.78x improvement in fairness
index compared to the default scheduler; up to 52.8% la-
tency reduction); 2) Enabling user-defined congestion control
(Swift [10]); 3) Enabling multi-path routing selection (MP-
RDMA [20]; PLB [44]); 4) Enabling receiver-driven control
(Homa [15]). Importantly, we demonstrate that storage sce-
narios using NVMe-oF RDMA and machine learning using
GPU-Direct RDMA can benefit from these customizations
without any code changes to applications and libraries.

2 Background and Motivation

2.1 Why Customize RDMA

We first comprehensively summarize prior efforts in customiz-
ing RDMA transport and then identify the implications (I) for
an RDMA customization framework.

• Better Congestion Control: To achieve lossless fabric, Ro-
CEv2 employs PFC, which, despite its effectiveness, faces is-
sues like PFC storms, HoL blocking, and deadlocks [3,45,46].
Mitigating these drawbacks, numerous congestion control
algorithms have been developed, including Microsoft’s ECN-

based DCQCN [2], Alibaba’s INT-based HPCC [9], Google’s
RTT-based Timely [47] and Swift [10], and ACK-Based ACC
[11], showcasing how to customize RDMA congestion con-
trol, especially for hyper-scale lossy Ethernet. I1: New types
of signals from the transport layer enable improved forms of
congestion control laws.

• Stronger Multi-Tenancy Performance Isolation: RDMA
transport bypasses in-kernel multi-tenant isolation mecha-
nisms, resulting in inadequate multi-tenancy isolation within
cloud environments. Studies such as Husky [19, 48], and Har-
monic [17] have demonstrated a pressing need for improved
performance isolation among multi-tenants sharing RNIC.
Solutions like Flor [24], X-RDMA [49], and Justitia [18] in-
troduce a software mediation layer between the tenant and
the RNIC driver, aiming to improve multi-tenant isolation. I2:
New measurements reveal the need to control new domains
like RNIC micro-architecture and multi-tenant host.

• Receiver-driven Flow Control: The many-to-one traffic
pattern, common in GPU collective communications [50] and
storage IO [1], often leads to incast congestion at the respon-
der. This challenge is intensified by RDMA’s one-sided opera-
tions, which are agnostic to responder-side controls. RCC [51]
proposes receiver-driven congestion control for RDMA, with
EQDS [16], Homa [15], NDP [52], and pHost [53] advocat-
ing for a receiver-driven control loop. I3: Emerging workload
patterns motivate new types of flow controls, such as receiver-
driven flow control.

• Per-Packet Multi-Path Routing: RoCEv2’s default single-
path routing ensures in-order packet delivery but fails to uti-
lize the fabric’s multiple paths. MP-RDMA [20] introduces
mechanisms for multi-path routing. AWS SRD [5] empha-
sizes multi-path routing benefits for RDMA in the production
environment. And switches such as Nvidia Spectrum [54]
and Broadcom Tomahawk [55] support adaptive routing (per-
packet ECMP). I4: New types of routing controls like multi-
pathing are beneficial for RDMA transport.

RDMA transport customization is vast in the literature, and
we present additional studies in Appendix Table 6.

2.2 How Prior Works Deliver Customization

RNIC offloads control functions onto rigid ASIC hardware,
making reprogramming most customizations difficult. We
compare prior efforts to deliver customizations as follows:

1) One approach is collaborating with RNIC vendors
to integrate customizations into next-gen ASICs, such as
Microsoft/Mellanox incorporating DCQCN into ConnectX.
However, this method relies on hardware generation cycles,
which typically span years.

2) Developing a bespoke RNIC from scratch using FPGA
or ASIC. FPGA-based solution [17, 20, 26, 56, 57], despite
significant engineering efforts, still generally exhibit discrep-
ancies compared to native commercial RNIC ASICs, which
have evolved over almost a decade to become a commodity.
Cloud providers like AWS SRD [5], Google 1RMA [25], and

Falcon [4] can tape out custom ASICs, yet requiring substan-
tial costs and expertise, and they are primarily utilized for
internal operations rather than as broad commodities.

3) Software overlay solutions [16, 18, 24, 28, 58] provide
userspace libraries over RNIC drivers. However, host soft-
ware is limited to operating at Verb-level (i.e., message level)
and still treats the hardware transport as a black box to work
around. Userspace libraries are not transparent to the host
software stack because they customize drivers or insert media-
tors between the RNIC and applications. This added software
mediator inevitably incurs a latency penalty [18, 24, 28], con-
suming host CPU cycles, and could raise security concerns
for cloud tenants [17].

4) Fully software emulation like SoftRoCE [59] lacks the
crucial property of hardware-accelerated data paths.

2.3 Our Goals

Flexible and Packet-Granular Control: In delivering
RDMA customization, software agility surpasses hardware
rigidity. Thus, we aim to leverage flexible software to enable
diverse control functionalities. We aim to enforce packet-
granular control at the hardware transport, a lower layer than
userspace message-granular coarse-grained control.

Raw High-Performance Data Plane: High performance
is crucial for RDMA; otherwise, people could opt for fully
programmable transport like in-kernel TCP/IP. Thus, we ad-
here to the principle of Zero-Intrusion (or Zero-Touch) for the
hardware data plane to maintain its original high performance.

Deployment Ready: We utilize commodity hardware to
provide ready-to-deploy solutions and adhere to the principle
of smart-edge-dumb-core, placing complex functionalities on
end-host devices while keeping in-network switches simple.
Next, we explore the capabilities of commodity hardware.

3 Characterizing Commodity Hardware

3.1 Requirements of Control System

Before characterizing existing hardware, we first examine the
capabilities required for an ideal control system. Drawing
from classic control theory’s signal-driven feedback-loop [41–
43], we identify three key components for an ideal control
system: signal collectors, processors, and action executor. To
achieve our design goals, these three components necessitate
specific hardware capabilities. These requirements drive our
following characterization.

3.2 Existing Hardware Model

As shown in Figure 1a, with the advancement of SmartNICs
[35, 37, 38, 62], several processors within one server can be
potentially utilized to implement the control system. Taking
the latest BlueField-3 as an example, we have three options:
Host CPU, DPU-embedded ARM CPU (off-path cores), or
Datapath Accelerators (on-path cores). Next, we explore their
potential capabilities and identify a suitable candidate.

On-SoC
DRAM

DPU
Cache

DPU
ARM

PCIe Switch

NIC Subsystem

Host CPU

DPA

RDMA TransportPCIe
Switch Ethernet

SSDs / GPU

DPU
DRAM

Host CacheHost DRAM

Fabric

BF3 SoC

(a) System Model

L1 Data

L1 Code

One Core

L2
Bank

LLC DPA
Cache

Memory
Aperture

DPA Cores
DPA System

DPA
DRAM

DPU
DRAM

Host
DRA

TX RX

DPU Host

RNIC

L2
Bank

Thread

L1 Data

Thread…

(b) DPA Architecture

Figure 1: System Model and DPA Architecture. Referring
to Public Information Provided by the Vendor [60, 61].

Host CPU DPU ARM DPA
ISA x86 Xeon Arm v8.2+ RISC-V

Cores 64 Cores 16 Cores 16 Cores
Threads 128 Threads 16 Threads 256 Threads

Memory 384GB DDR4 32GB DDR5
Local 1GB DDR5 +
Load/Store Access

to Host/SoC DRAM
L1d Cache 1.5MB*32 64KB*16 1KB*256
L1i Cache 1MB*32 64KB*16 1KB*16
L2 Cache 40MB*32 0.5MB*16 1.5MB*1
L3 Cache 72MB*2 16MB*1 3MB*1
Network General General Raw Ethernet

Interaction
with RNIC Verb-Granular Verb-Granular Packet-Granular

OS Linux Linux Real-Time OS
Requirements

Satisfied R1/R3/R4 R1∗/R3 R1∗/R2/R3/R4

(∗ denotes partial satisfying)

Table 1: Comparing Heterogeneous Processors.

Testbed: Our testbed (used throughout the paper) consists
of two servers connected to a 100GbE switch. Each server
has dual Intel Xeon Gold 6346 processors, 384GB DDR4,
PCIe Gen4, and an Nvidia BlueField-3 DPU with 100GbE
cables. Each server is equipped with one Nvidia A30 GPU
(24GB HBM2, 933GB/s memory bandwidth) with driver-
550 and CUDA v12.4. The host machines run Ubuntu 22.04
with kernel 6.5.0, DOCA SDK v2.6, and SPDK v24.05. We
configure SR-IOV VFs for multi-tenant support.

3.3 Characterizing Datapath Accelerators and Others

As Table 1 shows, we characterize the Datapath Accelera-
tor (DPA) and compare it with Host CPUs and DPU ARM
cores. We focus on micro-benchmarking the DPA because
extensive research has already been conducted on x86/ARM
cores [39, 63–66]. Chen et al. [63] characterizes the DPA
from the architectural perspective. We investigate DPA func-
tionalities relevant to the control requirements mentioned, for
example, the fine-grained interaction between RNIC and DPA
(e.g., Programmable Congestion Control), not covered in [63].

DPA Overview: DPA is a general-purpose on-datapath
co-processor. Figure 1a illustrates the conceptual position
of the DPA within the BF3 overall architecture, and Figure
1b provides a detailed view of the DPA’s micro-architecture.
As Table 1 lists, DPA comprises 256 hardware threads and
possesses its own cache and memory system. DPA can access
the host memory and DPU on-SoC memory with load/store

1 50 100 150 200 256
Number of Threads

0

2500

5000

7500

O
pe

ra
ti

on
s

/ μ
s One x86 Thread

One ARM Thread
DPA Threads

(a) Multi-Thread Execution

20 40 60 80 100
Link Load(Gbps, #QP=1 QDep.=128)

0.0

0.5

1.0

1.5

Ev
en

t
R

at
e

(1
06

/s
)

TX
RTT
ACK
NACK
CNP

(b) PCC Events (WRITE Verb)

1 4 8 16 32
#Thread (PktSize 100B)

0.0

0.5

1.0

1.5

2.0

A
vg

. M
pp

s
/ T

hr
ea

d

1.8 1.6 1.6
1.4 1.3

1.8 1.8 1.8 1.8

1.1

Sender Receiver

(c) L2 Send/Receive

103 105 107

Working Set Size (B)

100

101

102

103

La
te

nc
y

(n
s)

L1 L2L3 Heap(1GB)

DPA->DPA Mem (#Thread=1)
DPA->DPA Mem (#Thread=8)
DPA->DPA Mem (#Thread=16)
DPA->ARM Mem (#Thread=16)
DPA->Host Mem (#Thread=16)

(d) Memory Access Latency

Figure 2: Characterizing Hardware Capabilities of Datapath Accelerators (DPA).

instructions (i.e., via memory aperture [60]). DPA can operate
the RNIC, which is co-packaged on the same PCIe card.

For R1, Multi-threading Performance: DPA features
heavily multi-threaded computation with 256 hardware
threads (even more than the host’s beefy x86 CPU). In Fig-
ure 2a, we conduct General Matrix Multiplications (GEMM)
to assess scalability while increasing the number of threads
(Each thread computes the tiled outer product of GEMM [67]).
Each operation represents one multiplication. The scalability
trend closely approaches a linear relationship.

Notably, DPA cores in low-profile and low-cost RISC-V are
much less powerful than x86/ARM cores. As shown in Figure
2a, it may require up to 16 DPA threads to achieve equivalent
processing capability as one ARM thread. Therefore, tailoring
the functionality over a single DPA thread, which involves
a low amount of code and lightweight operations, becomes
necessary. Although DPA offers 256 threads, given these low-
code constraints, we believe that the wimpy cores partially
satisfy the R1 requirement.

For R2, Interaction with RNIC: The RNIC offers the
Programmable Congestion Control module [68] for the DPA,
facilitating fine-grained interactions between the RNIC and
DPA. These include the DPA receiving per-packet signals
(TX/ACK/NACK/CNP, detailed definitions in §4.3.1), mea-
suring RTT by injecting the RTT request packet into the RNIC,
and the RNIC providing APIs for the DPA to set per-flow rates.
In Figure 2b, we measure the event rates while varying the link
load. It is evident that the DPA can receive packet-granular
events. Note that NACK (packet loss) and CNP (congestion)
events are rare; hence, the bars representing them are small.

For R3, Raw Ethernet Capability: Since we need to send
and receive small-sized control signals over fabric, we test
DPA’s communication APIs for transmitting data. These APIs
operate at the raw L2 Ethernet level, allowing for flexible cus-
tomization of L3/L4 protocols such as TCP/IP or UDP/IP. Fig-
ure 2c illustrates the performance of L2 sending and receiving.
For a single thread, it achieves packet rates of about 1.8 Mpps,
meeting the requirements for µs-scale communication. As the
number of threads increases, single-thread performance de-
grades due to contention, but the total Mpps increases. Since
control signal packets are generally small, we focus on Mpps
for small packets, such as 100B.

For R4, Memory Access Latency: Signal collectors in-
teract with the host ideally via memory access. In Figure 2d,

we measure the latency for DPA accessing the local cache,
local memory, DPU on-SoC DRAM, and host-side DRAM.
On workloads, we use the memory bandwidth test from lm-
bench [69], a classical micro-benchmark suite. We highlight
several takeaways: DPA accessing L1 is significantly faster
than accessing the DDR memory; DPA accessing local mem-
ory is faster than accessing the DPU memory and host mem-
ory; DPA L1 and L2 are precious and limited resources shared
by multiple threads. Thus, during the design and implemen-
tation, we should keep the stateful memory (e.g., per-flow
states) compact and reduce memory access times.

We discuss the host CPU’s and DPU ARM’s limitations in
meeting the above four requirements in Appendix §A.1. Com-
pared to DPA, the host CPU and DPU ARM lack a control
interface for requirement R2 and face performance issues for
the other requirements.

Overall, we conclude that DPA is a suitable but not per-
fect candidate among three. We must address challenges like
wimpy core constraints on low-code execution and limit states
maintained to improve cache locality. Importantly, for gener-
ality, we loosely couple our design with any specific hardware.
If DPA’s APIs are exposed to host CPU and ARM cores, we
can adapt our design to be compatible with them.

4 Software Control RDMA Framework Design
4.1 Overview

The key questions for Software-Controlled RDMA (SCR) are
What to Control and How to Control. Firstly, we introduce a
control model that forms the foundation of SCR to address
the first question (§4.2). Next, addressing the second question
relies on the event-driven rate computation framework (§4.3).

4.2 Dequeue Rate Control Model

QP Scheduler Model: We first examine RNIC’s QP sched-
uler, which serves as the infrastructure for controlling network
traffic at the sender side. Figure 3 illustrates the behavior of
the RNIC QP scheduler, also functioning as the rate limiter:
When tenants post WQEs to the SQ, the host driver notifies
the RNIC via doorbell to update QP context (QPC), and the
RNIC fetches several WQEs to aid in scheduling decisions.
The scheduler leverages per-QP metadata, such as QPC and
WQE, along with per-QP rates, to determine the execution
order of WQEs. Typically, these per-QP rates are allocated by
the congestion control module, such as DCQCN. For simplic-

Tenant 1 QP QP Context

Tenant 2 QP

P
C
Ie

WQE Cache
QP

Scheduler

Transport
Processing

Unit

DMA
Payload

WQE Execution Order

Per-QP Rate Assignment RNIC

Fabric

WQE

Congestion Control Dequeue Rate Control

Previous Our Proposal

Figure 3: RDMA NIC Queue Pair Scheduling Model.

ity, we focus solely on the scheduler’s input (metadata and
rate assignment) and output (WQE execution order), while
the internal structures of schedulers fall outside the scope of
our work. Rich literature investigates the design of schedulers
and rate limiters [70–72] (Tassel [70] specifically for RNIC).
After the scheduler generates the WQE execution orders, the
Processing Units of the Transport Logic (e.g., RoCEv2) de-
queue the WQE, DMA the payload from host memory, and
complete packetization before sending it out over the wire.

Standalone
Metric

Competing with
BW-Hungry

BW-Hungry QP
(64KB Msg.)

Th.-Sensitive
(4KB Msg.) 88.30 Gbps 33.25 Gbps 57.64 Gbps

Lat-Sensitive
(256B Msg.) 2.44 us 5.31 us 90.57 Gbps

Table 2: Limitations of DCQCN-Only Rate Assignment.

Although the current RNIC QP scheduler delegates the
per-QP rate assignment to fabric congestion control like DC-
QCN, unfortunately, relying solely on fabric congestion to
control the sending rate has limitations. For instance, as shown
in Table 2, consider a scenario where tenants compete with
a bandwidth-hungry QP. We observe that the throughput-
sensitive tenant experiences significant degradation and unfair-
ness in throughput while the latency-sensitive QP suffers from
increased latency. A desired behavior is that the throughput-
sensitive QP can fairly share bandwidth with the bandwidth-
hungry QP, while the latency-sensitive QP experiences no
latency increase when competing with the bandwidth-hungry
QP. It is worth noting that their aggregate bandwidth is at line
rate, indicating no congestion in the fabric, so DCQCN does
not react accordingly. Many prior works also report similar
inadequacies in RDMA congestion control for multi-tenant
scenarios [17, 18, 24, 28, 73].

Dequeue Rate: We observe that the input of the QP sched-
uler is a powerful control knob that can go beyond the conges-
tion control’s sending rate. As Figure 3 shows, we leverage
this input knob as the per-QP Dequeue Rate, reflecting the
rate at which the RNIC retrieves messages from memory re-
gions. For instance, in WRITE verbs, the WQEs dequeued
from the SQ indicate the message size per request, and then
the dequeue rate is determined by the total message sizes over
a given time period. The choice of the dequeue rate originates
from its beneficial multiplicity as follows.

Multiplicity of Dequeue Rate: As Figure 4 shows, the
dequeue rate influences multiple aspects of RDMA transport:
1) Primarily, it impacts the sending rate, as messages can only

Tenant 1 QP
Dequeue

Rate RNIC ReceiverTORTORRNIC
Tenant 2 QP

P
C
Ie

Figure 4: Dequeue Rate Affects Multiple Domains.

v

Host Domain
Collector

Peer Domain
Collector

Fabric Domain
Collector

RNIC
Data
Path

Event Collectors Event Queues

Event Multiplexor

Event Processor

Ctrl

DPA
Software

ASIC
Hardware

QP
Sched.

Host QPs

PCIe

DPA/CPU SW
ASIC HW

Software-Controlled Framework

Fabric/Peers

Host
Agent

Figure 5: Event-Driven Rate Computation Framework.

be sent out by the RNIC hardware once dequeued from the
host; 2) It affects PCIe utilization because a higher dequeue
rate leads to increased PCIe utilization for DMA transfers;
3) The dequeue rate determines resource allocation within
RNIC hardware, such as ASIC Processing Units, since de-
queue operations initiate subsequent hardware processes like
packetization; 4) The dequeue rate can respond to back pres-
sure from the receiver side, as slowing down the sender’s
dequeue rate can alleviate pressure on the receiver side. In
Appendix §A.2, we empirically evaluate how the dequeue
rate influences various aspects mentioned above. Overall,
the dequeue rate offers a comprehensive control, making it a
suitable control knob for SCR.

4.3 Event-Driven Rate Computation Framework

With the dequeue rate control model, we next design an event-
driven framework to collect multi-domain signals, compute
the rate, and output the control actions. As Figure 5 shows the
workflow, we next describe the subsystems of the framework.

4.3.1 Event Collectors Subsystem

Design Goals: As prior literature shows, the key enabler for
flexible control is collecting accurate and diverse signals from
multiple domains (i.e., signal sources). Therefore, the primary
objective of event collector systems is to be all inclusive,
capable of providing a wide range of events. Furthermore,
while we strive to collect more signal types, we prioritize
deployment-friendly solutions that utilize existing features of
NICs and switches rather than requiring specialized devices.
Next, we outline how to achieve these design goals:

Multiple Domains: To control the dequeue rate, we gather
signals from three primary domains: Fabric Domain, Host
Domain, and Peer Domain. Table 3 lists the specific signals
collected from each domain. These domains employ distinct
mechanisms to gather events as follows:

Fabric Domain: We employ two types of collecting mecha-
nisms: 1) In-Band Mechanisms: In-band packets carry signals
such as CNP/ACK/NACK. Additionally, the TX/RX pipe of
the RNIC can generate TX/RX events during network trans-

Domain Signal Definition

Fabric
Domain

TX Completion of transmitting a burst of packets,
including timestamp and total byte count

RX Completion of receiving a burst of packets, in-
cluding timestamp and total byte count

CNP Congestion Notification Packet (e.g., ECN)
ACK Acknowledgements

NACK Negative Acknowledgements
RTT Measurements of Round Trip Time

Host
Domain

App-Hints Application-specific policies (e.g., Fair band-
width sharing among tenants)

PCIe Util. PCIe real-time bandwidth and latency
RNIC Util. RNIC hardware resource utilization

Peer
Domain

Receiver Credits Rate at which peer can handle incoming traffic
Peer PCIe Util. Peer node’s PCIe bandwidth and latency
Peer RNIC Util. Peer RNIC’s resource utilization

Table 3: Signals From Multiple Domains. This list includes
typical signals but can be expanded as needed.

fer. RTT can also be obtained by timestamping the in-band
packets. Some commodity RNICs, such as the BF3 used in
this project, already support the collection of in-band sig-
nals such as CNP/ACK/NACK/TX/RTT. To our knowledge,
the current BF3 does not support RX signal collection. As
an alternative, we enable RX signal collection through host
domain collectors, which will be discussed later. 2) Out-of-
Band Mechanisms: Out-of-band packets probe network status
in a telemetry manner. For probing packets, we implement
the sender and receiver using the BF3 DPA, which supports
communication over the fabric as shown in §3.3. We design
a UDP-based protocol for transferring out-of-band messages
over raw Ethernet APIs. Several reasons support the choice
of UDP-based protocols: RoCEv2 is based on UDP, allowing
one to track the header field of the RDMA in-band connection
and reuse the meta info for associated out-of-band transfers.
Additionally, UDP alleviates the burden of maintaining con-
nections and handling reliability. An example of out-of-band
probing is RTT measurements. The sender initiates out-of-
band RTT request packets that are IP-routable. Upon the
receiver NIC’s ping-pong response to the RTT request pack-
ets, the sender can calculate the RTT. Unlike in-band RTT
measurements with static per-ACK granularity, out-of-band
RTT offers flexibility in the frequency of sending out RTT
request packets. Also, out-of-band RTT carried as payloads
is more flexible than in-band RTT, avoiding packet header
format modifications.

Host Domain: We design several methods to collect host-
domain signals: 1) For application hints, the event collector
provides a shareable memory region that applications can
access using load/store instructions, allowing them to write
signals with sub-µs latency. Specifically, we implement the
collector using two components: a lightweight agent on the
host CPU and a process on the DPA. The host agent collects
application hints and writes them to a shared memory region,
from which the DPA process reads the signals. 2) For PCIe
utilization measurement, we employ two methods: The first
method involves the host-side agent utilizing tools like Intel
PCM [74] to query real-time stats, followed by writing these
stats to the event collector via the shared memory region. The

second method entails implementing a proactive approach
using PCIe endpoints like NIC to detect PCIe utilization.
Specifically, the DPA process initiates a ping, to which the
host agent responds with a pong, allowing the DPA to analyze
PCIe latency. Importantly, both the host agent and the DPA
process are configured per node rather than per flow, ensuring
there are no scalability issues. This implementation is effi-
cient because all flows within the same server typically share
the same RNIC, host, and PCIe interconnect. 3) For RNIC
utilization, we can utilize the RNIC hardware’s query API to
obtain real-time status. Also, we analyze the fabric domain
signals to infer current RNIC utilization, such as the number
of active connections.

Peer Domain: Signals of this domain must traverse the
network fabric between the requester/responder. Similar to
the fabric domain’s out-of-band mechanism, we operate raw
Ethernet packets to send/receive signals between local/peer
nodes. We employ a UDP-based protocol to ensure the signal
is routable while eliminating unnecessary heavy-weight mech-
anisms like connection setup and reliability. This approach
achieves low latency and low processing overhead. Peers ini-
tially gather node information, including application hints,
PCIe, and RNIC utilization, using the method outlined above
for the host domain. These signals can serve as credits from
the receiver to throttle the sender’s dequeue rate. Once peers
have gathered their information, they can transfer it using the
lightweight UDP-based protocol. In our practice, using raw
UDP with 128 Bytes payloads is sufficient to encapsulate
essential information like flow ID and credits. We implement
the sender and receiver using the BF3 DPA on both local and
peer nodes. The sender injects packets into the network in
several modes: periodically, sampling, and based on anomaly
triggers. In the periodic approach, we set the packet interval
to one RTT, balancing timely information delivery with mod-
erate network usage. Considering that one DPA thread can
handle 1.8+ Mpps, as detailed in §3.3, we can consolidate
senders for multiple QPs into a single thread. With a typical
RTT setting of 20 µs [75], a single thread can support up to 36
flows. In the sampling approach, the sender transmits out-of-
band packets only after a specified number of in-band bytes
have been sent. The anomaly-triggered method conserves net-
work bandwidth by activating only when significant changes
are detected, such as changes in the PCIe or port utilization.

4.3.2 Event Queues and Multiplexer Subsystem

Motivating Queuing and Coalescing: Event queues tempo-
rally store events1 from the collectors before the multiplexer
dequeues events and invokes the processor to handle them.
The event queue subsystem is to facilitate event coalescing, a
crucial mechanism for managing high-speed packet-granular
signals. In Figure 6, we motivate the coalescing mechanism
using the TX events example. Three factors contribute to

1Events encapsulate signals and their associated metadata such as flowID.
We use the terms of events and signals interchangeably in the paper.

Coalescing

Tx Event Queue

Tx Pipe Fabric
MTU-Pkts

Memory Regions

Thread

WQEWQE

SQ Depth

……

Message

Multiplexer

Figure 6: Coalescing Mechanism (TX Events Example).

the rapid accumulation of per-packet TX events: Firstly, in
RDMA operations such as WRITE, each WQE can indicate a
large message size (up to GB), while the wire has a typically
small and fixed MTU size (e.g., 1024B). Therefore, a mes-
sage associated with a single WQE could be segmented into a
large number of MTU-sized packets. Secondly, for SQ, users
often configure a large queue depth to enhance utilization
through batching, further speeding up the accumulation of
per-packet signals. Thirdly, depending on the complexity of
control laws, the processor may operate slowly. This speed
may be outpaced by the event arrival rate, resulting in event
queue buildup. If we process each per-packet event sequen-
tially, the event queue will quickly fill up. Thus, coalescing
multiple consecutive events into one event is a promising so-
lution to improve processing efficiency. We micro-benchmark
the effectiveness of coalescing in Appendix §A.3. Impor-
tantly, in addition to the TX signals from the fabric domain,
signals from other domains can also benefit from coalescing,
driven by similar motivations.

Design Goals: According to the above observations, the
queuing system aims at 1) Supporting efficient and flexible
coalescing strategies; 2) Applying to various types of sig-
nals. To achieve these two goals, we not only utilize existing
functionalities in ASIC hardware but also introduce new func-
tionalities in DPA software, as detailed below.

Hardware Coalescing/Multiplexing: As described in
§4.3.1, event collectors for in-band signals, such as TX, ACK,
and CNP events, are ASIC hardware modules positioned with
the RNIC TX/RX pipelines. In addition to the event collec-
tors, the current BF3 ASIC hardware also supports coalescing
these in-band signals and subsequently invoking DPA threads
for processing. However, to our knowledge, the current hard-
ware coalescing and multiplexing approach has two main
limitations: 1) Applicability: It is limited to in-band signals
from the fabric domain, excluding other signal types from do-
mains such as Host or Peer Domains, which cannot leverage
these hardware circuits; 2) Flexibility: The hardware sup-
ports only fixed strategies for coalescing and multiplexing.
Specifically, for coalescing, it only supports an Accumulation
strategy, which accumulates values indicated by each event
and outputs a single summary event. For multiplexing, it peri-
odically invokes a thread based on hashing results of the flow
ID associated with the events. Critically, it does not provide
a programming interface for users to define more versatile
coalescing and scheduling strategies. To address these short-
comings, we enhance the applicability and flexibility of the
queuing system with software implementations using DPA.

Software Coalescing: As we previously described in

§4.3.1, for out-of-band signals and host domain signals, we
employ software-based collectors over the DPA cores (Figure
5 denoting DPA Software). These types of signals can not
benefit from hardware coalescing. Consequently, the event
coalescing and multiplexing for these out-of-band signals
are software-based implementations over DPA. Specifically,
we first allocate a queue for each type of event for each
flow, simplifying the logic without considering cross-flow
and cross-type dependencies. We adopt the single-producer
and single-consumer model for these queues to ensure lock-
free operation. These queues are allocated using the memory
resources accessible to the DPA process. Unlike hardware
coalescing, which is limited to the Accumulation strategy,
software coalescing offers the flexibility to implement addi-
tional strategies through software modifications. In addition
to basic strategies such as Accumulation, Keep-Latest-Event,
and Keep-Oldest-Event, we support more complex strategies.
For instance, when flow rates stabilize (e.g., converge after a
slow start), continuing to process certain fabric events like TX
could be wasteful for processor cycles. Instead, we coalesce
multiple TX events into one processing event, saving unneces-
sary processing cycles. Specifically, when the hardware multi-
plexer hands over TX events to the DPA software processing
thread, we early terminate processing and enqueue events.
Full processing executes only if we accumulate enough sig-
nals in the event queue. Such complex strategies are not
supported by current hardware coalescing.

Software Multiplexing: The multiplexer is responsible
for dequeuing events and invoking the DPA thread to pro-
cess. Ideally, we aim to consolidate all functions—such as
enqueuing, coalescing, dequeuing, and invoking—onto the
DPA cores to free processing cycles of the host CPU or DPU
ARM. However, to our knowledge, DPA operates a special-
ized real-time OS (RTOS) with limited capabilities for thread
and process management, leading to two main issues:

1) The DPA process cannot create threads during runtime
(e.g., utilizing POSIX thread system calls). Consequently, we
rely on the host CPU or DPU ARM to pre-launch a process
with a pool of threads (we discuss the pool size parameter in
§4.3.3). Within this pool, specific threads are dedicated for
collecting events (e.g., sending/receiving out-of-band pack-
ets), while others are dedicated to processing. Event queues
are stored in process-global memory accessible to both col-
lectors for enqueuing and processor threads for dequeuing.

2) DPA’s inter-process communication (IPC) capabilities
are limited. The current BF3 DPA allows only a specialized
process (i.e., doca_pcc) to set flow rates. Therefore, other
processes handling host-domain and peer-domain events need
to communicate with the doca_pcc process to adjust flow rates.
However, the DPA lacks typical IPC mechanisms like Linux
pipes or domain sockets. Instead, we use the host CPU or DPU
ARM as an agent, facilitating memory sharing with processes
handling host-domain and peer-domain events. Furthermore,
the host CPU (or DPU ARM) utilizes a Mailbox Mechanism

[68] to activate doca_pcc for setting the flow rate. Importantly,
most functionalities still operate on the DPA, with the host
CPU merely handling lightweight operations to compensate
for the current limitations of the DPA RTOS.

4.3.3 Event Processor Subsystem

Design Goals: The event processor subsystem is to execute
user-defined control laws. The primary goal for the event pro-
cessor is computational efficiency, given that the per-packet
signal interval could be as short as a sub-µs. Inspired by clas-
sical OS and architecture techniques [76–78], we aim at build-
ing a Deterministic Multi-Threading (DMT) model. Next, we
propose several mechanisms to realize such a model on a
multi-core processor of the BF3 DPA.

Run-to-Completion and Shared-Nothing: To ensure de-
terministic execution, computation adheres to the run-to-
completion manner without context switching or preemptive
scheduling. Given the packet-granular signals at the sub-µs
level, context switching becomes prohibitively expensive. By
default, we handle event processing fairly for all event types
without prioritization. Thus, when the multiplexer schedules
an event, it waits until the target thread is idle before invoking
it rather than preempting. Furthermore, processors operate
based on the shared-nothing principle, avoiding inter-thread
locking or synchronization. Specifically, the multiplexer maps
each event to only one thread and assigns the same type of
event from the same flow to the same thread. Each thread
holds its partition of global stateful records, ensuring the
thread remains independent of others.

Scalable Thread Pool: We allocate hardware threads into
separate pools corresponding to different purposes, such as
handling fabric events or peer-domain events. Under the run-
to-completion model , where threads are not dynamically cre-
ated during runtime, the pre-determined size of the thread pool
is a critical parameter. Considering scalability, we carefully
determine the appropriate thread pool sizes for two primary
types of event processing:

1) For per-node processing, the number of processing
threads does not need to scale with the number of QPs (flows).
Some types of signals, such as those from host domains, can
be processed per node without the need for per-flow process-
ing. As described in §4.3.1, host domain signals like PCIe
utilization are shareable to all QPs over the same RNIC, as
they share the same PCIe interconnect. Consequently, there is
no need to establish per-QP threads to process these signals.
Instead, we configure a limited number of threads (generally
fewer than 10) dedicated to each host signal such as PCIe
Utilization, Application Hint, and RNIC utilization;

2) For per-flow processing, it intuitively seems that the
number of processing threads should scale with the number of
flows. However, we introduce an observation indicating that
such scaling is not always necessary for our thread steering
policy as follows:

Steering Policy: For signals requiring per-flow processing

Thread

Thread

Thread

Thread

Thread

Thread

1 QP : 2 Threads 2 QPs : 2 Threads 4 QPs : 2 Threads

LineRate LineRate LineRate

BytesSentPerEvent EventProcessingRate Granularity Invariance

Figure 7: Example of the Granularity Invariance Princi-
ple. While fixing two threads, the coalescence granularity
remains invariant while increasing the number of flows
from two to four.

such as in-band fabric signals TX/ACK, out-of-band fabric
signals RTT, and peer signals, we pre-determine the thread
pool size before launching the DPA process. For a small num-
ber of QPs (e.g., fewer than thread pool size), the subscription
ratio of threads to QPs is fixed (e.g., 1:1). For a large number
of QPs exceeding the thread pool size, signal processing for
multiple QPs is consolidated into a single thread.

Processing Fidelity: Surprisingly, consolidating signal pro-
cessing for multiple QPs does not affect processing fidelity.
To measure fidelity, we introduce the metric coalescing gran-
ularity, defined as the number of bytes sent out per event.
Recalling §4.3.2, when the event queue builds up, multiple
per-packet signals are coalesced into a single event. Conse-
quently, a single event representing more bytes indicates more
events awaiting processing. Coalescing granularity, therefore,
serves as an effective metric for assessing the waiting time
due to contention faced by the processing thread. A smaller
granularity indicates finer control and improved fidelity. Next,
we introduce a theoretical principle suggesting that consol-
idating the processing of multiple QPs into a single thread
will not compromise fidelity:

Granularity Invariance Principle: For N flows saturating
a fixed line rate (LineRate), when N exceeds the number of
processing threads T , the coalescing granularity for each flow
remains invariant even though increasing the number of flows
(Figure 7 illustrates an example).

Proof : The principle holds because the line rate is invariant
to the number of flows. Consider a processing system capable
of handling packet-granular events without dropping events
for any sent bytes. Let BytesSentPerEventi be the number of
bytes each flow i sends per event, and EventRatei the rate
at which events are processed. Assuming a fixed number of
processing threads T , uniform coalescing strategy for all flows
(BytesSentPerEventi = Bspe for all i), and equal sharing of
processing capability among the flows:

LineRate =
N

∑
i=1

BytesSentPerEventi ×EventRatei

= Bspe×
N

∑
i=1

EventRatei

Since ∑
N
i=1 EventRatei is a constant C (total event processing

capacity shared among flows), we have: LineRate=Bspe×C.
Given C and LineRate are invariant with respect to N (fixed
T), Bspe remains constant even as N increases. Hence, the
coalescing granularity for each flow does not change.

The Granularity Invariance Principle provides scalability
guarantees for per-flow processing utilizing the fixed number
of threads, which applies to in-band fabric signals, out-of-
band fabric signals, and peer signals. To achieve a reasonable
coalescing granularity (Bspe), we typically launch 64 threads
for processing in-band fabric signals. We empirically demon-
strate its effectiveness and scalability in §6.1. For out-of-band
fabric signals and peer signals, each flow’s sender and receiver
transmit out-of-band signals periodically (e.g., per RTT), by
sampling (e.g., per BDP), or respond to anomaly triggers as
discussed in §4.3.1. Compared with per-packet in-band sig-
nals, out-of-band signals are relatively coarse-grained, indi-
cating more bytes sent per event. Thus, a smaller thread pool
(16 in our setting) is sufficient for processing.

Strike Time-Space Trade-off: Improving both time/space
efficiency is essential for DPA, which features a low-profile
design with relatively wimpy cores and memory subsystems.
Facing the fundamental time-space tradeoff, we employ dis-
tinct strategies for memory-intensive stateful operations and
computation-intensive stateless operations. Details follow:

For stateful operations, we prioritize space efficiency by
improving cache locality. Transport control algorithms often
rely on stateful operations like membership queries, key-value
queries, and counting. Stateful memory typically scales with
the number of flows or the value range of flow information
(e.g., flow ID), but DPA memory resources are limited. To
optimize stateful memory usage, we offer a computation li-
brary powered by compact data structures and algorithms. For
membership queries, such as identifying the first packet of
a flow, we utilize BloomFilter [79]. For key-value queries,
such as recording flow statistics, we provide a HashMap. For
counting tasks, we employ HyperLogLog [80] to estimate
the cardinality and use Count-Min sketch [81] to estimate
cumulative values.

For stateless operations, we prioritize time efficiency by
lowering the instruction count. In addition to memory access
costs, the instruction count directly translates into the execu-
tion time. For example, to improve time efficiency, we opt
for fixed-point numbers (FXP-16) instead of floating-point
numbers for arithmetic operations. Additionally, we employ
bitwise operations for multiplication, square root calculations,
and other arithmetic computations.

5 Spectrum of New Customizations
In this section, we demonstrate how to enable new function-
ality over SCR. To comprehensively cover a wide range of
innovations, we categorize them into various system domains,
as illustrated in Figure 8. For each domain, we explore candi-
date policies. Considering the rich customizations (Appendix
Table 6), one policy never fits all, even for a single domain
like congestion control. Thus, these policies showcase SCR’s
expressiveness (without claiming to be the best) and stimulate
other innovations for diverse workloads and deployments.

App. QP Dequeue
Rate

Recv.
RNIC AppTORTORSender

RNIC
App. QP P

C
Ie

GPU-Direct RDMA
NVMe-oF RDMA Fair QP Scheduler Congestion Control

Multi-Path Routing Receiver-Driven

Figure 8: New Customizations from Various Domains.
5.1 Host Domain: Fair QP Scheduler
In this domain, we investigate the case of customizing the
RNIC QP Scheduler to improve fairness and performance
isolation across multiple tenants. Several prior works [17, 18,
24, 28, 73] investigate the importance of addressing multi-
tenancy issues of QP schedulers.

Customized Policy: We specify one simple yet practical
policy: Achieve fair bandwidth allocation for QPs with vary-
ing message sizes. SCR can support other policies, such as
different performance metrics and different definitions of fair-
ness. Here, we take a typical bandwidth fairness example.
Before delving into the mechanisms, we first explain why the
legacy RNIC is not fair for some scenarios. As described in
§4.2, the QP scheduler dequeues WQEs from tenants’ QPs,
prompting RNIC to initiate DMA transfers to fetch messages
across the PCIe. Consequently, the QP scheduler’s decisions
can significantly impact host-to-RNIC PCIe resources and
RNIC hardware utilization. By default, RNIC adopts a greedy
approach, prioritizing large message sizes to achieve high uti-
lization, a phenomenon widely observed [18,24,56]. However,
this greedy strategy may result in unfair resource allocation
in multi-tenant environments with varying message sizes, po-
tentially violating cloud providers’ bandwidth commitments.

Control Laws: Firstly, we need to measure the real-time
bandwidth for each flow, which is a metric to evaluate fairness.
We utilize the TX events from SCR event colletor, which pro-
vide per-QP flow ID, event timestamps, and the amount of
bytes sent out. For each flow, SCR event processors record
the timestamp of the last observed TX event, calculate the
time duration since then until the current event, and derive
the real-time bandwidth utilization as the bytes sent out di-
vided by the time duration. Note that such bandwidth cal-
culation applies to events coalesced using the accumulation
strategy. We utilize Exponentially Weighted Moving Average
(EWMA) to smooth the real-time bandwidth. To enhance
efficiency, BloomFilter performs the new flow identification,
flow records are stored using HashMap, and floating-point
calculations are approximated using fixed-point arithmetic.

Next, we present three algorithms to achieve fairness. Note
that it is desirable to maintain high utilization while achiev-
ing fairness. SCR event processors support user-customized
algorithms, here demonstrating three typical cases: 1) De-
fault RNIC QP scheduler mechanism; 2) Static Allocation
Algorithm: We statically control the dequeue rate for each
flow as Link_Capacity

Num_O f _Flow . 3) Water Filling (Progressive-Filling)
Algorithm: Water Filling is a classical strategy to achieve
max-min fairness in bandwidth allocation problems [82, 83].
Specifically, in our dequeue rate control model, we initially
set the dequeue rates at starting values (discussed later) and

Case Studies Packet-Granular Signals/Events Benefits and Performance Gains

Fair QP Scheduler TX Events
Improving Fairness with Varying Message Sizes;
Isolating Performance between Lat./BW. Tenants

Congestion Control (§A.6) Fabric RTT Events; Host/Peer Endpoint Latency Enable RTT-based CC in addition to ECN-based CC
Multipath Routing (§A.7) Fabric-Domain RTT Probing Enable Sender-Side Multi-Path Monitoring and Selection

Receiver-Drivern Control (§A.8) Peer Credits; Peer Congestion Notifications Handle Incast; Enable NIC-Initiated ECN-like Backpressure

ML and Storage (§A.9) The above signals are applicable. Enhancing Fairness with Zero-Intrusion for GPU-Direct RDMA and
NVMe-oF RDMA Applications and Libraries

Table 4: Summary of Case Studies on Utilized Packet-Granular Signals and Achieved Benefits.
then progressively increase rates. If a tenant QP can satu-
rate the dequeue rate (i.e., BW_EWMA ≈ DequeueRate) and
the link capacity permits, we continue increasing it. How-
ever, if the tenant QP does not fully utilize the dequeue rate
(e.g., for non-bandwidth-hungry QPs), we stop further in-
creases. Additionally, if a tenant’s bandwidth degrades (i.e.,
BW_EWMA ≪ DequeueRate), we decrease the dequeue rate
and reclaim the credits. Event processors based on the DMT
model ensure the rapid completion of the filling process and
simultaneous progress among multiple flows.

0.0 0.2 0.4
Timeline (s)

25

50

75

100

D
eq

ue
ue

 R
at

e
(G

bp
s)

(a) Scale down to half;
Start from 0

0.0 0.2 0.4
Timeline (s)

25

50

75

100

D
eq

ue
ue

 R
at

e
(G

bp
s)

(b) Scale down to n−1
n ;

Start from 0

0.0 0.2 0.4
Timeline (s)

25

50

75

100

D
eq

ue
ue

 R
at

e
(G

bp
s)

(c) Scale down to n−1
n ;

Start from 1
n

Figure 9: Various Water Filling Strategies for Handling
Flows Dynamicity (8 Bandwidth-Hungry QPs).

To handle the dynamics of flows coming and going, we
adjust the bandwidth allocations as follows: when a new flow
joins, we scale the allocations for each existing flow i down to
n−1

n ×DequeueRatei and start the new flow at 1
n ×LineRate

(where n is the number of flows); when a flow terminates,
we reclaim its allocated DequeueRate, making it available
for other flows. In Figure 9, we visualize three Water Filling
strategies with time-series dequeue rates for 8 flows, initi-
ated one by one at 50 ms intervals (More experiment setup
in §A.4). Our strategy (Figure 9c) demonstrates efficiency
in both fairness and convergence time. Water Filling offers
a broad design space, including strategies for handling the
flows dynamicity and several tunable parameters, such as step
size. In Appendix §A.4, we present more traces with varying
parameters. In this work, we focus on the expressiveness of
SCR (without claiming algorithms to be the best) and defer
the algorithm optimality to future research.

5.2 More Case Studies

Table 4 summarizes key enablers and performance gains for
more case studies. Due to space constraints, we provide their
descriptions and experiments in the appendix (§A.6, §A.7,
§A.8, and §A.9). Given the rich literature on RDMA, we
provide a feasibility analysis for other works in §A.13.

6 Evaluation
Implementation: We implement SCR over the DPA in over
7.8K lines of C/C++ code. We describe specific SDK depen-
dencies in A.10. We describe our testbed in §3.2.

6.1 Micro-Benchmarking SCR
Setup: In Figure 10, we micro-benchmark the SCR frame-
work using Perftest ib_write_bw [84] to generate traffic. We
vary the number of QPs (flows) up to 1024 per node. The
message size is set to 64KB with a queue depth of 4, allowing
full 100Gbps line rate utilization. We launch up to 64 DPA
threads. We primarily use the following metrics:
• Event Rate: Number of events handled (millions/second);
• Coalescing Granularity: Bytes sent per event;
• Processing Rate: Event Rate × Coalescing Granularity.

Processing Capacity: In Figure 10a, we demonstrate that
the processing rate of the SCR can match the line rate traffic.
In this experiment, SCR’s processing task is to enforce fair-
ness across multiple tenants. We utilize up to 1024 concurrent
QPs and dump out the processing rate for the fabric TX sig-
nal, which is the most frequent signal among all signal types
from all domains. The figure illustrates that SCR can handle
these signals even during line-rate traffic. The processing rate
exceeds the application goodput, as the bytes indicated by the
TX event include both transport headers and payloads.

Scalability: In Figure 10b, we investigate the scalability
using the same setup as the previous test. As we increase the
number of QPs from 1 to 64, each flow exclusively utilizes
one thread for event processing as designed in §4.3.3. With
varying the number of flows and corresponding threads from 1
to 64, the line rate remains saturated and unchanged, reducing
the processing load on individual threads. Thus, as the number
of QPs increases to 64, we observe that the SCR can process
events with the finest granularity and peak event rate. Beyond
64 QPs, we do not increase the thread count; instead, multiple
flows are consolidated into a single thread. Excitingly, as
analyzed by the Granularity Invariance Principle in §4.3.3,
the granularity remains invariant even with up to 1024 QPs.
This indicates that the SCR can handle more flows without
additional threads, maintaining the same processing fidelity.

Software Coalescing Applicability: In Figure 10c, we
show the applicability of software coalescing. Unlike hard-
ware coalescing, which is limited to in-band signals from the
fabric domain, software coalescing in SCR extends to signals
across all domains. In this test, we apply software coalesc-
ing to fabric TX signals, peer credit signals, and host PCIe
latency signals, showing the reduction in processing cycles
per event. We use cycles as the metric—rather than execution
times—because the DPA lacks a sub-µs timer (for reference,
the DPA system clock runs at 505 MHz). Also, the figure
highlights the flexibility of user-defined coalescing strategies.
For TX events, we implement coalescing based on the cover-

1 4 16 64 256 1024
Number of QPs

0
20
40
60
80

100

G
oo

dp
ut

 B
W

 (G
bp

s)

0
20
40
60
80
100

Pr
oc

. R
at

e
(G

bp
s)BW Processing Rate

(a) Proc. Matches LineRate

1 4 16 64 256 1024
Number of QPs

20

22

24

26

B
yt

es
 P

er
 E

ve
nt

 (K
B

)

Granularity
 Invariance

2−3

2−2

2−1

20

21

Ev
en

t
R

at
e

(M
/s

)

Granularity EventRate

(b) Granularity Invariance

FabricTx PeerCredit HostLat
Singal Type

0

500

1000

1500

2000

C
yc

le
s

Pe
r

Ev
en

t

Saved by SW Coal.

(c) SW Coal. Applicability

1 4 16 64 256 1024
Number of QPs

1.0

1.2

1.4

1.6

N
or

m
. E

ve
nt

 R
at

e HW+SW Coal.
HW-Only Coal.

(d) SW Coal. Efficiency

Bitmap BloomFilter
Algorithm

0

2

4

Ev
en

t
R

at
e

(M
/s

)

20

25

210

215

M
em

or
y

U
sa

ge
 (K

B
)

Event Proc. Space

(e) Space Efficiency
Figure 10: Micro-Benchmarking Key Properties of the SCR Framework.

age status of flow rates (detailed in §4.3.2). For peer and host
signals, we employ the Keep-Latest-Event strategy.

Software Coalescing Efficiency: In Figure 10d, we present
the enhanced efficiency of software coalescing over typical
hardware-only coalescing. As in previous experiments, we
report the event rate for TX events with multi-tenant isola-
tion processing task. To demonstrate enhanced efficiency, we
normalized the combined hardware and software (HW+SW)
coalescing against hardware-only (HW-Only) coalescing. The
results show that software coalescing improves efficiency,
particularly when the number of threads is limited, thereby
increasing the load per thread. For instance, with only four
threads, the HW+SW coalescing achieves a 51.3% higher
event rate compared to the HW-Only coalescing.

Space Efficiency: In Figure 10e, we show the space effi-
ciency for stateful operations, using the example of identifying
the first signal of new flows—an essential operation for initi-
ating processing. The Precise Bitmap Algorithm pre-allocates
one bit for each potential flow ID. Upon signal arrival, it in-
dexes the bit according to the flow ID to verify existence.
With Flow IDs generated by BF3 hardware being 24 bits long,
the Bitmap requires about 2 MB of memory (224 bits). The
Bloom Filter is an approximate algorithm for membership
queries, with memory usage scaling only with the number of
flows, not the value range. To achieve a false positive rate of
0.03 with three hash functions for up to 8192 flows, Bloom-
Filter requires just 8 bits per flow (totaling 8KB). The Bloom
Filter’s space requirement is smaller than that of the Bitmap
algorithm. Additionally, both methods can achieve similar
event processing rates as they execute O(1) operations.

6.2 Achieving Fairness with the QP Scheduler
In Figure 11, we report the bandwidth as the utilization met-
ric and Jain’s Fairness Index [85] as the fairness metric. We
present the evaluation results for the three aforementioned
algorithms (§5.1). We set up two competing tenants using
Perftest [84] WRITE verbs and vary the message size. The
total link capacity is 100 Gbps. Figure 11a and 11d depict
the performance of the default scheduler. It can only ensure
fair allocation when both tenants use the same message size,
as indicated by the diagonal line in Figure 11a. With the de-
fault scheduler, large messages can achieve high utilization,
as shown in Figure 11d. Notably, for small messages (e.g.,
256 B), which are not bandwidth-hungry, they cannot saturate
the link capacity. Figure 11b illustrates the fairness results
when using the static allocation algorithm, which is the fairest

25
6 1K 4K 16

K
64

K
25

6K 1M

Flow-1 Message Size

256
1K
4K

16K
64K

256K
1M

Fl
ow

-2
 M

es
sa

ge
 S

iz
e

0.6

0.8

1.0 Jain Fairness Index

(a) Default Scheduler

25
6 1K 4K 16

K
64

K
25

6K 1M

Flow-1 Message Size

256
1K
4K

16K
64K

256K
1M

Fl
ow

-2
 M

es
sa

ge
 S

iz
e

0.6

0.8

1.0 Jain Fairness Index

(b) Static Allocation

25
6 1K 4K 16

K
64

K
25

6K 1M

Flow-1 Message Size

256
1K
4K

16K
64K

256K
1M

Fl
ow

-2
 M

es
sa

ge
 S

iz
e

0.6

0.8

1.0 Jain Fairness Index

(c) Water Filling

25
6 1K 4K 16

K
64

K
25

6K 1M

Flow-1 Message Size

256
1K
4K

16K
64K

256K
1M

Fl
ow

-2
 M

es
sa

ge
 S

iz
e

0

25

50

75

100

Total B
W

 (G
bps)

(d) Default Scheduler

25
6 1K 4K 16

K
64

K
25

6K 1M

Flow-1 Message Size

256
1K
4K

16K
64K

256K
1M

Fl
ow

-2
 M

es
sa

ge
 S

iz
e

0

25

50

75

100

Total B
W

 (G
bps)

(e) Static Allocation

25
6 1K 4K 16

K
64

K
25

6K 1M

Flow-1 Message Size

256
1K
4K

16K
64K

256K
1M

Fl
ow

-2
 M

es
sa

ge
 S

iz
e

0

25

50

75

100

Total B
W

 (G
bps)

(f) Water Filling

Figure 11: Enhancing Fairness and Utilization in QP
Scheduling. Deeper Color is Better for Both Metrics.
as it allocates exactly 1

n bandwidth to each tenant. However,
static allocation can lead to bandwidth over-provisioning for
smaller messages and starvation for larger messages. For in-
stance, while bandwidth-hungry tenants with large message
sizes (e.g., 1 MB) can starve due to the 50 Gbps budget, small
messages like 256B fail to fully utilize 50 Gbps. As a result,
overall utilization suffers. The Water Filling algorithm strikes
a balance between fairness and utilization by progressively
filling the bandwidth demands for all tenants. As depicted in
Figures 11c and 11f, the Water Filling algorithm can achieve
comparable fairness to static allocation while enhancing uti-
lization. Unlike static allocation, the Water Filling prevents
over-provisioning for small messages and starvation for large
messages. In Figure 11, the Water Filling algorithm improves
the fairness index of up to 1.78x compared to the default
scheduler (e.g., 4KB-msg. QP vs. 1MB-msg. QP).

In Figure 12, we scale the number of QPs to evaluate fair-
ness algorithms. Each server manages up to 1024 QPs, with
each QP’s message size uniformly sampled from the range
[4KB, 1MB], resulting in varied message sizes across QPs.
In this experiment, we use WRITE operations, while experi-
ments for READ are in Appendix §A.5. The queue depth is
4 for all QPs. In Figure 12a, the Static and Water Filling allo-
cations can improve fairness by up to 1.88x than the default
scheduler (for #QPs=4, increasing from 0.51 to 0.96). Figure
12b shows that all three algorithms can almost saturate the
line rate. Notably, when the number of flows exceeds 100,
each flow is allocated less than 1 Gbps. Achieving accurate
hardware rate limiting at the granularity of Mbps for RNICs
is still challenging [86, 87]. In Figure 12b (Static-NoBound),

4 8 16 32 64 128 256 5121024
Number of QPs

0.00

0.25

0.50

0.75

1.00

Ja
in

's
 F

ai
rn

es
s

In
de

x

Default
Static (Min=1Gbps)
Static (NoBound)
WaterFill

(a) Fairness Index

4 8 16 32 64 128 256 5121024
Number of QPs

0

25

50

75

100

B
an

dw
id

th
 (G

bp
s)

Default
Static (Min=1Gbps)
Static (NoBound)
WaterFill

(b) Bandwidth Utilization
Figure 12: Fairness Across Multiple Tenants (WRITE).

Default Static Water-Fill
Fairness Algorithm

100

101

102

B
an

dw
id

th
 (G

bp
s)

1.5 1.6 1.5
20

22

24

La
te

nc
y

(u
s)

5.3

2.5 2.8

BW Lat.

(a) Latency-Sensitive QP

Default Static Water-Fill
Fairness Algorithm

100

101

102
B

an
dw

id
th

 (G
bp

s)
90.6

48.9
82.4

20

22

24

La
te

nc
y

(u
s)

8.6

14.9

8.6

BW Lat.

(b) Bandwidth-Hungry QP
Figure 13: Performance Isolation (Lat QP vs. BW QP).

setting the flow rate below 1 Gbps reduces total utilization
and the inability to saturate the line rate, likely due to ex-
cessive arbitration within the rate limiter. Thus, to avoid low
utilization, we set a minimum bandwidth bound of 1 Gbps
per flow for both Static and Water Filling approaches. Setting
the bandwidth roughly at 1 Gbps rather than a more precise
Mbps level explains the decline in the fairness metric when
the number of flows exceeds 100. Beyond 100 flows, the sig-
nificance of achieving fairness becomes minimal since each
flow is allocated only a small amount of bandwidth, which is
fairly similar across flows.
6.3 Enhancing Tenants Isolation with the QP Scheduler
In Figure 13, we illustrate enhancing fairness and isolation can
decrease latency for latency-sensitive tenants when competing
with bandwidth-hungry tenants. We use Perftest WRITE [84]
to set up two competing tenants: one bandwidth-hungry, utiliz-
ing large-message sizes (64 KB) and large batch sizes (128),
and the other latency-sensitive, using small-message sizes
(256B) and small batch sizes (4). Figure 13a displays the
latency results for the latency-sensitive QP, while Figure 13b
shows the bandwidth for the bandwidth-hungry QP. Under
the default scheduler, the latency-sensitive tenant experiences
significant latency spikes. With static allocation, where the
bandwidth-hungry QP is limited to half the line rate, interfer-
ence with the latency-sensitive tenant is reduced, but through-
put suffers. Water Filling algorithms maintain high utilization
while simultaneously reducing latency. In Figure 13, the Wa-
ter Filling algorithm reduces latency by up to 52.8% compared
to the default one while achieving high utilization. For the
latency-sensitive tenant, all three algorithms deliver the same
bandwidth. For the bandwidth-sensitive tenant, Water-Filling
matches the default scheduler’s latency. However, the Static
algorithm increases latency due to restricting the bandwidth-
hungry QP to only half the line rate.

Moreover, as depicted in Figure 13, we can draw a straight-
forward yet significant observation: SCR enables customiza-
tion without compromising (even improving!) RDMA data
plane performance, particularly critical latency metrics. This
observation holds true across all case studies.

6.4 Discussion
More Cases and Guidelines: As referenced in Table 4, more
cases are detailed in the appendix. We report some developer
guidelines in A.11 and suggestions for vendors in A.12.

Relationship to DOCA PCC: We reference PCC [68] for
APIs of setting rates for QPs and obtaining fabric-domain sig-
nals. In SCR, we propose the Dequeue Rate Control Model
(§4.2 and §4.3.1), Software Coalescing and Multiplexing to
address DPA RTOS limitations (§4.3.2), and strategies to
efficiently utilize DPA (§4.3.3). We anticipate that these con-
tributions will also benefit PCC.

Limitations of SCR: In §4.3.1, we describe the lack of RX
signals. In §4.3.2, we discuss the inability to create threads
during runtime and the IPC limitation. In Figure 12, achieving
precise rate limiting at the Mbps granularity remains a chal-
lenge. In §A.7, we describe the limitation on how to specify
routing paths. In Appendix A.11 and A.12, we report some
latency issues such as setting rates. We expect future software
and hardware advancements to address these issues.

Generality: Besides the BF3 DPA, we explore generalizing
the SCR design to other platforms such as hardware devices
for Google Falcon [4] and Broadcom’s Inband Flow Analyzer
(IFA) [88, 89]. Google Falcon, according to the spec [4], fea-
tures a Rate Update Engine (RUE), which occupies a similar
architectural position as the BF3 DPA. Thus, our dequeue
rate control and coalescing/multiplexing strategies could be
adapted for use with the RUE. Similarly, according to Broad-
com IFA’s draft, the Initiating Function Node can potentially
fulfill a role akin to the BF3 DPA in SCR.

Resource Costs: We discuss computational and network
resources costs of SCR. In practice with BF3, we use minimal
computational resources from the host CPU or DPU ARM,
typically for lightweight tasks such as launching DPA threads
or responding to host probes; a single CPU core suffices in our
experiments. Moreover, DPA, based on RISC-V, is designed
for efficiency in power usage, chip area, and monetary cost
[60,90]. Besides BF3 DPU, even the low-power version of the
BF3 (SuperNIC [91]) incorporates DPA. In terms of network
resources, both out-of-band probing and in-band telemetry
consume bandwidth. It is a common challenge [9, 92, 93].
7 Conclusion
In this work, we introduce Software-Controlled RDMA (SCR)
to realize the vision of white-boxing RDMA. SCR applies the
dequeue rate control model and facilitates an event-driven rate
computation framework. We enable a spectrum of new func-
tionalities not present in legacy transport. We envision SCR
to help land past and future RDMA transport innovations.
Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd, Masoud Moshref Javadi. This work was supported
in part by ACE, one of the seven centers in JUMP 2.0, a Semi-
conductor Research Corporation (SRC) program sponsored
by DARPA. This work was supported in part by NSF grants
CNS-2212193, CNS-2213387, CNS-2106199, CNS-2212192,
CNS-2339755, and Cisco Research Grant.

References
[1] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar Attre,

Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman,
Lei Cao, Ahmad Cheema, et al. Empowering azure storage with
RDMA. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 49–67, 2023.

[2] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang. Congestion control for large-scale
rdma deployments. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIGCOMM ’15,
page 523–536, New York, NY, USA, 2015. Association for Comput-
ing Machinery.

[3] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. Rdma over commodity ethernet at
scale. In Proceedings of the 2016 ACM SIGCOMM Conference, SIG-
COMM ’16, page 202–215, New York, NY, USA, 2016. Association
for Computing Machinery.

[4] Google Falcon. https://github.com/opencomputeproject/OC
P-NET-Falcon, 2024.

[5] Leah Shalev, Hani Ayoub, Nafea Bshara, and Erez Sabbag. A cloud-
optimized transport protocol for elastic and scalable hpc. IEEE Micro,
40(6):67–73, 2020.

[6] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu,
Guilherme Goes, Hany Morsy, Rohit Puri, Mohammad Rif-
tadi, Ashmitha Jeevaraj Shetty, Jingyi Yang, Shuqiang Zhang,
Mikel Jimenez Fernandez, Shashidhar Gandham, and Hongyi Zeng.
Rdma over ethernet for distributed training at meta scale. In Proceed-
ings of the ACM SIGCOMM 2024 Conference, ACM SIGCOMM ’24,
page 57–70, New York, NY, USA, 2024. Association for Computing
Machinery.

[7] Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan,
Binzhang Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, Chao Wang, Peng
Wang, Pengcheng Zhang, Xianlong Zeng, Eddie Ruan, Zhiping Yao,
Ennan Zhai, and Dennis Cai. Alibaba hpn: A data center network for
large language model training. In Proceedings of the ACM SIGCOMM
2024 Conference, ACM SIGCOMM ’24, page 691–706, New York,
NY, USA, 2024. Association for Computing Machinery.

[8] Ultra Ethernet Consortium. https://ultraethernet.org/, 2024.

[9] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng,
Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Al-
izadeh, and Minlan Yu. Hpcc: high precision congestion control. In
Proceedings of the ACM Special Interest Group on Data Commu-
nication, SIGCOMM ’19, page 44–58. Association for Computing
Machinery, New York, NY, USA, 2019.

[10] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Was-
sel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn,
Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vah-
dat. Swift: Delay is simple and effective for congestion control in
the datacenter. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communi-
cation, SIGCOMM ’20, page 514–528, New York, NY, USA, 2020.
Association for Computing Machinery.

[11] Yiran Zhang, Qingkai Meng, Chaolei Hu, and Fengyuan Ren. Re-
visiting congestion control for lossless ethernet. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI
24), pages 131–148, Santa Clara, CA, April 2024. USENIX Associa-
tion.

[12] Yiran Zhang, Yifan Liu, Qingkai Meng, and Fengyuan Ren. Conges-
tion detection in lossless networks. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page 370–383, New
York, NY, USA, 2021. Association for Computing Machinery.

[13] Vamsi Addanki, Oliver Michel, and Stefan Schmid. PowerTCP: Push-
ing the performance limits of datacenter networks. In 19th USENIX
symposium on networked systems design and implementation (NSDI
22), pages 51–70, 2022.

[14] Prateesh Goyal, Preey Shah, Naveen Kr Sharma, Mohammad Al-
izadeh, and Thomas E Anderson. Backpressure flow control. In
Proceedings of the 2019 Workshop on Buffer Sizing, pages 1–3, 2019.

[15] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. Homa: a receiver-driven low-latency transport protocol using
network priorities. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM
’18, page 221–235, New York, NY, USA, 2018. Association for Com-
puting Machinery.

[16] Vladimir Olteanu, Haggai Eran, Dragos Dumitrescu, Adrian Popa,
Cristi Baciu, Mark Silberstein, Georgios Nikolaidis, Mark Handley,
and Costin Raiciu. An edge-queued datagram service for all datacenter
traffic. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 761–777, 2022.

[17] Jiaqi Lou, Xinhao Kong, Jinghan Huang, Wei Bai, Nam Sung Kim, and
Danyang Zhuo. Harmonic: Hardware-assisted RDMA performance
isolation for public clouds. In 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24), Santa Clara, CA,
April 2024. USENIX Association.

[18] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf Chowdhury.
Justitia: Software Multi-Tenancy in hardware Kernel-Bypass net-
works. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 1307–1326, 2022.

[19] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu, Mahmoud Elhad-
dad, Shachar Raindel, Jitendra Padhye, Alvin R Lebeck, and Danyang
Zhuo. Understanding RDMA microarchitecture resources for perfor-
mance isolation. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 31–48, 2023.

[20] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng
Cheng, Jiansong Zhang, Enhong Chen, and Thomas Moscibroda.
Multi-Path transport for RDMA in datacenters. In 15th USENIX
symposium on networked systems design and implementation (NSDI
18), pages 357–371, 2018.

[21] Sugi Lee, Yusung Kim, Honguk Woo, and Ikjun Yeom. Efficient
user-level multi-path utilization in rdma networks. IEEE Access,
9:127619–127629, 2021.

[22] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. Revisit-
ing network support for rdma. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, SIG-
COMM ’18, page 313–326, New York, NY, USA, 2018. Association
for Computing Machinery.

[23] Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan, Jiacheng Xia,
Gaoxiong Zeng, Wei Bai, Junchen Jiang, Yong Wang, and Kai Chen.
Towards Domain-Specific network transport for distributed DNN train-
ing. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24), Santa Clara, CA, April 2024. USENIX
Association.

[24] Qiang Li, Yixiao Gao, Xiaoliang Wang, Haonan Qiu, Yanfang Le,
Derui Liu, Qiao Xiang, Fei Feng, Peng Zhang, Bo Li, et al. Flor:
An open high performance RDMA framework over heterogeneous
RNICs. In 17th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 23), pages 931–948, 2023.

[25] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F. Wenisch, Mon-
ica Wong-Chan, Sean Clark, Milo M. K. Martin, Moray McLaren,
Prashant Chandra, Rob Cauble, Hassan M. G. Wassel, Behnam Mon-
tazeri, Simon L. Sabato, Joel Scherpelz, and Amin Vahdat. 1rma:
Re-envisioning remote memory access for multi-tenant datacenters.
In Proceedings of the Annual Conference of the ACM Special Interest

https://github.com/opencomputeproject/OCP-NET-Falcon
https://github.com/opencomputeproject/OCP-NET-Falcon
https://ultraethernet.org/

Group on Data Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication, SIGCOMM
’20, page 708–721, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[26] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue
Li, Xinchen Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, et al.
SRNIC: A scalable architecture for RDMA NICs. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), pages 1–14, 2023.

[27] Zhiqiang He, Yuxin Chen, and Bei Hua. Roud: Scalable rdma over
ud in lossy data center networks. In 2023 IEEE/ACM 23rd Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CC-
Grid), pages 36–46. IEEE, 2023.

[28] Yanfang Le, Brent Stephens, Arjun Singhvi, Aditya Akella, and
Michael M Swift. Rogue: Rdma over generic unconverged ether-
net. In Proceedings of the ACM symposium on cloud computing,
pages 225–236, 2018.

[29] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, and Scott Shenker. Ethane: taking control of the enterprise.
In Proceedings of the 2007 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications,
SIGCOMM ’07, page 1–12, New York, NY, USA, 2007. Association
for Computing Machinery.

[30] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKe-
own, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vah-
dat, George Varghese, et al. P4: Programming protocol-independent
packet processors. ACM SIGCOMM Computer Communication Re-
view, 44(3):87–95, 2014.

[31] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim,
Mohammad Alizadeh, Hari Balakrishnan, George Varghese, Nick
McKeown, and Steve Licking. Packet transactions: High-level pro-
gramming for line-rate switches. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 15–28, New York, NY,
USA, 2016. Association for Computing Machinery.

[32] Naveen Kr Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan,
Changhoon Kim, Arvind Krishnamurthy, and Anirudh Sivaraman.
Programmable calendar queues for high-speed packet scheduling. In
17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 685–699, 2020.

[33] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn:
an intellectual history of programmable networks. ACM SIGCOMM
Computer Communication Review, 44(2):87–98, 2014.

[34] Everything You Should Know About White Box Switch. https:
//cloudswit.ch/blogs/what-is-white-box-switch/#what-i
s-white-box-switch, 2021.

[35] NVIDIA BLUEFIELD-3 DPU. https://www.nvidia.com/conte
nt/dam/en-zz/Solutions/Data-Center/documents/datashee
t-nvidia-bluefield-3-dpu.pdf, 2024.

[36] Broadcom Ethernet Network Adapters. https://www.broadcom
.com/products/ethernet-connectivity/network-adapters,
2024.

[37] AMD Pensando. https://www.amd.com/en/accelerators/pens
andoe, 2023.

[38] AWS Nitro System. https://aws.amazon.com/ec2/nitro/,
2023.

[39] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen, and Haibo
Chen. Characterizing off-path SmartNIC for accelerating distributed
systems. In 17th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 23), pages 987–1004, Boston, MA, July
2023. USENIX Association.

[40] Next-Generation Networking for the Next Wave of AI White Paper.
https://resources.nvidia.com/en-us-accelerated-netwo
rking-resource-library/next-generation-netw, 2024.

[41] Chris V Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong. On
designing improved controllers for aqm routers supporting tcp flows.
In Proceedings IEEE INFOCOM 2001. Conference on Computer
Communications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No. 01CH37213), vol-
ume 3, pages 1726–1734. IEEE, 2001.

[42] Steven H Low, Fernando Paganini, Jiantao Wang, Sachin Adlakha,
and John C Doyle. Dynamics of tcp/red and a scalable control. In
Proceedings. Twenty-First Annual Joint Conference of the IEEE Com-
puter and Communications Societies, volume 1, pages 239–248. IEEE,
2002.

[43] Laurent Massoulie. Stability of distributed congestion control with
heterogeneous feedback delays. IEEE Transactions on Automatic
Control, 47(6):895–902, 2002.

[44] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu,
Gautam Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David
Wetherall, and Abdul Kabbani. Plb: congestion signals are simple
and effective for network load balancing. In Proceedings of the ACM
SIGCOMM 2022 Conference, SIGCOMM ’22, page 207–218, New
York, NY, USA, 2022. Association for Computing Machinery.

[45] Torsten Hoefler, Duncan Roweth, Keith Underwood, Bob Alver-
son, Mark Griswold, Vahid Tabatabaee, Mohan Kalkunte, Surendra
Anubolu, Siyuan Shen, Abdul Kabbani, et al. Datacenter ethernet and
rdma: Issues at hyperscale. arXiv preprint arXiv:2302.03337, 2023.

[46] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen,
Zhi Zhang, Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu
Jia, Sun He, Hongmin Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding
Zhou, Yiyao Sheng, Zhuo Jiang, Haohan Xu, Haoran Wei, Zhang
Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang Xiang, Zherui Liu,
Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. MegaScale:
Scaling large language model training to more than 10,000 GPUs. In
21st USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 24), pages 745–760, Santa Clara, CA, April 2024.
USENIX Association.

[47] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Has-
san Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David
Wetherall, and David Zats. Timely: Rtt-based congestion control for
the datacenter. In Proceedings of the 2015 ACM Conference on Spe-
cial Interest Group on Data Communication, SIGCOMM ’15, page
537–550, New York, NY, USA, 2015. Association for Computing
Machinery.

[48] Xinhao Kong, Yibo Zhu, Huaping Zhou, Zhuo Jiang, Jianxi Ye,
Chuanxiong Guo, and Danyang Zhuo. Collie: Finding performance
anomalies in RDMA subsystems. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22), pages
287–305, 2022.

[49] Teng Ma, Tao Ma, Zhuo Song, Jingxuan Li, Huaixin Chang, Kang
Chen, Hai Jiang, and Yongwei Wu. X-rdma: Effective rdma middle-
ware in large-scale production environments. In 2019 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), pages 1–12.
IEEE, 2019.

[50] NVIDIA Collective Communications Library (NCCL). https://de
veloper.nvidia.com/nccl, 2024.

[51] Jiao Zhang, Jiaming Shi, Xiaolong Zhong, Zirui Wan, Yu Tian, Tian
Pan, and Tao Huang. Receiver-driven rdma congestion control by
differentiating congestion types in datacenter networks. In 2021 IEEE
29th International Conference on Network Protocols (ICNP), pages
1–12. IEEE, 2021.

[52] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W. Moore, Gianni Antichi, and Marcin Wójcik. Re-
architecting datacenter networks and stacks for low latency and high
performance. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17, page 29–42,
New York, NY, USA, 2017. Association for Computing Machinery.

https://cloudswit.ch/blogs/what-is-white-box-switch/#what-is-white-box-switch
https://cloudswit.ch/blogs/what-is-white-box-switch/#what-is-white-box-switch
https://cloudswit.ch/blogs/what-is-white-box-switch/#what-is-white-box-switch
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
 https://www.broadcom.com/products/ethernet-connectivity/network-adapters
 https://www.broadcom.com/products/ethernet-connectivity/network-adapters
https://www.amd.com/en/accelerators/pensandoe
https://www.amd.com/en/accelerators/pensandoe
https://aws.amazon.com/ec2/nitro/
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/next-generation-netw
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/next-generation-netw
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl

[53] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal,
Sylvia Ratnasamy, and Scott Shenker. phost: distributed near-optimal
datacenter transport over commodity network fabric. In Proceedings
of the 11th ACM Conference on Emerging Networking Experiments
and Technologies, CoNEXT ’15, New York, NY, USA, 2015. Associ-
ation for Computing Machinery.

[54] NVIDIA Spectrum-X Ethernet switch. https://www.nvidia.com
/en-us/networking/spectrumx/, 2024.

[55] Broadcom Tomahawk Ethernet Switches. https://www.broadcom
.com/products/ethernet-connectivity/switchin, 2024.

[56] Yunkun Liao, Jingya Wu, Wenyan Lu, Xiaowei Li, and Guihai Yan.
Optimize the tx architecture of rdma nic for performance isolation in
the cloud environment. In Proceedings of the Great Lakes Symposium
on VLSI 2023, pages 29–35, 2023.

[57] Xizheng Wang, Guo Chen, Xijin Yin, Huichen Dai, Bojie Li, Binzhang
Fu, and Kun Tan. Star: Breaking the scalability limit for rdma. In 2021
IEEE 29th International Conference on Network Protocols (ICNP),
pages 1–11. IEEE, 2021.

[58] Xizheng Wang, Shuai Wang, and Dan Li. srdma: A general and low-
overhead scheduler for rdma. In Proceedings of the 7th Asia-Pacific
Workshop on Networking, pages 21–27, 2023.

[59] Soft-RoCE. https://enterprise-support.nvidia.com/s/ar
ticle/howto-configure-soft-roce, 2024.

[60] NVIDIA DPA Subsystem Programming Guide . https://docs.nvi
dia.com/doca/sdk/doca+dpa/index.html, 2024.

[61] Idan Burstein. Nvidia data center processing unit (dpu) architecture.
In 2021 IEEE Hot Chips 33 Symposium (HCS), pages 1–20. IEEE,
2021.

[62] Intel Infrastructure Processing Unit. https://www.intel.com/co
ntent/www/us/en/products/details/network-io/ipu/e200
0-asic.html, 2023.

[63] Xuzheng Chen, Jie Zhang, Ting Fu, Yifan Shen, Shu Ma, Kun Qian,
Lingjun Zhu, Chao Shi, Ming Liu, and Zeke Wang. Demystify-
ing datapath accelerator enhanced off-path smartnic. arXiv preprint
arXiv:2402.03041, 2024.

[64] Benjamin Michalowicz, Kaushik Kandadi Suresh, Hari Subramoni,
Dhabaleswar Panda, and Steve Poole. Dpu-bench: A micro-
benchmark suite to measure offload efficiency of smartnics. In Prac-
tice and Experience in Advanced Research Computing, pages 94–101,
2023.

[65] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon
Peter, and Karan Gupta. Offloading distributed applications onto
smartnics using ipipe. In Proceedings of the ACM Special Inter-
est Group on Data Communication, SIGCOMM ’19, page 318–333.
Association for Computing Machinery, New York, NY, USA, 2019.

[66] Henry N Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind
Krishnamurthy. Xenic: Smartnic-accelerated distributed transactions.
In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 740–755, 2021.

[67] Matrix Multiplication. https://docs.nvidia.com/deeplearni
ng/performance/dl-performance-matrix-multiplication/
index.html, 2024.

[68] NVIDIA DOCA Programmable Congestion Control (PCC) API. ht
tps://docs.nvidia.com/doca/sdk/doca+pcc/index.html,
2024.

[69] Larry W McVoy, Carl Staelin, et al. Lmbench: Portable tools for
performance analysis. In USENIX annual technical conference, pages
279–294. San Diego, CA, USA, 1996.

[70] Zilong Wang, Xinchen Wan, Chaoliang Zeng, and Kai Chen. Accurate
and scalable rate limiter for rdma nics. In Proceedings of the 7th Asia-
Pacific Workshop on Networking, pages 15–20, 2023.

[71] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam,
Carlo Contavalli, and Amin Vahdat. Carousel: Scalable traffic shaping
at end hosts. In Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication, SIGCOMM ’17, page 404–417,
New York, NY, USA, 2017. Association for Computing Machinery.

[72] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar,
Abdul Kabbani, George Porter, and Amin Vahdat. SENIC: Scalable
NIC for End-Host rate limiting. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14), pages
475–488, 2014.

[73] Yiwen Zhang, Juncheng Gu, Youngmoon Lee, Mosharaf Chowdhury,
and Kang G Shin. Performance isolation anomalies in rdma. In
Proceedings of the Workshop on Kernel-Bypass Networks, pages 43–
48, 2017.

[74] Intel Performance Counter Monitor (Intel PCM). https://github
.com/intel/pcm, 2024.

[75] Daniele De Sensi, Tiziano De Matteis, Konstantin Taranov, Salvatore
Di Girolamo, Tobias Rahn, and Torsten Hoefler. Noise in the clouds:
Influence of network performance variability on application scalability.
Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 6(3):1–27, 2022.

[76] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan
Grossman. Coredet: A compiler and runtime system for deterministic
multithreaded execution. In Proceedings of the fifteenth International
Conference on Architectural support for programming languages and
operating systems, pages 53–64, 2010.

[77] Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Jun-
feng Yang. Efficient deterministic multithreading through schedule
relaxation. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, page 337–351, New York,
NY, USA, 2011. Association for Computing Machinery.

[78] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D Gribble. De-
terministic process groups in dOS. In 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 10), 2010.

[79] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[80] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier.
Hyperloglog: the analysis of a near-optimal cardinality estimation
algorithm. Discrete mathematics & theoretical computer science,
2007.

[81] Graham Cormode and Shan Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal of Algo-
rithms, 55(1):58–75, 2005.

[82] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu,
Richard Alimi, Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu
Liang, Kirill Mendelev, et al. B4 and after: managing hierarchy,
partitioning, and asymmetry for availability and scale in google’s
software-defined wan. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, pages 74–87,
2018.

[83] Pooria Namyar, Behnaz Arzani, Srikanth Kandula, Santiago Segarra,
Daniel Crankshaw, Umesh Krishnaswamy, Ramesh Govindan, and
Himanshu Raj. Solving Max-Min fair resource allocations quickly
on large graphs. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24), Santa Clara, CA, April 2024.
USENIX Association.

[84] Linux-rdma perftest . https://github.com/linux-rdma/perfte
st, 2024.

[85] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. A
quantitative measure of fairness and discrimination. Eastern Research
Laboratory, Digital Equipment Corporation, Hudson, MA, 21:1, 1984.

https://www.nvidia.com/en-us/networking/spectrumx/
https://www.nvidia.com/en-us/networking/spectrumx/
https://www.broadcom.com/products/ethernet-connectivity/switchin
https://www.broadcom.com/products/ethernet-connectivity/switchin
https://enterprise-support.nvidia.com/s/article/howto-configure-soft-roce
https://enterprise-support.nvidia.com/s/article/howto-configure-soft-roce
https://docs.nvidia.com/doca/sdk/doca+dpa/index.html
https://docs.nvidia.com/doca/sdk/doca+dpa/index.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/doca/sdk/doca+pcc/index.html
https://docs.nvidia.com/doca/sdk/doca+pcc/index.html
https://github.com/intel/pcm
https://github.com/intel/pcm
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest

[86] Zilong Wang, Xinchen Wan, Luyang Li, Yijun Sun, Peng Xie, Xin
Wei, Qingsong Ning, Junxue Zhang, and Kai Chen. Fast, scalable,
and accurate rate limiter for rdma nics. In Proceedings of the ACM
SIGCOMM 2024 Conference, ACM SIGCOMM ’24, page 568–580,
New York, NY, USA, 2024. Association for Computing Machinery.

[87] Vishal Shrivastav. Fast, scalable, and programmable packet scheduler
in hardware. In Proceedings of the ACM special interest group on
data communication, pages 367–379, 2019.

[88] Network Performance Anomaly detection with In-band Flow Analyzer
(IFA). https://www.broadcom.com/blog/network-performan
ce-anomaly-detection-with-in-band-flow-analyzer, 2024.

[89] Jai Kumar, Surendra Anubolu, John Lemon, Rajeev Manur, Hugh
Holbrook, Anoop Ghanwani, Dezhong Cai, Heidi Ou, Yizhou Li, and
Xiaojun Wang. Inband Flow Analyzer. Internet-Draft draft-kumar-
ippm-ifa-08, Internet Engineering Task Force, April 2024. Work in
Progress.

[90] Mikhail Khalilov, Salvatore Di Girolamo, Marcin Chrapek, Rami
Nudelman, Gil Bloch, and Torsten Hoefler. Network-offloaded
bandwidth-optimal broadcast and allgather for distributed ai, 2024.

[91] What Is a SuperNIC? https://blogs.nvidia.com/blog/what-i
s-a-supernic/, 2024.

[92] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al.
Pingmesh: A large-scale system for data center network latency mea-
surement and analysis. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, pages 139–152,
2015.

[93] Shuai Wang, Kaihui Gao, Kun Qian, Dan Li, Rui Miao, Bo Li,
Yu Zhou, Ennan Zhai, Chen Sun, Jiaqi Gao, Dai Zhang, Binzhang
Fu, Frank Kelly, Dennis Cai, Hongqiang Harry Liu, and Ming Zhang.
Predictable vfabric on informative data plane. In Proceedings of the
ACM SIGCOMM 2022 Conference, SIGCOMM ’22, page 615–632,
New York, NY, USA, 2022. Association for Computing Machinery.

[94] NVIDIA ConnectX NICs. https://www.nvidia.com/en-us/ne
tworking/ethernet-adapters/, 2024.

[95] Intel Ethernet Network Adapters. https://www.intel.com/cont
ent/www/us/en/support/articles/000031905/ethernet-pro
ducts/700-series-controllers-up-to-40gbe.html, 2024.

[96] Serhat Arslan, Yuliang Li, Gautam Kumar, and Nandita Dukkipati.
Bolt: Sub-RTT congestion control for Ultra-Low latency. In 20th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 23), pages 219–236, 2023.

[97] RDMA Core Userspace Libraries and Daemons. https://www.ma
nkier.com/3/mlx5dv_modify_qp_udp_sport, 2024.

[98] Saksham Agarwal, Arvind Krishnamurthy, and Rachit Agarwal. Host
congestion control. In Proceedings of the ACM SIGCOMM 2023
Conference, ACM SIGCOMM ’23, page 275–287, New York, NY,
USA, 2023. Association for Computing Machinery.

[99] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li,
Shuguang Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, Rong
Liu, Chao Shi, Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai,
and Hongqiang Harry Liu. From luna to solar: the evolutions of the
compute-to-storage networks in alibaba cloud. In Proceedings of the
ACM SIGCOMM 2022 Conference, SIGCOMM ’22, page 753–766,
New York, NY, USA, 2022. Association for Computing Machinery.

[100] Building Meta’s GenAI Infrastructure. https://engineering.fb
.com/2024/03/12/data-center-engineering/building-met
as-genai-infrastructure/, 2024.

[101] https://spdk.io/. https://spdk.io/, 2024.

[102] RDMA Core Userspace Libraries and Daemons. https://develo
per.nvidia.com/nccl, 2024.

[103] NVIDIA DOCA FlexIO SDK Programming Guide. https://docs
.nvidia.com/doca/archive/doca-v1.5.0/flexio-sdk-progr
amming-guide/index.html, 2024.

[104] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal,
Srinivas Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari
Balakrishnan. Restructuring endpoint congestion control. In Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, page 30–43, New York, NY,
USA, 2018. Association for Computing Machinery.

[105] Srinivas Narayana. Making decisions at data plane speeds. SIGMET-
RICS Perform. Eval. Rev., 51(2):88–90, oct 2023.

[106] Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Srinivas
Narayana, Mohammad Alizadeh, and Hari Balakrishnan. Elastic-
ity detection: a building block for internet congestion control. In
Proceedings of the ACM SIGCOMM 2022 Conference, SIGCOMM
’22, page 158–176, New York, NY, USA, 2022. Association for Com-
puting Machinery.

[107] Mellanox Neo-Host. https://support.mellanox.com/s/login
/?ec=302&startURL=%2Fs%2Fproductdetails%2Fa2v5000000
0N2OlAAK%2Fmellanox-neohost, 2024.

[108] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius,
Xi Wang, and Amin Vahdat. Snap: a microkernel approach to host
networking. In Proceedings of the 27th ACM Symposium on Oper-
ating Systems Principles, SOSP ’19, page 399–413, New York, NY,
USA, 2019. Association for Computing Machinery.

[109] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang,
Wenwen Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, et al. When
cloud storage meets RDMA. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21), pages 519–
533, 2021.

[110] Athinagoras Skiadopoulos, Zhiqiang Xie, Mark Zhao, Qizhe Cai,
Saksham Agarwal, Jacob Adelmann, David Ahern, Carlo Contavalli,
Michael Goldflam, Vitaly Mayatskikh, Raghu Raja, Daniel Walton,
Rachit Agarwal, Shrijeet Mukherjee, and Christos Kozyrakis. High-
throughput and flexible host networking via control and data path
physical separation. In 18th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 24), 2024.

[111] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella.
CASSINI: Network-Aware job scheduling in machine learning clus-
ters. In 21st USENIX Symposium on Networked Systems Design and
Implementation (NSDI 24), Santa Clara, CA, April 2024. USENIX
Association.

[112] Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Kumar, and Aditya
Akella. Congestion control in machine learning clusters. In Proceed-
ings of the 21st ACM Workshop on Hot Topics in Networks, pages
235–242, 2022.

[113] Cha Hwan Song, Xin Zhe Khooi, Raj Joshi, Inho Choi, Jialin Li,
and Mun Choon Chan. Network load balancing with in-network
reordering support for rdma. In Proceedings of the ACM SIGCOMM
2023 Conference, ACM SIGCOMM ’23, page 816–831, New York,
NY, USA, 2023. Association for Computing Machinery.

[114] Kefei Liu, Zhuo Jiang, Jiao Zhang, Haoran Wei, Xiaolong Zhong,
Lizhuang Tan, Tian Pan, and Tao Huang. Hostping: Diagnosing
intra-host network bottlenecks in RDMA servers. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), pages 15–29, Boston, MA, April 2023. USENIX Association.

[115] Yuzhen Su, Jiao Zhang, Zirui Wan, Pingping Lin, Yunpeng Zhang,
Tian Pan, and Tao Huang. Hermes: An efficient building block for
rdma incast in datacenters. In 2023 9th International Conference
on Computer and Communications (ICCC), pages 2306–2311. IEEE,
2023.

https://www.broadcom.com/blog/network-performance-anomaly-detection-with-in-band-flow-analyzer
https://www.broadcom.com/blog/network-performance-anomaly-detection-with-in-band-flow-analyzer
https://blogs.nvidia.com/blog/what-is-a-supernic/
https://blogs.nvidia.com/blog/what-is-a-supernic/
 https://www.nvidia.com/en-us/networking/ethernet-adapters/
 https://www.nvidia.com/en-us/networking/ethernet-adapters/
 https://www.intel.com/content/www/us/en/support/articles/000031905/ethernet-products/700-series-controllers-up-to-40gbe.html
 https://www.intel.com/content/www/us/en/support/articles/000031905/ethernet-products/700-series-controllers-up-to-40gbe.html
 https://www.intel.com/content/www/us/en/support/articles/000031905/ethernet-products/700-series-controllers-up-to-40gbe.html
https://www.mankier.com/3/mlx5dv_modify_qp_udp_sport
https://www.mankier.com/3/mlx5dv_modify_qp_udp_sport
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://spdk.io/
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://docs.nvidia.com/doca/archive/doca-v1.5.0/flexio-sdk-programming-guide/index.html
https://docs.nvidia.com/doca/archive/doca-v1.5.0/flexio-sdk-programming-guide/index.html
https://docs.nvidia.com/doca/archive/doca-v1.5.0/flexio-sdk-programming-guide/index.html
https://support.mellanox.com/s/login/?ec=302&startURL=%2Fs%2Fproductdetails%2Fa2v50000000N2OlAAK%2Fmellanox-neohost
https://support.mellanox.com/s/login/?ec=302&startURL=%2Fs%2Fproductdetails%2Fa2v50000000N2OlAAK%2Fmellanox-neohost
https://support.mellanox.com/s/login/?ec=302&startURL=%2Fs%2Fproductdetails%2Fa2v50000000N2OlAAK%2Fmellanox-neohost

[116] Jung-Hwan Cha, Shinhyeok Kang, Yewon Kang, Hansaem Seo,
Jungeun Lee, Jongsung Kim, and Minsung Jang. Corn: Cloud-
optimized rdma networking. In 2023 IEEE International Performance,
Computing, and Communications Conference (IPCCC), pages 52–59,
2023.

[117] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer
Rexford, David Walker, and David Wentzlaff. Enabling programmable
transport protocols in High-SpeedNICs. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), pages
93–109, 2020.

[118] Wenxue Cheng, Kun Qian, Wanchun Jiang, Tong Zhang, and
Fengyuan Ren. Re-architecting congestion management in lossless
ethernet. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 19–36, 2020.

[119] Haonan Qiu, Xiaoliang Wang, Tianchen Jin, Zhuzhong Qian, Baoliu
Ye, Bin Tang, Wenzhong Li, and Sanglu Lu. Toward effective and
fair rdma resource sharing. In Proceedings of the 2nd Asia-Pacific
Workshop on Networking, pages 8–14, 2018.

[120] Dian Shen, Junzhou Luo, Fang Dong, Xiaolin Guo, Kai Wang, and
John CS Lui. Distributed and optimal rdma resource scheduling
in shared data center networks. In IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, pages 606–615. IEEE,
2020.

[121] Yanfang Le, Mojtaba Malekpourshahraki, Brent Stephens, Aditya
Akella, and Michael M Swift. On the impact of cluster configuration
on roce application design. In Proceedings of the 3rd Asia-Pacific
Workshop on Networking, pages 64–70, 2019.

[122] Huichen Dai, Binzhang Fu, and Kun Tan. PFC-Free Low Delay
Control Protocol. Internet-draft, Internet Engineering Task Force, July
2020.

[123] Benjamin Fuhrer, Yuval Shpigelman, Chen Tessler, Shie Mannor,
Gal Chechik, Eitan Zahavi, and Gal Dalal. Implementing reinforce-
ment learning datacenter congestion control in nvidia nics. In 2023
IEEE/ACM 23rd International Symposium on Cluster, Cloud and In-
ternet Computing (CCGrid), pages 331–343. IEEE, 2023.

A Appendix
A.1 Limitations of CPU/DPU-ARM in Meeting Control

System Requirements

R1 Multi-threading Performance: For CPU and DPU ARM,
while the host CPU has many cores, these cores should primar-
ily be allocated to tenants for revenue-generating workloads.
In contrast, the ARM CPU possesses only 16 cores without
hyper-threading, partially satisfying the R1 requirement.

R2 Interaction with RNIC: For CPU and DPU ARM,
several issues arise. Firstly, they currently lack APIs to ac-
quire packet-granular signals, particularly in-band per-packet
signals like ACK/CNP. Also, as far as we know, these cores
lack APIs to enforce control actions, such as changing the
per-flow rate during runtime. While the lack of APIs can be
addressed in the short term, another long-term concern re-
mains. As Figure 1a shows, DPA is co-packaged with the
RNIC, with Network-on-Chip direct access to RNIC TX/RX
pipes, resulting in lower access latency. However, host CPUs
or ARM cores must cross the host PCIe or on-SoC PCIe to
interact with RNICs. Furthermore, the host CPU and ARM
cores access RNIC signals with the Performance Monitor-
ing Unit (PMU) counters, which work in a sampling manner
instead of timely monitoring.

R3 Raw Ethernet Capability: CPU and DPU ARM satisfy
the requirements of the general network, including the in-
kernel TCP/IP stack and RDMA transport. However, DPA is
more tightly integrated with RNIC than CPU and ARM cores.

R4 Memory Access Latency: Note that it is trivial for
the host CPU to monitor host-domain resource usage and
record it with host memory, but this is not the case for the
ARM CPU. Although the ARM CPU can access host memory
using RDMA (µs scale), this incurs longer latency than the
load/store accessing capabilities of the DPA (sub-µs scale).

A.2 Evaluation of Dequeue Rate’s Impact Across Multi-
ple Domains

20 40 80
Dequeue Rate (Gbps)

0

25

50

75

100

Sn
d/

R
cv

 R
at

e
(G

bp
s)

(a) Send/Receive BW

20 40 80
Dequeue Rate (Gbps)

0.0

0.5

1.0

PC
Ie

R
d

Pe
r

Se
co

nd

1e8

(b) PCIe Utilization

20 40 80
Dequeue Rate (Gbps)

0

25

50

75

100

R
N

IC
 U

ti
l.

(G
bp

s)

(c) RNIC Processing

Figure 14: Dequeue Rate’s Impact on RDMA Transport.

In Figure 14, we explore the impact of dequeue rate on
various domains: Fabric, Host, and Peer. Figure 14a illustrates
how varying dequeue rates can regulate traffic sent into the
fabric and received by peers. In Figure 14b, we monitor PCIe
utilization using Intel PCM [74] tools across different dequeue
rates. To understand how the dequeue rate influences RNIC

hardware utilization, we track DMA jobs initiated by the
RNIC to fetch messages from host memory. Specifically, we
use Intel PCM to monitor the IIO (Integrated Input/Output)
controller for In-Bound read activity, representing the number
of bytes requested by RNIC for reading from main memory
via DMA. Figure 14c demonstrates the effect of the dequeue
rate on RNIC DMA job execution.

A.3 Micro Benchmark of Coalescing TX Events

102 103 104 105 106

Message Size (B)

102

103

104

105

Se
nt

 B
yt

es
 P

er
 E

ve
nt

Tx Depth=1
Tx Depth=4
Tx Depth=16

(a) Batching Triggers Coalescing

1us 5us 10us 50us
Processing Time Per Event (us)

0

5000

10000

15000

Se
nt

 B
yt

es
 P

er
 E

ve
nt Tx Depth=1, Msg=1024B

(b) Slow-Proc. Triggers Coalescing

Figure 15: Coalescing Experiments (TX Events Example).

In Figure 15, we conduct a micro-benchmark on the coa-
lescing of multiple TX events by accumulating the sent_bytes
indicated by each TX event into a single sum value. Fig-
ure 15a demonstrates that larger message sizes per WQE
and deeper SQ depths can trigger the coalescing of multi-
ple TX events. It’s worth noting the presence of a ceiling
for sent_bytes_per_event due to the PCIe-related configura-
tion on maximum batching size. Additionally, Figure 15b
illustrates how slower event processing can also induce TX
event coalescing. Overall, coalescing proves to be a promis-
ing mechanism for absorbing the high burstiness of packet-
granular events.

A.4 Traces of Water Filling Procedure

0.0 0.2 0.4
Timeline (s)

25

50

75

100

D
eq

ue
ue

 R
at

e
(G

bp
s)

(a) Step=0.02 GBps

0.0 0.2 0.4
Timeline (s)

25

50

75

100

D
eq

ue
ue

 R
at

e
(G

bp
s)

(b) Step=0.05 GBps

0.0 0.2 0.4
Timeline (s)

25

50

75

100

D
eq

ue
ue

 R
at

e
(G

bp
s)

(c) Step=0.1 GBps

Figure 16: Traces of Water Filling Procedure (#QPs=8).
Scale down to 0; Start from 0.

In Figure 16, we present time-series dequeue rates for eight
flows during the Water Filling procedure. The minimum mes-
sage QP utilizes 4KB, while subsequent QPs double this size
successively, resulting in different message sizes per QP. All
QPs have a queue depth of 4 and can saturate a 100 Gbps line
rate individually. We initiate the dequeue rate at 0.5 Gbps,
with step sizes varying from 0.03 Gbps, 0.05 Gbps to 0.1

Filling Step Size Convergence Time
0.02 GBps 294 µs
0.05 GBps 122 µs
0.10 GBps 49 µs

Table 5: Time Cost for All Flows to Converge to Stable
Rates.

Gbps. Flows are started one by one at 50 milliseconds in-
tervals. To clearly demonstrate the impact of step size, we
employ a strategy to handle flow dynamics: when a new flow
joins, we simply reset all allocations and restart the Water
Filling procedure. As indicated by the traces, smaller step
sizes aid in converging to fairer rate allocations but require
more time to achieve convergence. Table 5 shows the total
time required for all flows to converge to a stable state when
eight QPs begin filling concurrently. Note that to generate the
trace for Figure 16, we need to output logs, which introduces
some delay in the time series. For the measurements in Table
5, we disabled log printing to eliminate such delays.

A.5 Support RDMA READ Operation

4 8 16 32 64 128 256 512 1024
Number of QPs

0.00

0.25

0.50

0.75

1.00

Ja
in

's
 F

ai
rn

es
s

In
de

x

Default
Static (Min=1Gbps)
Static (NoBound)
WaterFill

(a) Fairness Index

4 8 16 32 64 128 256 512 1024
Number of QPs

0

25

50

75

100

B
an

dw
id

th
 (G

bp
s)

Default
Static (Min=1Gbps)
Static (NoBound)
WaterFill

(b) Bandwidth Utilization

Figure 17: Achieving Fairness Across Multiple Tenants
(RDMA READ).

In Figure 17, we demonstrate that SCR is applicable to var-
ious RDMA operations, including READ and WRITE. The
experimental setup is identical to that shown in Figure 12,
except that this experiment uses RDMA READ operations
instead of the RDMA WRITE operations used previously.
The results are similar: Static and Water-Filling allocations
enhance fairness while maintaining high utilization and scal-
ability, as analyzed in §6.2. SCR supports multiple RDMA
operations, differing primarily in whether the requester’s or
responder’s BF3 DPA takes effect. For WRITE operations,
the Fair QP scheduler takes effect at the requester’s BF3 DPA,
as the requester sends out data and collects TX signals. Con-
versely, for READ operations, the Fair QP scheduler takes
effect at the responder’s BF3 DPA, since the responder sends
out data and collects TX signals.

A.6 Fabric Domain: Congestion Control

In the fabric domain, we investigate congestion control (CC),
a classical and everlasting problem. Most RNIC vendors [36,
94,95] baked DCQCN into the ASIC. With the introduction of

SCR, there is a promising opportunity for commercial RNICs
to reap the benefits of other innovative CC [10,11,13,47,96].

Customized Policy: With ECN-based algorithms already
demonstrated by DCQCN, we now explore implementing
RTT-based CC using SCR. Delay-based CC is desired for
several large-scale RDMA deployments [5, 46].

Swift Control Laws: We investigate Swift, a typical delay-
based CC algorithm proposed by Google [10]. Swift’s core
logic is as follows: Additively increase the congestion win-
dow when RTT is less than the target delay; multiplicatively
decrease the congestion window when RTT exceeds the target
delay. With SCR, we examine RTT measurement and target
delay computation, two building blocks for Swift’s control.

Measuring RTT Delays: Swift control loops decompose the
end-to-end delay into three components: Fabric Delay, Local
NIC TX/RX Delay, and Remote NIC RX/TX Delay. Swift
measures fabric delay by utilizing ACK packets to convey
in-band timestamp information. As described in §4.3.1, SCR
supports out-of-band per-flow RTT measurements, offering
greater flexibility compared to in-band RTT measurements.
This method allows for control over the frequency of sending
RTT requests and eliminates the need to customize the ACK
packet format. Pingmesh [92] shows such proactive RTT mea-
surement is feasible in large-scale environments. For local
NIC TX/RX delay indicating local host congestion, Swift
originally utilizes timestamps from the local host and NIC to
calculate per-packet delays, necessitating precise time syn-
chronization between the NIC and host. Alternatively, SCR
utilizes the host-domain signal of PCIe latency to reflect host
congestion. For the remote NIC TX/RX delay, SCR utilizes
signals from the peer domain, such as peer PCIe latency, to
represent this delay.

Computing Target Delay: Swift encodes most of the com-
plexity into the computation of the target delay, enabling it
to scale to multiple competing flows and multiple-hop net-
work typologies. The target delay calculations require floating-
point and complex arithmetic operations like square root. To
enhance efficiency, SCR employs fixed-point and bitwise op-
erations. Given that Swift is a window-based algorithm and
the current BF3 RNIC employs a rate-based mechanism, we
utilize the Bandwidth-Delay Product (BDP) approach to trans-
late the per-flow rate into the per-flow window.

25 50 75 100
Dequeue Rate (Gbps)

0

2000

4000

6000

Ta
rg

et
 D

el
ay

 (n
s)

BaseTarget

MinRate MaxRate

M
ax

R
an

ge
+

#h

op
 x

 ħ

(a) Target Delay Curve

0 100000 200000
Timeseries (Unit is RTT)

0
20
40
60
80

100

D
eq

ue
ue

 R
at

e
(G

bp
s) Swift-Ctrl Traffic

Background Traffic

(b) Swift-Control Traffic

Figure 18: Statistics Dump for Swift Congestion Control.

Experiments of RTT-Based Congestion Control: As

shown in Figure 18, we dump out the runtime statistics to
verify the functionality of Swift. In Figure 18a, we present
a trace demonstrating how the dequeue rate affects the tar-
get delay. According to our testbed, we configured Swift’s
parameters as follows: base target as 1 µs, #hop as 1, per-hop
scaling factor as 2 µs, max scaling range as 2 µs, Min Rate
as 32 Gbps, and Max Rate as 96 Gbps. We observe that our
implementation accurately follows Swift’s control law and re-
produces the curve behavior as in the original design [10]. In
Figure 18b, we generate background traffic varying from 20
Gbps, 40 Gbps to 60 Gbps and monitor the Swift-Controlled
traffic. We can observe that SCR-enabled Swift can converge
to the appropriate bandwidth to avoid fabric congestion.

A.7 Fabric Domain: Multi-Path Routing Selection

We investigate the second case of the fabric domain, Multi-
Path Routing, which is advocated by several industrial-level
RDMA customizations such as Google PLB [44] in Falcon,
AWS SRD [5], and UEC Transport [8].

Customized Policy: We monitor multi-path status and re-
path according to congestion status and link failure at the
sender side. We revisit one prior policy, MP-RDMA [20],
which repurposes the Src Port field of the RoCEv2 transport
to indicate the Virtual Path ID, enabling switch ECMP to
execute multipathing accordingly. MP-RDMA relies on the
in-band ACK clocking to detect congestion status for each
Virtual Path. The end-host logic of MP-RDMA is prototyped
via FPGAs, not commercial RNICs. Next, we examine the
feasibility of multi-path routing using SCR.

Control Laws: SCR offers two key functionalities: Mul-
tipath Monitoring and Path Selection. To monitor the status
of multiple paths, we employ out-of-band telemetry to probe
status proactively. In SCR, the local collector pings the peer,
which responds with a pong, allowing the local collector to
obtain the RTT. By varying the header field of the request, we
can enforce RTT requests through different paths in the fabric.
For header field assignments, we adopt a random generation
approach, similar to the practice used in MP-RDMA [20] and
PLB [44]. After detecting the RTTs of multiple paths, we
select the path with the lowest latency. For path selection en-
forcement, we use the source port field of RoCEv2 to indicate
the path, as MP-RDMA advocates. Currently, it is feasible
to specify the source port field of RoCEv2 for each QP us-
ing APIs like mlx5dv_modify_qp_udp_sport() [97]. However,
this cannot be done at the granularity of individual packets.
Thus, we rely on the BF3 hardware flow engines within the
NIC-embedded switch to rewrite the packet header [60].

Experiments of Monitoring Multi-Path Status: As Fig-
ure 19 shows, we demonstrate two scenarios for monitoring
multi-path RTT. In Figure 19a, we present the measurements
that reveal the congestion status of network paths effectively.
We introduce 100 Gbps background cross-traffic between the
sender and receiver, observing an increase in RTT when cross-
traffic begins and a decrease when it ceases. In Figure 19b, we

0 20 40
Timeseries (s)

0

5

10

15

20
Pa

th
 R

TT
 (u

s) Cross-Traffic
 Start

W/ Cross-Traffic
No Cross-Traffic

(a) Path RTT with Cross-Traffic

0 5 10 15 20 25
Timeseries (s)

0

5

10

15

20

Pa
th

 R
TT

 (u
s) Link Down

UDP SrcPort=5101
UDP SrcPort=5102

(b) Multi-Path RTT

Figure 19: Latency Monitoring Across Multiple Paths.

present another scenario monitoring multiple path statuses by
varying the source port to control routing paths. By manually
adding a 10 µs latency for traffic with UDP SrcPort 5102,
we compare it with traffic on UDP SrcPort 5101, revealing
accurate latency representation for different paths. We also
simulate a link failure scenario for the path of UDP SrcPort
5102. We configured a timeout value (100 µs) to detect the
link failure, causing the loss of RTT probing packets. Figure
19b illustrates RTT probing’s ability to detect link failures
and recovery. This information aids in SCR selecting the opti-
mal path for RDMA traffic, even at the per-packet level, via
RoCEv2 header manipulation.

A.8 Peer Domain: Receiver-Driven Control Loop

In this domain, we investigate the receiver-driven control loop,
which is not present for legacy RDMA transport. RDMA op-
erations, especially one-sided READ/WRITE, are designed
to be sender-driven, allowing transfers to bypass the involve-
ment of the peer entirely. However, sender-side controls may
struggle to handle traffic patterns that cause congestion at the
receiver side, such as many-to-one incast. The receiver-driven
paradigm can help handle the incast [15, 16, 52, 53].

Customized Policy: We refer to one typical receiver-driven
protocol, Homa [15]. In Homa’s control loop, the sender is
only allowed to send bytes after receiving a grant from the
receiver, enabling efficient handling of incast scenarios by
allowing a few senders to transmit simultaneously. Next, we
leverage SCR to transfer such receiver-initiated signals to
benefit RDMA one-sided operations WRITE/READ.

Control Laws: SCR provides the peer-domain signals as
described in §4.3.1. Peer-domain signals, transmitted out-of-
band as packet payloads, offer flexibility for carrying infor-
mation, distinct from modifying in-band packet headers. The
in-band manner requires addressing size limitations and en-
suring packet routability across the fabric and middlebox. To
support Homa-like grant mechanisms, we utilize peer domain
signals to convey the grant information. Originally, Homa
utilized a window-based control mechanism where credits
indicated the allowable byte counts. Given that the current
BF3 supports only rate-based control, we have made two
modifications: First, we use credits to represent the available
bandwidth (in Gbps) for the sender. Second, the senders op-
erate optimistically, continuing to transmit at the current rate
unless new credits are received to adjust the traffic.

In addition to grant mechanisms, we also support a sec-
ond receiver-driven mechanism where the receiver issues
ECN-like backpressure notifications to the sender. Commod-
ity RNICs currently lack mechanisms to mark ECN bits at
the receiver NIC. This functionality is beneficial for related
work [17, 98] because receivers can mark the ECN bits to
backpressure the senders. While SCR doesn’t directly mark
ECN bits on in-band packets, we utilize out-of-band peer-
domain signal packets to convey ECN-like information to
backpressure senders.

0 20 40
Timeseries (s)

0
20
40
60
80

100

B
an

dw
id

th
 (G

bp
s) Background Traffic

Controlled Traffic

(a) Recv.-Granted Credit

0 10 20 30 40 50 60 70 80 90100
Timeseries (s)

0
20
40
60
80

100

B
an

dw
id

th
 (G

bp
s)

Background Traffic
Controlled Traffic

(b) 16-to-1 Incast

0 50 100
Timeseries (s)

0

25

50

75

100

B
an

dw
id

th
 (G

bp
s)

Receiver-Driven MD

AIMD

(c) Recv.-Init. ECN

Figure 20: Receiver-Driven Control Mechanisms.

Experiments of Receiver-Driven Control: In Figure
20a, we illustrate the mechanism of receiver-granting cred-
its to handle the 2-to-1 incast scenario. We use Perftest to
configure two clients (one BF2 and one BF3) sending data
to the same destination server (one BF3), with BF2-to-BF3
traffic acting as the background cross-traffic. The BF3-to-
BF3 connection demonstrates the receiver-granting credits
mechanism. Specifically, the receiver-side SCR monitors the
real-time bandwidth utilization of the given port and calcu-
lates the credit as the remaining bandwidth headroom. These
credits are then transferred to the sender as peer-domain sig-
nals, allowing the sender-side SCR to set the dequeue rate
accordingly. From Figure 20a, we observe that the sender ap-
propriately utilizes the remaining bandwidth. In Figure 20b,
we dynamically scale the number of background senders up
to 16, adding one sender every 5 seconds, with each sender
generating traffic at 5 Gbps, achieving an incast ratio of up
to 16-to-1. The figure shows that the BF3-to-BF3 connection,
equipped with the receiver-granting credits mechanism, effec-
tively captures the remaining bandwidth across all settings.

In Figure 20c, we demonstrate a scenario of receiver-
initiated ECN-like backpressure flow control. We utilize
Perftest [84] to establish a QP connection between the sender
and receiver, generating WRITE traffic at the line rate (100
Gbps). The receiver can trigger receiver-driven backpressure
signals while congestion is happening at its side. Upon receiv-
ing peer-domain signals, the sender multiplicatively decreases
(MD) the dequeue rate and then performs additive increases
(AI) without further backpressure signals. To ensure visibility,
we use a small AI factor to extend the AI process. As shown
in this experiment, while WRITE is inherently sender-driven,
it currently can benefit from the receiver-driven control loop.

A.9 Application Domain: ML and Storage

We highlight the feasibility of harnessing SCR framework
to NVMe-oF RDMA and GPU-Direct RDMA because stor-
age [1, 99] and machine learning workloads [46, 100] take
the significant portion of current data center traffic. They
can seamlessly leverage our framework with minimal over-
head, as SCR operates at the hardware transport level without
changing the host software stack. Specifically, it leaves essen-
tial data path functionalities like peer-to-peer DMA transfer
unchanged (i.e., GPU-to-NIC and SSD-to-NIC). Also, SCR
requires no alterations to the application code, host drivers
like CUDA, and libraries like SPDK [101] and NCCL [102].
Moreover, SCR ensures optimal raw RDMA performance.

Customized Policy: We ensure application-driven band-
width allocation for multi-tenant storage or ML workloads
without changing any application code. Specifically, multi-
ple NVMe-oF initiators on the same host share NVMe-oF
RDMA bandwidth according to the policy, regardless of their
individual IO depth settings. Similarly, multiple tenants on
the same GPU share GPU-Direct bandwidth according to
the policy, even though the size of messages sent from HBM
varies among them. The control law is the same as in §5.1,
but the policy in §5.1 manages traffic from main memory to
PCIe endpoint (EP); this policy controls EP-to-EP traffic.

0 10 20 30
Timeseries (s)

0

10

20

30

G
PU

-D
ir

ec
t

B
W

 (G
bp

s)

Enforce
Fairness

32KB
64KB

128KB
256KB

512KB

(a) GPU-Direct RDMA

Default Enforce Fairness
RNIC QP Scheduler

0

1

2

N
V

M
e-

oF
 IO

PS

1e6

QDepth=128
QDepth=16

(b) NVMe-oF RDMA

Figure 21: Ensuring Fairness in GPU-Direct and NVMe-
oF RDMA Traffic.

Experiments of Achieving Fairness for ML/Storage
Workloads: In Figure 21a, we demonstrate how SCR effec-
tively manages GPU-to-GPU RDMA communication. Using
Perftest, we set up five concurrent RDMA connections be-
tween two GPUs, utilizing GPUDirect RDMA to directly
transfer messages between HBMs without involving the host
DDR as an intermediary. Here, we demonstrate the impact of
an application-driven QP scheduler. Initially, with five con-
nections having different message sizes and using the default
scheduler, bandwidth allocation favors large message tenants.
When SCR is used to ensure even sharing, all tenants benefit
from an equitable share of the bandwidth. Importantly, no
modifications were made to any of the host software stack.

In Figure 21b, we showcase the efficacy of SCR for stor-
age workloads utilizing NVMe-oF RDMA. At the NVMe-
oF target side, we employ SPDK to configure one nvmf_tgt
with NULL devices, rather than read SSDs, to maximize net-

work traffic without encountering bottlenecks on the stor-
age medium. On the initiator side, we set up two tenants.
Both tenants issue 4KB write requests, while varying the IO
queue depth for different tenants. It is evident that with the
default QP scheduler, smaller IO depths struggle to obtain
the bandwidth. However, when we employ SCR to enforce
an application-specific policy of even sharing, these tenants
can equitably share the bandwidth without compromising uti-
lization. Importantly, no modifications were required for the
SPDK NVMe-oF implementation and the applications.

A.10 SDK Dependency and Implementation

We implement SCR over the DPA in over 7.8K lines of C/C++
code, covering both DPA and host management functionalities.
Fabric-domain signal collection and dequeue rate updates are
facilitated using the DOCA PCC SDK [68]. For host-domain
signal collection, we utilize the RPC and Command Queue
mechanisms in the DOCA DPA SDK [60]. Peer-domain sig-
nals are managed using the FlexIO SDK [103] for out-of-band
communications. Additionally, all analytic, approximation,
and arithmetic libraries are implemented in C code, compati-
ble with the DPA RISC-V toolchain.

We operate most SCR functionalities on the DPA, only
managing very lightweight tasks on the host x86 CPU and
none on the DPU ARM cores. By default, we set up 25 DPA
threads to handle signals from the fabric domain, including
TX, ACK, CNP, NACK, and RTT. One DPA thread establishes
communication with the host, and two manage telemetry tasks:
one for ping and another for pong. Additionally, two threads
exchange signals between peer domains—one for receiving
and another for sending. The host CPU is required only to
initialize the DPA process and relay the host domain signals
to the DPA, for which a single x86 CPU core is sufficient.

A.11 Guidelines for Implementing Other Functionalities

In addition to the aforementioned functionalities, SCR has
the potential to support various other customizations. Here,
we provide general implementation guidelines based on our
analysis and experience.

Timescale of Control Feedback Matters. While SCR can
produce per-packet signals at data plane speed, event process-
ing might lag behind such high data rates. We identify three
main components contributing to the overall latency of mak-
ing control decisions: 1) Event triggering, 2) The computation
procedure itself, and 3) The time it takes for control feedback
to take effect.

We conducted a microbenchmark to quantify the delay
breakdown, as shown in Figure 22. For in-band events like
TX/ACK events (Figure 22a), event triggering, from the hard-
ware TX/RX pipe generating the events to the DPA invoking
the thread to process, could take up to 7 µs. This latency is due
to event queuing, event multiplexer operation, and loading the
program onto the DPA thread. To accelerate event triggering,
we can keep the DPA thread busy waiting rather than relying

TX/RX-Pipe DPA

Events Generated

Rate Takes Effect

4 μs
Thread Invoked

Thread Sets Rate

7 μs

6 μs

(a) In-Band Events

Sender
DPA

Sender
NIC

Receiver
NIC

Set RTT_Req.

Send Out
RTT_Req. Receive

RTT_Req.

Send Out
RTT_Resp.Receive

RTT_Resp.
See RTT_Resp.

4 μs14 μs

(b) Out-of-Band RTT Events

Figure 22: Event Processing Latency Breakdown.

on interrupt-like triggering, which can hide the latency. The
second component of latency is the processing itself, which
is heavily influenced by the complexity of the control laws.
Here, we measure the Swift control law with some additional
bookkeeping tasks, like maintaining per-flow dequeue rate,
which takes about 4 µs. After making the decision for the new
rate, the DPA thread writes new values to hardware registers.
We measure how long it takes for the changes to take effect,
which may require up to 6 µs to start affecting the data planes.
This is longer than expected, and we anticipate that next-gen
DPA hardware can optimize this rate-installing procedure.
For out-of-band events like RTT (Figure 22b), besides the
fabric delay, there are two components: 1) The latency be-
tween the DPA setting the request bit and the RNIC actually
sending out the RTT request. 2) The delay between the RNIC
receiving the RTT response and invoking the DPA thread to
process. These two delays can take up to 10 µs, which can
be optimized by the DPA thread busy waiting for the RTT re-
sponse and vendors optimizing the delay between the request
set and the request sent out. Overall, we observe that event
processing could lag behind the data plane by a few microsec-
onds even after optimization. Control lagging behind data is
widely observed for high-speed line rates, not unique to our
setting but also in traditional in-kernel congestion control for
TCP/IP [104–106]. We propose two guidelines to address
the lagging issues: 1) Congestion control algorithms would
be better designed to work at the RTT granularity, as more
fine-grained control could lead to inaccuracies. 2) If algo-
rithms still aim for sub-RTT control, they should be designed
to tolerate signaling coalescing, that is, folding consecutive
signals into one event. This approach can help hide latency
by combining multiple processing steps into one. Control
laws should consider coalesced signals, similar to how Swift
considers coalesced ACKs.

Keep Simple yet Effective Control Law. We evaluate
simplicity from several aspects: 1) the computation of the
control logic, 2) the memory access for per-flow states, and
3) the types of required signals. As we measured above, the
latency for computing is positively proportional to the in-
struction counts of the control logic. Although SCR provides

general-purpose computation to implement diverse logic, we
still need to accelerate the control logic with approximation
techniques to ensure faster reactions. Besides the instruction
count, memory access is also expensive in terms of time cost.
Reducing the memory footprint, such as fitting into the L1
cache, can reduce the time overhead associated with memory
access. On the type of signals, we propose leveraging the
signals supported by SCR, such as in-band and out-of-band
signals. Although some complex signals like switch-aided in-
network telemetry can enhance precision, they come with the
cost of end-host processing cycles and switch customizations.

A.12 Suggestions for Next-Gen Datapath Accelerator

Based on our experience implementing SCR over DPA, we
suggest improvements for the next-gen hardware in the fol-
lowing areas:

• Decrease event-triggering and rate-installing latency: As
we described in the §A.11, the latency of event invocation and
rate update is crucial for the timely response of the control
loop. Next-gen DPA should optimize program loading time
and reduce latency for user-invoked DPA threads via RPC
mechanisms (e.g., Mailbox RPC [68]).
• Expand the set of signals/events accessible from the

RNIC. Diverse signals are essential to enable flexible con-
trol laws. For instance, at present, only in-band TX events
are accessible. Rx events indicating the timestamp and bytes
received would provide valuable additional signals. Currently,
the RX pipe does not provide the API for the DPA to access
INT fields. Also, expanding the set of NIC counters acces-
sible for DPA would be beneficial. Currently, only TX/RX
bytes counters are available. For instance, exposing utilization
counters for RNIC micro-architecture resources accessible to
DPA, as Neo-Host [107] enables, is promising.

• Expand the set of control actions. Currently, only the
rate and RTT requests are considered control actions. As pre-
viously mentioned, incorporating additional control actions
such as modifying the RoCEv2 header, like adjusting the
source port or setting the ECN bits, would be beneficial.

• Streamline and improve the flexibility of DPA process
management. The DOCA PCC process is currently the only
one capable of adjusting the rate. However, at present, it can-
not be easily extended to support other functionalities such as
accessing host memory or operating raw Ethernet APIs. As
a result, we must set up other DPA processes to access host
memory and operate raw Ethernet APIs, which introduces
some overhead in inter-process communication (IPC).

A.13 Extended Analysis for Prior Work

Table 6 is an extended list of related works, and we analyze
the feasibility of supporting these customizations using SCR.

Prior Work Why Cus-
tomization

Prior Cus-
tomization

Feasibility and Limitations using SCR

Microsoft: DCQCN [2]; Large-
Scale Deployment [3]; Storage [1]

CC / FC ASIC/ Tuning DCQCN and PFC are SCR default strategies.

AWS: SRD [5] CC / Re. / MP Bespoke HW SCR explores delay-based CC and multi-path routing similar to SRD.
Google: Falcon [4]; Swift [10]; PLB
[44]; Carousel [71]; SNAP [108]

CC / Re. / MP Bespoke HW SCR showcases the implementation of Swift.

Ultra Ethernet Consortium [8] CC / Re. / MP Bespoke HW Case studies of SCR follow design proposals by UEC.
Hyperscale Issues [45] CC / FC /

More
- SCR demonstrates some solutions for issues reported.

Alibaba: Solar [99]; Pangu [109] CC / Re. / MP Bespoke HW Solar utilizes UDP Src Port for multi-pathing and per-ACK CC requiring
several path conditions (e.g., RTT), which are supported by SCR.

ZeroNIC [110] Data/Ctrl FPGA SCR supports data/ctrl path separation for RDMA.
MLT [23] Re. Userspace SCR can monitor packet loss explored by MLT, but current BF3 has no APIs

for SCR to program reliability logic.
ACC [11] CC Simulation SCR supports per-ACK CC like ACC.
CASSINI [111, 112] CC Tuning SCR supports encoding hints from ML workloads to the CC logic.
MegaScale [46] CC ASIC MegaScale proposes ECN-RTT hybrid CC, which is supported by SCR.
Harmonic [17] Iso. / FC FPGA SCR can support rate limiter logic required by Harmonic.
Host CC [98] CC In-Kernel Host memory contention signal is one of SCR host-domain signals.
ConWeave [113] MP Switch SCR focuses on endhost, which is orthogonal to switch innovations.
Hostping [114] Iso. SW SCR applies the manner of Hostping to probe host PCIe utilization.
SRNIC [26] Scalability FPGA SRNIC focus on RNIC connection scalability, which is orthogonal to the SCR

scope.
Flor [24]; X-RDMA [49] CC / Re. Userspace Flor enforces the customization at the message level above the transport layer

while SCR directly customizes the transport. Flor enforces message-granular
control while SCR enforces packet-granular control.

Hermes [115] CC Switch SCR is compatible with Hermes mechanisms of incast control on switches.
CORN [116] CC Userspace CORN enforces CC logic above RoCEv2 in userspace while SCR directly

customizes RNIC CC.
Justitia [18] ISo. Userspace Justitia investigates the RDMA multi-tenancy issues. SCR enforces multi-

tenant isolation via customizing the QP scheduler. Justitia enforces message-
granular control while SCR enforces packet-granular control.

EQDS [16] CC / Re. / MP Tunneling SCR explores receiver-driven credit schemes similar to EQDS.
BFC [14] FC Switch SCR can benefit from switch-side fine-grained flow control.
TCD [12] CC Switch SCR can benefit from accurate congestion detection on the switch side.
Tonic [117] CC / Re. FPGA Tonic explores FPGA-based programmable CC. SCR is based on general-

purpose cores to re-program CC.
PCN [118] CC Simulation SCR provides ECN signals which are required by PCN.
1RMA [25] CC / Re. Bespoke HW 1RMA requires bespoke HW.
HPCC [9] CC FPGA Currently, BF3 does not provide INT signals for SCR. Alternatively, SCR

utilizes out-of-band packets to carry in-network information.
IRN [22] Re. FPGA Currently, retransmission logic is handled by the RNIC data path. NACK

signals are available for SCR.
MP-RDMA [20] MP FPGA SCR demonstrates multi-path selection at the sender side.
Tassel [70] CC FPGA SCR can benefit from a better rate limiter.
TX-Arch [56] Iso. FPGA TX-Arch investigates the RNIC multi-tenant contention. SCR enforces the

fairness of the QP scheduler.
RCC [51] CC Simulation SCR demonstrates receiver-driven control loop.
Avatar [119] CC Userspace SCR can enforce more fair CC without additional userspace processing.
Shen et al., [120] Iso. Userspace SCR enforces fairness for multi-tenant RDMA without additional userspace

processing.
UL-MPRDMA [21] MP Userspace SCR supports probing multi-path real-time conditions.
sRDMA [58] Re. Userspace SCR supports customizing the QP scheduler without additional userspace

overhead.
RoGUE [28] CC / Re. Userspace SCR supports customizing CC.
Le et al., [121] Iso. Tunning SCR supports tuning DCQCN.
LDCP [122] CC PCC PCC is submodule of SCR.
RL-CC [123] CC PCC PCC is submodule of SCR.
Restructuring CC [104, 105] CC In-Kernel SCR explores restructuring CC in the context of RDMA transport.
pHost [53]; NDP [52]; Homa [15] CC / FC In-Kernel SCR explores receiver-driven control loop.

(CC denotes Congestion Control. FC denotes Flow Control. Iso. denotes Isolation. Re. denotes Reliability. MP denotes Multi-Pathing.)

Table 6: Prior Innovations in RDMA Transport Customization and Analyzing Feasibility with the SCR Framework.

	Introduction
	Background and Motivation
	Why Customize RDMA
	How Prior Works Deliver Customization
	Our Goals

	Characterizing Commodity Hardware
	Requirements of Control System
	Existing Hardware Model
	Characterizing Datapath Accelerators and Others

	Software Control RDMA Framework Design
	Overview
	Dequeue Rate Control Model
	 Event-Driven Rate Computation Framework
	Event Collectors Subsystem
	Event Queues and Multiplexer Subsystem
	Event Processor Subsystem

	Spectrum of New Customizations
	Host Domain: Fair QP Scheduler
	[]More Case StudiesFeasibility of Other Mechanisms

	Evaluation
	Micro-Benchmarking SCR
	Achieving Fairness with the QP Scheduler
	Enhancing Tenants Isolation with the QP Scheduler
	Discussion

	Conclusion
	Appendix
	Limitations of CPU/DPU-ARM in Meeting Control System Requirements
	Evaluation of Dequeue Rate's Impact Across Multiple Domains
	Micro Benchmark of Coalescing TX Events
	Traces of Water Filling Procedure
	Support RDMA READ Operation
	Fabric Domain: Congestion Control
	Fabric Domain: Multi-Path Routing Selection
	Peer Domain: Receiver-Driven Control Loop
	Application Domain: ML and Storage
	SDK Dependency and Implementation
	Guidelines for Implementing Other Functionalities
	Suggestions for Next-Gen Datapath Accelerator
	Extended Analysis for Prior Work

