
A Generic Service to Provide In-Network Aggregation for
Key-Value Streams

Yongchao He
IIIS, Tsinghua University

Beijing, China

Wenfei Wu∗
Peking University
Beijing, China

Yanfang Le
Intel, Barefoot Switch Division

Santa Clara, CA, USA

Ming Liu
University of Wisconsin-Madison

Madison, WI, USA

ChonLam Lao
Harvard University
Cambridge, MA, USA

ABSTRACT
Key-value stream aggregation is a common operation in distributed
systems, which requires intensive computation and network re-
sources. We propose a generic in-network aggregation service for
key-value streams, ASK, to accelerate the aggregation operations in
diverse distributed applications. ASK is a switch-host co-designed
system, where the programmable switch provides a best-effort ag-
gregation service, and the host runs a daemon to interact with
applications. ASK makes in-depth optimization tailored to traffic
characteristics, hardware restrictions, and network unreliable na-
tures: it vectorizes multiple key-value tuples’ aggregation of one
packet in one switch pipeline pass, which improves the per-host’s
goodput; it develops a lightweight reliability mechanism for key-
value stream’s asynchronous aggregation, which guarantees com-
putation correctness; it designs a hot-key agnostic prioritization
for key-skewed workloads, which improves the switch memory
utilization. We prototype ASK and use it to support Spark and
BytePS. The evaluation shows that ASK could accelerate pure key-
value aggregation tasks by up to 155 times and big data jobs by 3-5
times, and be backward compatible with existing INA-empowered
distributed training solutions with the same speedup.

CCS CONCEPTS
• Networks→ In-network processing.

KEYWORDS
In-Network Aggregation, P4, Key-Value, Big Data.
ACM Reference Format:
Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao. 2023. A
Generic Service to Provide In-Network Aggregation for Key-Value Streams.
In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2 (ASP-
LOS ’23), March 25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3575693.3575708
∗Wenfei Wu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9916-6/23/03. . . $15.00
https://doi.org/10.1145/3575693.3575708

1 INTRODUCTION
Aggregating multiple key-value streams is an operation widely ex-
isting in various distributed systems, e.g., reduce() in Big Data [7, 29,
68],AllReduce() in Distributed Training [32, 47, 61, 67],MPI_Reduce()
in High-Performance Computing (HPC) [12, 46], SUM() in Data-
base [17, 48, 64], etc. The aggregation operation may require in-
tensive resources on computation, disk IO, and network [56, 69],
and could dominate numerous workloads’ overall performance. For
example, in distributed training, the gradient aggregation can take
up to 79% of the training time [61], and in the typical MapReduce
job, such as WordCount, the ReduceByKey() operation takes 94.67%
of the time [37]. In addition, Reduce-related collective functions
are the most significantly used and time-consuming operators in
hundreds of open-source HPC applications [46].

Among the many acceleration solutions for aggregation, a recent
communication and computation primitive — In-Network Aggre-
gation (INA) [47, 61] — has gained wide attention. It uses a pro-
grammable switch1 to aggregate multiple traversing streams into
one, which reduces the network traffic volume and consequently
accelerates the entire aggregation task. One class of INA solutions
has demonstrated the success in scenarios such as distributed train-
ing [47, 52, 61, 66, 67] and HPC [33]. In addition to these end-to-end
systems, another class of preliminary showcases [25, 60], as well as
our strawman solution (§2.2), demonstrates the switch’s capability
to perform key-value stream aggregation much faster than hosts.

However, distributed training-oriented INA solutions [32, 33,
47, 52, 61, 66] are not generally applicable to the key-value stream
aggregation scenarios (§2.1.1). By comparative analysis (§2.1), we
reveal that these solutions target a traffic pattern of value stream
aggregation (§2.1.2), which is a special case of key-value stream
aggregation. Value stream aggregation is synchronous aggregation,
whose design is simplified by its traffic pattern. In contrast, the
key-value aggregation has to be asynchronous aggregation (§2.1.3),
which fails all existing reliability mechanisms [32, 34, 38, 47, 49].
Alternatively, the class of key-value aggregation showcases [25, 60]
lacks system-wide considerations such as application interfacing,
correctness guarantee, and performance maximization, and can
hardly be practical to support numerous distributed applications.
With state of the art insofar, building an end-to-end system to provide
in-network key-value aggregation for distributed applications, as
well as advancing the end-to-end performance, have not received
attention.

1We use “switch” to denote programmable switch in the following text.

https://doi.org/10.1145/3575693.3575708
https://doi.org/10.1145/3575693.3575708

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

In this paper, we propose a solution named ASK to provide cor-
rect and performant Aggregation Service for Key-value streams in
distributed systems. ASK is a general-purpose aggregation service
decoupled from specific applications, allowingmultiple applications
(instances) to multiplex it. ASK co-designs the switch and hosts,
where the host runs a dedicated service to exchange key-value data
with applications through inter-process communication, and the
switch performs a best-effort aggregation service for traversing key-
value streams between hosts (§3.1). To maximize the performance
gain without compromising the correctness, ASK makes in-depth
customization and optimization, tailored to the switch hardware re-
strictions, traffic characteristics, and the network unreliable natures.
In details, ASK overcomes three challenges (§2.3).

First, the system needs to vectorize one packet’s multi-tuple
aggregation in one switch pipeline pass to promote the system
goodput. However, the switch programmability and memory ac-
cess mode provided by Protocol Independent Switch Architecture
(PISA) [23] restrict the vectorization. ASK co-designs the switch
memory layout and host packetization to achieve the vectoriza-
tion and support variable-length keys in real-world workloads
(§3.2). Second, the system needs a reliability mechanism specif-
ically for asynchronous aggregation; but none of existing solutions
could function correctly, and vectorized packet aggregation further
complicates the switch states and logic. ASK carefully crafts the
host sliding-window scheme and the switch deduplication logic to
achieve reliability and correctness and additionally improves the
system scalability by reusing persistent connections in the host ser-
vice (§3.3). Third, the switch has to address keys to switch memory
in runtime. Still, the practical key-distribution-skewed workload
could lead to low utilization of switch memory when cold keys first
reserve the switch memory. ASK devises a shadow copy mechanism
to fetch the intermediate results from the switch periodically and
reset the switch memory, allowing hot keys a second chance to
reserve the switch memory (§3.4).

We prototypeASK and integrate it with Spark [68] and BytePS [39,
58]. Experiments on microbenchmark show that ASK can (1) im-
prove key-value aggregation throughput by up to 155 times with
the same CPU usage, (2) saturate the high-speed network at a line
rate of near 100Gbps, and (3) scale the total aggregation throughput
linearly with the number of the servers, up to 92.61Gbps×8 for eight
servers. Consider computation and communication together, ASK
can perform key-value aggregation at a higher speed than host-only
systems, e.g., speeding up big data jobs by up to 4.56 times while re-
ducing the CPU usage by 88.7%, and achieve the same acceleration
as INA-based training systems [47, 61] in distributed training.

In summary, the contributions of this paper are as follows:

• We build a general-purpose end-to-end system ASK to pro-
vide in-network key-value aggregation as a service to diverse
distributed applications.
• We vectorize the multi-key packet aggregation under switch
hardware restrictions to improve the network goodput, which
greatly boosts the overall performance of applications.
• We build a lightweight reliability mechanism specifically for
asynchronous aggregation, which guarantees the correctness
of aggregation computation.

{c,2} {a,2} {b,1} {c, 1}
src 1

{b,3} {d,1} {a,3}

src 2

{c,3} {a,5} {b,4} {d,1}dst

1 4 5 2

src 1

6 4 1 3

src 2

7 8 6 5dst

(b) Value stream aggregation(a) Key-value stream aggregation

Figure 1: Example of Aggregation Patterns.

• We agnostically prioritize hot-key aggregation, which im-
proves the switch memory utilization for key distribution
skewed workloads.
• We prototype ASK and make an extensive evaluation to
show that ASK supports diverse distributed applications and
accelerates system performance significantly.

2 BACKGROUND AND MOTIVATION
Key-value stream aggregation is asynchronous. Programmable
switches have the potential to accelerate the process, but the end-
to-end system design still faces several challenges.

2.1 Aggregation Patterns
2.1.1 Key-Value Stream Aggregation. Formally, a key-value stream
𝑓 (𝑚) is denoted as a sequence of key-value tuples,

𝑓 (𝑚) =< (𝑘 (𝑚)1 , 𝑣
(𝑚)
1), (𝑘 (𝑚)2 , 𝑣

(𝑚)
2), · · · , (𝑘 (𝑚)

𝐾𝑚
, 𝑣
(𝑚)
𝐾𝑚
) >, (1)

where𝐾𝑚 denotes the number of key-value tuples in the𝑚𝑡ℎ stream.
In multiple key-value stream aggregation (1 ≤ 𝑚 ≤ 𝑀), a key 𝑘 ′’s
value in the final result is denoted as

𝑣
′
←

∑︁𝑀

𝑚=1

∑︁𝐾𝑚

𝑖=1
𝑣
(𝑚)
𝑖

𝐼 (𝑘 (𝑚)
𝑖

= 𝑘
′
), (2)

where 𝐼 (𝑘 (𝑚)
𝑖

= 𝑘
′) is the identity function returning 1 if two keys

are equal and 0 otherwise. Figure 1(a) illustrates this aggregation
pattern. Many workloads, e.g., MapReduce [30], in Big Data [62, 68]
and Streaming Processing [15, 24, 45] follow this pattern.

2.1.2 Value Stream Aggregation. The value stream aggregation is
actually vector aggregation and can be viewed as a special case
of the key-value aggregation. Each value stream is denoted as an
ordered sequence of 𝐾 values

𝑓 (𝑚) =< 𝑣 (𝑚)1 , 𝑣
(𝑚)
2 , · · · , 𝑣 (𝑚)

𝐾
>, (3)

where the value index can be viewed as the key. After aggregating
𝑀 value streams, the value at index 𝑖 is

𝑣𝑖 ←
∑︁𝑀

𝑚=1
𝑣
(𝑚)
𝑖

. (4)

Figure 1(b) illustrates the aggregation pattern, in which the 𝑑𝑠𝑡
generates a new value from multiple values by value’s index in
the stream. The gradient [35] tensor aggregation in the distributed
training systems [47, 50, 61] is an typical example of value stream
aggregation. And the collective operations, e.g., AllReduce(), Re-
duce(), in HPC [12, 31, 52] also take this aggregation pattern.

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Traffic
Manager

Stage 0

......

Stage 11 Stage 0 Stage 11

Ingress Pipeline Egress Pipeline
Parser Deparser

Pa
ck
et

Figure 2: Protocol Independent Switch Architecture (PISA).

2.1.3 Synchronous v.s. Asynchronous INA.. INA [28, 47, 61, 66] has
shown the promising performance gain due to the recent advances
in programmable switches [4, 22, 23]. To perform INA, the switch
memory is organized as a pool of aggregators, which is the computa-
tion and storage unit. When key-value streams traverse the switch,
the switch assigns each key-value tuple to an aggregator by the key
using an addressing scheme, e.g., runtime random hashing [47] or
static linear allocation [61]. The aggregator performs the aggrega-
tion and consumes the packets. Upon aggregation completion, the
switch writes the aggregation result to a packet and sends it to the
destination host.

In value stream aggregation, all streams’ keys (indices) are lin-
ear, contiguous, and aligned, and all senders are synchronized to
send streams at the same pace. Thus, for each key, all its appear-
ances (across streams) at the switch are synchronized. The switch
can immediately know the aggregation completion, send the re-
sult to downstream, and release and reuse the aggregator; large
streams can circularly use the limited aggregators. We refer to this
aggregation pattern as synchronous aggregation.

In key-value stream aggregation, keys are unordered and unfore-
seeable (especially for real-time data streaming [15, 24, 45]), and
there is no synchronization among senders. Keys have to be dynam-
ically addressed to aggregators in runtime, and the switch has no
idea about a key’s last appearance as well as the key’s aggregation
completion. Thus, the switch cannot immediately send the result
to downstream, and release and reuse the aggregator; the excessive
keys in large streams have to fall back to hosts for processing.We re-
fer to this aggregation pattern as asynchronous aggregation. Notably,
we can forcibly adapt value streams to asynchronous aggregation,
but cannot adapt key-value streams to synchronous aggregation.

2.2 Promise of In-Network Key-Value
Aggregation

2.2.1 Potentials and Constraints of Programmable Switches. Pro-
grammable switches [5, 8, 18, 65] follow a PISA [23] architecture
(Figure 2). Compared with the traditional switch, the programmable
switch has ingress/egress pipelines to achieve the programmability
on packets. One pipeline consists of a sequence of match-action
stages, and each stage has circuits to run switch programs and mem-
ory (SRAM) to store states. The switch programs are user-defined
ones written in domain-specific languages such as P4 [22], which
can match packets on header fields and perform actions (e.g., arith-
metics) on packets and the stage states. In existing INA solutions,
the switch program writes values in packets to the switch memory
and performs the aggregation operation.

Programmable switches can run various switch programs at line
ratewithout affecting network functions (e.g., forwarding), typically

much faster than the network I/O speed on hosts. For example, the
total processing capacity of Intel𝑅 Tofino3𝑇𝑀 ASIC [4] can be up
to 25.6𝑇𝑏𝑝𝑠 (400Gbps×64 ports).

Programmable switches also have several constraints. (1) A
pipeline has very limited memory resources (~15MB SRAM), which
brings huge challenges for processing large streams. (2) The pro-
gramming model is constrained: the memory on stages is isolated,
and the program cannot use it as a uniform address space; a packet
can only traverse all stages of a pipeline sequentially in the runtime,
called one pass; memory can be declared as register arrays2 in the
program, but each register array can only perform one read and
one write in one pass. The limited programmability further causes
challenges to write correct and performant switch programs.

2.2.2 Strawman Solution. We present a strawman solution demon-
strating the performance gain of offloading key-value stream aggre-
gation to the switch. Since there is no end-to-end system designed
yet, we make three assumptions to simplify the design of the straw-
man solution.

(1) Each packet carries one key-value tuple. In value streams,
one packet can carry multiple values because the first value’s
index (key) can denote multiple contiguous values’ indices.
But in key-value streams, neighboring tuples cannot be rep-
resented by one key. And a switch memory register array
cannot process multiple tuples. Also, the key size is set to 4
bytes in concert with the switch memory register size.

(2) The network is reliable, and no packet loss occurs in the
experiment. Because asynchronous aggregation is a new pat-
tern not supported by existing systems, its specific reliability
mechanism is missing.

(3) All keys could fit into the switch memory. If not, the system
needs an addressing scheme to assign keys to aggregators,
which is still missing for asynchronous aggregation.

We set up the vanilla Spark [14] and the strawman solution on a
single machine to run WordCount [29] and measure the aggrega-
tion throughput, respectively. In the strawman solution, the host
sends each key-value tuple individually in a packet to the switch,
the switch addresses each key to an aggregator and merges tu-
ples, and the host finally fetches the result back. Other experiment
settings (e.g., key size) are in §5.2. Figure 3(a) and 3(b) show that
the in-network key-value aggregation outperforms the on-host
aggregation. With the same number of CPU cores (16 cores), the
maximum gain is up to 5 times; INA achieves line rate of 100Gbps
with 16 cores, but the vanilla Spark achieves the peak throughput
with 56 ones; even with all cores involved, the strawman solution’s
peak throughput is 3.4 times of the vanilla Spark. This experiment
demonstrates the promising prospect of the in-network key-value
aggregation, i.e., freeing up valuable CPU resources for complex
computations while gaining higher performance.

2.3 Challenges
The strawman solution demonstrates the promise of in-network
key-value aggregation, but the assumptions are not practical for

2A register acts as an aggregator in ASK, we use register and aggregator interchangeably
in the following text.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

1 4 8 16 24 32 40 48 56
Number of cores

(a) Spark

0

5

10

15

A
K

V
/s

(×
10

7
)

1 2 4 8 16 32
Number of cores
(b) Strawman

0

5

10

15

A
K

V
/s

(×
10

7
)

1 2 4 8 16 32
Number of cores

(c) ASK

0

50

100

150

A
K

V
/s

(×
10

7
)

4Bytes 8Bytes 12Bytes 16Bytes

Figure 3: Aggregated key-value tuples per-second (AKV/s) on a single machine.

real-world tasks. Assumption (1) does not exploit the network band-
width, assumption (2) could be violated in unreliable networks, and
assumption (3) may not hold for real-world traces. We relax these
assumptions and overcome three challenges to build a correct and
performant end-to-end system ASK. By exploiting the hardware
potentials (mainly the multi-key packet vectorization below) and
taking advantage of the traffic characteristics in practical workload,
ASK eventually achieves a performance boosting up to 155 times
compared with Spark (Figure 3(c)).
Vectorizemulti-key packet aggregationwith restricted switch
memory access mode. A key-value tuple could be small in size,
and a single-key packet would limit the network goodput. For
streams whose packets only have one key-value tuple in the pay-
load, even if the throughput reaches the line rate of 100Gbps, the
goodput would only be 9.76Gbps3. To improve the goodput, a packet
must carry multiple key-value tuples, called amulti-key packet. The
multi-key packet further requires the switch to vectorizemultiple tu-
ples’ aggregation within the packet’s one pass in the switch pipeline.
However, in a switch program, the hardware restricts the register
(aggregator) array to be read and written only once in one packet’s
pass, contradicting the need for vectorization.

ASK co-designs the switch memory layout, i.e., two-dimensional
aggregator arrays, and the host packet construction, i.e., flow space
partition, to achieve efficient multi-key packet vectorization. In
addition, ASK also devises coalesced key placement for variable-
length keys in real-world workloads. (§3.2)
Devise a reliability mechanism specifically for asynchronous
aggregation in unreliable networks. Applications expect the
computation results to be correct, i.e., each key-value tuple ag-
gregated exactly once. However, packet retransmission, common
in data center [20, 21], could cause a packet to be falsely aggre-
gated more than once. For asynchronous aggregation specifically,
none of the existing reliability mechanisms (TCP and existing INA)
could function correctly. In synchronous aggregation, e.g., ATP [47],
SwitchML [61], etc. [32, 52], each aggregator spares a 1-bit state
to record the appearance of a packet for deduplication. In asyn-
chronous aggregation, however, this method cannot be applied,
because a key’s last appearance in key-value streams is unforesee-
able, causing the state unbounded. To complicate matters further, a

3A packet has a 24-byte framing overhead [9], 54-byte Ethernet/IP/INA header [47, 52,
61], and a 4-byte key and 4-byte value payload.

vectorized multi-key packet can diverge in all tuples’ aggregation,
i.e., some aggregated but some not, and these partially-aggregated
packets require more complicated data structure and deduplication
logic in the switch.

ASK designs a fine-grained state to record “per-tuple” appearance
and co-designs the host sliding-window scheme and the switch
reliability mechanism with deduplication. ASK also leverages the
persistent connections in the host service to bound the state in the
switch, avoiding state explosion. (§3.3)
Agnostically prioritize hot keys in asynchronous aggrega-
tion. In asynchronous aggregation, the switch addresses keys to
aggregators in a First-Come-First-Serve (FCFS) scheme in the run-
time. But the key distribution in a real-world workload could be
skewed; an early cold key (less frequent) in the stream could occupy
an aggregator for the entire lifetime of its aggregation task, wast-
ing the aggregator’s opportunity to serve hot keys (more frequent).
Keys are unforeseeable, without providing a chance to pre-allocate
aggregators for hot keys.

ASK devises a shadow copy mechanism to agnostically prioritize
hot keys. The receiver periodically swaps the copy for aggregation,
guiding traffic to the new copy, and fetching and resetting the old
copy. Even if cold keys could occasionally preempt an aggregator
in one period, hot keys still have the chance (and are more likely)
to reseize aggregators back in the periodical swapping. (§3.4)

3 DESIGN
We design ASK to provide a correct and performant key-value ag-
gregation service for the application. On hosts, ASK runs a daemon
to exchange key-value data with applications through inter-process
communication and prepare packets; on switches, ASK aggregates
key-value tuples by keys in a best-effort manner (§3.1). The host
daemon packs multiple key-value tuples into a packet with careful
key addressing and placement to vectorize multi-tuple aggrega-
tion (§3.2). A lightweight, reliable transmission mechanism can
ensure that ASK can always provide correct aggregation results
even under unreliable network conditions (§3.3). ASK also provides
a key agnostic prioritization mechanism to prevent the cold key
from occupying the aggregator for the lifetime of the task, thereby
improving the aggregator utilization (§3.4). The description below
uses one switch as an example, but all the designs can be applied
to multiple switches.

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

controller Data Plane (Aggregators)
Switch

1

2

5

3

6 6

8

Server Server

Server Server

5
7 78

9

Message
Queue

Shared
Memory

Control
Channel

Data
Channel

Legends:

ASK Daemon

4

10

12 11

App1 (sender 1) App1 (sender 2)

App1(receiver1) App1(receiver2)

C
C

D

D D D D C

C D D D D C

Figure 4: Overview of ASK. Receiver1 and Receiver2 start two
concurrent aggregation tasks.

3.1 Architecture and Workflow
As shown in Figure 4, upon service booting, the switch initializes a
set of aggregators in its data plane. Due to the need for vectorization
(§3.2), the aggregator pool in ASK is organized as two-dimensional
aggregator array (AA), i.e., an array of AAs. The first dimension
accesses an AA, and the second one accesses an aggregator. All
AAs are of the same size.

ASK also sets up a daemon process on each server to interact with
the applications. Each daemon would initialize a control channel
and several data channels for aggregation tasks. These channels
persistently run in the whole lifetime of the ASK service, and would
serve multiple aggregation tasks. The data channel is between the
host and the switch, and works in a duplex transmission mode: it
can send key-value streams and receive the aggregation results. The
workflow of executing an aggregation task is depicted in Figure 4,
comprised of the following steps.
Task Setup. Applications submit aggregation tasks to ASK dae-
mons. An aggregation task has multiple senders and one receiver
on end-hosts and is initiated from the receiver (if senders decide
to start a task, they notify the receiver, which would initialize the
task, similarly to the receiver initiating it).

The receiver submits an aggregation task to its local ASK daemon
with a task ID (1○). The receiver-side daemon first allocates a piece
of shared memory on the host for the task (the shared memory re-
duces memory footprint to copy data between the ASK daemon and
the application) (2○), and then applies for a switch memory region
(range on AAs) from the switch controller (3○). The receiver-side
daemon notifies all sender-side daemons about the aggregation task
by the control channel (4○), including the task ID, the switch mem-
ory region, and the application-related context. Each sender-side
daemon passes the notification to the corresponding application via
a local message queue (5○). The sender application allocates a piece

pkt 3 ACK

AA 0 AA 1

pkt 2

AA 0 AA 1

pkt 1 ACK

AA 0 AA 1

bitmap key-value tuples time

dst dst dst

AA 0 AA 1

dst

collision
fetch

a, 1 b, 11 1

b, 1

11 c, 1 f, 1

a, 1

1 1 c, 1 b, 1

a, 1
c, 1 b, 1 c, 2

a, 1
b, 2

10 f, 1

f, 1 f, 1 f, 1 a, 1 c, 2 b, 2

1

2

3 4
ACK

Figure 5: An aggregation example in ASK. ASK packet format
is a bitmap followed by a list of key-value tuples. 𝐴𝐴0 and
𝐴𝐴1 are two aggregator arrays. 𝑑𝑠𝑡 is ASK daemon running
on receiver host.

of the shared memory, writes the key-value data into the shared
memory (6○), and then notifies its local daemon that the sending
task is ready by a message of task ID and the shared memory region
(7○).

The sender-side daemon assigns each sending task to one of its
data channels with load balancing, i.e., hash(ID) to a data channel.
Each sending task is enqueued to a data channel, and a data channel
serves multiple sending tasks in FIFO. The senders’ and receiver’s
data channels would temporarily form an aggregation hierarchy.

The sender streams the packets to the receiver with the task
ID and the destination IP address in the packet (8○). The ASK
switch uses the task ID to identify the aggregator memory region
and the destination IP address to route packets to the aggregation
task receiver. It then extracts the key-value tuples from the packet
and aggregates each key-value tuple individually. For a key-value
tuple, if the aggregator is available, the switch aggregates it and
marks on the packet that it has been aggregated. If the switch
aggregates all the key-value tuples within a packet, the switch
replies an acknowledgment packet (ACK) to the sender; otherwise,
it forwards this packet to the receiver. Upon receiving a data packet,
the receiver-side data channel aggregates the remaining key-value
tuples in the packet to the ID associated shared memory (allocated
in the task beginning), and replies with an ACK.
Task Teardown. When a sender’s key-value data are sent and
acknowledged, the sender-side data channel sends a FIN packet
to the receiver-side data channel. Upon receiving the FINs of all
senders, the receiver-side data channel fetches the results from
the switch AA regions, merges them with its local results (9○),
and notifies the receiver application about the aggregation task
completion with the shared memory address (12○). The receiver
application reads the aggregated results from the shared memory
(11○). Finally, the receiver-side daemon notifies the switch controller
to deallocate the switchmemory region for other future aggregation
tasks to reuse 10○.
Example. Figure 5 shows an example of the aggregation procedure
where the switch and the receiver host receive three consecutive
packets. There are two AAs in the switch in the example. Each
packet has a two-bit bitmap and carries two key-value tuples, where

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

the 𝑖𝑡ℎ bit in the bitmap indicates whether the 𝑖𝑡ℎ key-value tuple in
the packet exists. 𝑝𝑘𝑡1, 𝑝𝑘𝑡2, and 𝑝𝑘𝑡3 carry two key-value tuples;
thus, the bits in each packet’s bitmap are set. ➊ The first packet
𝑝𝑘𝑡1’s two key-value tuples (with key 𝑎 and 𝑏) are mapped indepen-
dently in the two AAs. Note that the 𝑖𝑡ℎ tuple in a packet will be
dynamically hashed to an aggregator in the 𝑖𝑡ℎ AA in the switch. As
both aggregators are available to 𝑝𝑘𝑡1, all the tuples in the packet
are aggregated in the switch and the switch replies an ACK to the
sender. The ACK packet carries the same sequence number as 𝑝𝑘𝑡1.
➋ The second packet 𝑝𝑘𝑡2 is “partially aggregated”: its key-value
tuple (𝑐, 1) reserves a new aggregator, but (𝑓 , 1) collides with (𝑏, 1)
at the aggregator in 𝐴𝐴1. When the 𝑖𝑡ℎ tuple is consumed by the
switch, the switch unsets the 𝑖𝑡ℎ bit in bitmap at the packet header.
The packet, e.g., 𝑝𝑘𝑡2, is forwarded with the new bitmap to the
destination host. The receiver host uses the bitmap in the packet
to find the remaining tuple, e.g., (𝑓 , 1) in 𝑝𝑘𝑡2, and aggregates it at
the destination node. Finally, it replies with an ACK as the whole
packet gets consumed there. ➌ The third packet 𝑝𝑘𝑡3’s two key-
value tuples (with key 𝑐 and 𝑏) are absorbed by the two AAs and
replied ACK from the switch. Note that key 𝑏 appears twice (in 𝑝𝑘𝑡1
and 𝑝𝑘𝑡3), it always belongs to the second key subspace (§3.2.2),
and is encoded to the second tuple slot in packet payload and pro-
cessed by the second AA (𝐴𝐴1). ➍ Finally, the destination node
fetches aggregated results from the switch, merges them with its
local results, and clears the switch aggregators.

3.2 Multi-key Addressing and Placement
ASK co-designs the switch memory layout and the packet con-
struction to vectorize the multi-key packet aggregation, improve
aggregator utilization, and coalesce aggregators to support variable-
length keys. We carefully divide the logic across host and switch
to avoid the single-key multiple-spot and partial matching effects ,
and maximize the switch aggregator occupancy percentage.

3.2.1 VectorizeMulti-key Packet Aggregation. In the switch, a packet
would sequentially traverse the multiple stages of the packet pro-
cessing pipeline [23], each stage with isolated and scarce SRAM
(1280KB/stage × 16 stage/pipeline × 4 pipelines in Tofino3 [4]).
SRAM are declared as register arrays in the switch program. Due to
the hardware limitation, a register (aggregator) array can only be
read/written once (§2.2.1) in one packet pass, but each stage allows
4 register arrays to be declared. Thus, ASK declares multiple regis-
ter arrays to vectorize multi-tuple aggregation. The register arrays
form a two-dimensional aggregator array (AA). All AAs are of the
same size, with each AA processing one tuple in the packet. Figure 6
shows the AA allocation on the switch memory. The first dimension
accesses an AA, and the second one accesses an aggregator.

Each aggregator has a fixed size, denoted as 2𝑛 bits, e.g., 16/32/64bits.
When storing a key-value tuple {key, val}, ASK uses bits 0 to𝑛−1
(vPart) and bits 𝑛 to 2𝑛−1 (kPart) to store val and key, respectively.
If a key is less than 𝑛 bits, ASK pads it 𝑛 bits.

An ASK packet contains the ASK header after the IP header and
the ASK payload. The payload has multiple slots with the same
number as the AAs in the switch, and each slot can carry a key-value
tuple to an AA in the switch.

Switch Memory Layout

AA

stage 0
AA

AA

stage 1
AA

AA

stage M-2

AA

AA

stage M-1

AA
......

Hi

Ha

1

1
s 10key val

A
gg

re
ga

to
r

("Hi", 1) ("Ha", 1) ("your", 0) ("s", 1)

your......

Pkt

...

bitmap key-value tuples

(11...11...)2

Figure 6: Switch memory layout with the aggregators. (AAs
located in the same stage work in parallel.)

The overall aggregation process is similar to prior INAworks [47,
61] for tuples whose keys fit in 𝑛 bits. To support multi-key vector-
ization, ASK adds three functions. First, the host attaches an 𝑁 -bit
bitmap (the number of keys) to the packet header, where the 𝑖𝑡ℎ

(𝑖 = 0, · · · , 𝑁 − 1) bit indicates the existence of the 𝑖𝑡ℎ key-value
tuple in the payload. Second, when the switch performs the aggre-
gation for an incoming packet, it feeds the 𝑖𝑡ℎ key-value tuple to the
𝑖𝑡ℎ AA. The example in Figure 6 shows that the tuple ("Ha", 1),
which is placed in the second slot within the packet, is indexed to
the second AA. ASK calculates the aggregator index within the AA,
i.e., ℎ𝑎𝑠ℎ(𝑘𝑒𝑦), reads the corresponding aggregator’s kPart 𝑘𝑒𝑦

′
,

and compares it with the 𝑘𝑒𝑦. The switch performs aggregation
only if 𝑘𝑒𝑦

′
is blank or 𝑘𝑒𝑦

′
= 𝑘𝑒𝑦; otherwise, the tuple’s aggrega-

tion fails, and it is forwarded to the destination host along with the
packet for further processing. Third, upon a successful aggregation,
ASK unsets the corresponding bit in bitmap to 0. If all key-value
tuples in a packet are aggregated, the switch drops the packet and
acknowledges the sender an ACK with the same sequence number
as the data packet; otherwise, the switch sends the packet with
remaining (with bit 1 in bitmap) key-value tuples to the receiver
host. This procedure also indicates that a valid key-value tuple will
be aggregated at either the host or the switch. Note that ASK is a
best-effort service, but we can guarantee aggregation correctness
(discussed in § 3.3).

3.2.2 Sender-Assisted Addressing. If a key’s multiple tuples are
placed at different slots in packets, that key will occupy multiple ag-
gregators in different AAs, which wastes aggregators. To avoid the
single-key-multiple-spot problem, ASK further devises the packet
construction at the sender. One crucial feature in key-value aggrega-
tion is that the operation is commutative, allowing us to arbitrarily
change the key aggregation order. Further, the key stream is un-
foreseeable and could be unbounded, but the switch memory is
scarce. Thus, stateful addressing schemes within the switch would
be impractical. Hence, we develop an ordered key-space partition
mechanism at the sender to classify each key to a dedicated AA
and apply runtime addressing within the AA. So that one key will
always be mapped to a single dedicated AA in the switch.

Assuming the keyspace is K, and there are 𝑁 𝐴𝐴s on the switch,
ASK partitionsK into𝑁 non-overlapping subspacesK𝑖 (𝑖 = 0, · · · , 𝑁−
1), where K =

⋃𝑁−1
𝑖=0 K𝑖 and K𝑖

⋂
K𝑗 = ∅, 𝑖 ≠ 𝑗 . A key-value tuple

{key, val} then falls into one subspace K𝑖 with a hash function F,
i.e., 𝑖 = F(𝑘𝑒𝑦)%𝑁 .

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

When constructing a packet, the sender packs key-value tuples
following the key subspaces – sequentially picking a key-value
tuple from K𝑖 and placing it in the 𝑖𝑡ℎ slot in the payload. If no
key-value tuple is in K𝑖 , ASK will leave the 𝑖𝑡ℎ slot blank. The same
key across different packets is always placed at the same slot in the
payload and processed by the same AA on the switch. Note that
the hash function F(·)%𝑁 should be uniform so that keys can be
evenly distributed across subspaces.

3.2.3 Coalesced Placement for Variable-Length Keys. Practical work-
loads could contain keys whose length is beyond an aggregator’s
kPart. ASK uses multiple aggregators to store a key-value tuple,
where the key size could be variable. A naïve approach to aggregate
4∼15-byte keys under 32-bit aggregators is dividing each key into
four segments, placing them independently in their AAs based on
the hash function, performing four lookups sequentially during the
aggregation phase, and aggregating the value only if all segments
are matched. Unfortunately, this design could lead to aggregation
errors. When two long keys 𝑋1𝑋2 and 𝑌1𝑌2 reserve four aggrega-
tors in two AAs independently, a third key 𝑋1𝑌2 would be falsely
recognized as an existing key if the switch validates each of its
segments independently.

The fundamental problem of the naïve design is that the seg-
ments in one long key have an association instead of independence.
Thus, we advocate a design that coalesces multiple AAs in physi-
cally adjacent stages to store the whole long key-value tuple and
addresses the key with a “unified” index (i.e., hashing the entire
long key) in all AAs (Figure 6). After dividing a key-value tuple
(𝑘𝑒𝑦, 𝑣𝑎𝑙) into 𝑘 parts, 𝑣𝑎𝑙 is only stored in the last aggregator while
others are left blank, i.e., (𝑘𝑒𝑦, 𝑣𝑎𝑙) = {(𝑘𝑒𝑦1, 0), · · · , (𝑘𝑒𝑦𝑘 , 𝑣𝑎𝑙)}.

As an example in Figure 6, a key-value tuple ("yours", 1)
is divided into two parts {("your", 0), ("s", 1)}, and fed
to 𝐴𝐴𝑀−2 and 𝐴𝐴𝑀−1, where both AAs use the unified array in-
dex (i.e., hash("yours")). Whereas in another key "yourself",
the "your" part would reserve a different aggregator (hashing
"yourself") other than that in "yours".

ASK dedicates 𝑘 groups of AAs for variable-length keys, each
groupwith𝑚 AAs on physical adjacent stages (𝐴𝐴𝑖 to𝐴𝐴𝑖+𝑚−1, · · · ,
𝐴𝐴𝑖+(𝑘−1)𝑚 to 𝐴𝐴𝑖+𝑘𝑚−1). Each group could handle keys with the
length in the range [𝑛, 𝑛𝑚) (𝑛 is the length of the aggregator kPart).
We name these keys medium keys. Medium Keys are padded to 𝑛𝑚.
And each packet could carry 𝑘 medium keys (for the 𝑘 groups).
Note that the dedicated AAs would not process short keys, because
that would cause aggregation errors, e.g., a short key "your" could
not be aggregated by at the aggregator reserved by "yourself".

Together, the whole key space is first divided into short, medium,
and long keys. The short and medium key subspace is further
divided into subspaces as in §3.2.2. Long keyswould be collected and
sent to the receiver separately to the host receiver for processing,
bypassing the switch. The choice of𝑚 should adapt to the key size
distribution: a small𝑚 would cause more long keys without INA,
but a large𝑚 would possibly cause packet payload and AAs to be
wasted if medium keys cannot fill in the key-value tuple slots in
the packet payload. In the current implementation, we empirically
choose𝑚 to be 2 and 𝑘 to be 8, and this value is suitable for most
real-world datasets that we studied [1, 2, 16, 19].

3.3 Reliability and Correctness
Unreliable network conditions could lead to packet loss and retrans-
mission. Duplicated packet appearance should not lead to values
being aggregated again. In traditional TCP, the end-to-end reliabil-
ity mechanism would remove the duplicated packet at the receiver,
but ASK is more complicated: as a flow has three endpoints: the
sender, the switch receiver, and the host receiver, if a “partially
aggregated” packet is retransmitted, duplicated key-value tuples in
the packet should be eliminated separately at the switch and the
host receiver.

For example, a packet with two key-value tuples [(𝑎, 1), (𝑏, 1)]
is partially aggregated at the switch — (𝑎, 1) aggregated but (𝑏, 1)
not, and then lost before arriving at the host receiver. The sender
retransmits the packet to the switch. If the switch aggregates this
packet directly, (𝑎, 1) would be aggregated twice. Still, if the switch
forwards this packet directly, (𝑎, 1) would be aggregated by the
host receiver and eventually aggregated twice when both receivers’
results are merged. Either case is incorrect. The correct behavior
should be “dropping” (𝑎, 1) and carrying (𝑏, 1) to the host receiver.

A straightforward way to avoid repeated aggregation is to imple-
ment a reliability mechanism at the switch and break the end-to-end
flow into two separate reliable flows, where the switch serves as
the receiver endpoint of the sender host, and the sender endpoint
of the receiver host. Since switch memory is too scarce to record
an unbounded key-value stream, we implemented a lightweight
reliability mechanism, where the switch only maintains the per-
tuple states for a window of packets in each flow. Furthermore, the
switch only serves as the receiver endpoint, thus, the sender side
functions, e.g., retransmission and timeout, are still on the host;
and the ACK packets sent from the switch do not require any states
maintained in the switch.
Host Sender. The sender maintains a sliding window whose max-
imum size is𝑊 packets. The sender always sends packets in the
window, and ACKs would move the window forward and trigger
sending new packets. A packet is retransmitted if its ACK does not
arrive for a timeout. ASK does not use out-of-order ACKs to trig-
ger retransmission, because both the switch and the host receiver
could reply ACKs, causing out-of-order packets, which could be
misinterpreted by the sender as packet loss; instead, ASK chooses
a fined-grained timeout (100us v.s. Linux default 200ms). When
all packets of one aggregation task are sent and acknowledged,
the sender sends a FIN packet to the aggregation receiver, which
fetches the aggregation results from the switch.
Switch Receiver. The switch maintains a receive window for a
sender (data channel), which is a 2𝑊 -bit array named seen. seen is
circularly used to record each packet’s appearance in the unbound
key-value flow. There would be at most𝑊 packets in flight, and
each is indicated by one bit in seen.

𝑖𝑑𝑥 ← 𝑝𝑘𝑡 .𝑠𝑒𝑞%(2𝑊),
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ← 𝑠𝑤𝑖𝑡𝑐ℎ.𝑠𝑒𝑒𝑛[𝑖𝑑𝑥] . (5)

The switch uses the packet sequence number to find the bit index
in the seen bitmap and obtain the state from the seen bitmap. If a
packet appears for the first time, i.e., its bit is unset, it is recorded
and further participates in the aggregation procedure in §3.2.1;
otherwise, it is a retransmitted packet, which would skip the switch

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

aggregation. In both cases, the packet’s indication bit in seen is set.

𝑠𝑤𝑖𝑡𝑐ℎ.𝑠𝑒𝑒𝑛[𝑖𝑑𝑥] ← 1. (6)

As the array is circularly used, each packet would also clear a bit
one window away for a future packet to use (at 𝑖𝑑𝑥 +𝑊).

𝑠𝑤𝑖𝑡𝑐ℎ.𝑠𝑒𝑒𝑛[(𝑖𝑑𝑥 +𝑊)%(2𝑊)] ← 0. (7)

There is a corner case where a very stale packet earlier than the
current sliding window arrives at the switch (due to some long-
time network delay), and it falsely overwrites the bit in seen. For
example, the switch currently maintains a window with sequence
number from 2𝑊 to 3𝑊 . A packet with a sequence number of𝑊
arrives at the switch, which could falsely overwrite the state of the
packet sequence 3𝑊 in seen. To resolve this issue, ASK additionally
records the current window boundary and drops packets out of
the boundary. ASK always records the maximum sequence number
observed:𝑚𝑎𝑥_𝑠𝑒𝑞 =𝑚𝑎𝑥 (𝑚𝑎𝑥_𝑠𝑒𝑞, 𝑝𝑘𝑡 .𝑠𝑒𝑞) for each packet. The
current window range is (𝑚𝑎𝑥_𝑠𝑒𝑞 −𝑊,𝑚𝑎𝑥_𝑠𝑒𝑞]. If a packet has
a sequence number smaller than or equal to𝑚𝑎𝑥_𝑠𝑒𝑞 −𝑊 , it is a
stale packet (earlier than the current window) and is dropped.

We note that (1) the array size should be at least 2𝑊 to guarantee
that the record/clearance operation is correct. Because when ob-
serving the 𝑖𝑡ℎ packet, all packets in the range [𝑖 −𝑊 + 1, 𝑖 +𝑊 − 1]
are possibly in the current window, and the cleared bit should
be out of this range (whose size is 2𝑊 − 1). (2) The receive win-
dow abstraction has a memory-compact design using the switch’s
atomic “test-and-set” instructions set_bit(b)4 and clr_bitc(b)5.
Its array size is𝑊 , saving 50% memory for seen. The design is as
follows.
A Compact seen. The array seen is designed with 𝑊 bits. The
packet sequence 0 · · · , 𝑆 − 1 is divided into segments of size𝑊 ,
i.e., for a packet with a sequence number 𝑠 , it is in the segment of
𝑞 = ⌊𝑠/𝑊 ⌋ and its offset within the segment is 𝑟 = 𝑠%𝑊 .

According to 𝑞%2, the segment can be an even segment or an odd
one. The switch would iteratively observe packets from even and
odd segments. In this design, seen uses 1/0 to denote the appearance
of a packet in an even/odd segment. The operation for a packet is
as follows.

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ←
{
𝑠𝑒𝑡_𝑏𝑖𝑡 (𝑠𝑒𝑒𝑛[𝑟]) if 𝑞 𝑚𝑜𝑑 2 = 0,
𝑐𝑙𝑟_𝑏𝑖𝑡𝑐 (𝑠𝑒𝑒𝑐 [𝑟]) if 𝑞 𝑚𝑜𝑑 2 = 1. (8)

There are four cases when a packet arrives at the switch, and all
cases correctly record the appearance and return the observation
state.

• Case 1: An even-segment packet arrives, and its bit is 0. The
operation would return 0, and set the bit.
• Case 2: An even-segment packet arrives, and its bit is 1. The
operation would return 1, and set the bit.
• Case 3: An odd-segment packet arrives, and its bit is 1. The
operation would return 0, and unset the bit.
• Case 4: An odd-segment packet arrives, and its bit is 0. The
operation would return 1, and unset the bit.

4An atomic instruction that sets the bit b and returns the previous bit value.
5An atomic instruction that unsets the bit b and returns the complement of the previous
bit value.

A single set_bit()/clr_bitc() instruction undertakes the three
functions in the original design: recording the observation, return-
ing previous record (flipped for odd-segment packets), and initializ-
ing the bit state one-window away. In returning previous record, for
the odd segment’s packets, 0 in seenmeans observed and returning
its complement flips it to 1, matching the semantic of observed.
In initializing the future bit, set_bit in an even segment would
set the bit (to 1), making it prepared for the next odd segment, and
clr_bitc in an odd segment would unset the bit (to 0), making it
prepared for the next even segment.

There are two cases if a packet is identified as a retransmitted
packet. If the packet was fully aggregated, it is dropped, and the
switch replies its ACK. If the packet was “partially aggregated”, the
switch should “drop” the aggregated key-value tuples, then forward
the packet with the remaining key-value tuples to the destination
node.

To handle the partially-aggregated packets, we record packets’
aggregation states, i.e., their bitmaps, at the end of the switch
pipeline. The states are stored in a circular array of the same size
as the window, called PktState, each array unit storing a bitmap.
Each bit in a PktState unit indicates whether a tuple in one packet
has been aggregated in the switch. When a packet is first observed
(observed = 0), the packet’s aggregation result is recorded by copying
the packet’s bitmap to the PktState as shown in Equation (9).

𝑠𝑤𝑖𝑡𝑐ℎ.𝑃𝑘𝑡𝑆𝑡𝑎𝑡𝑒 [𝑖𝑑𝑥%𝑊] ← 𝑝𝑘𝑡 .𝑏𝑖𝑡𝑚𝑎𝑝. (9)

When a packet is observed again (observed = 1) at the switch, the
aggregation state is written back to the packet as shown in Equa-
tion (10).

𝑝𝑘𝑡 .𝑏𝑖𝑡𝑚𝑎𝑝 ← 𝑠𝑤𝑖𝑡𝑐ℎ.𝑃𝑘𝑡𝑆𝑡𝑎𝑡𝑒 [𝑖𝑑𝑥%𝑊] . (10)

Thus, retransmitted partial-aggregated packets only carry valid key-
value tuples (with bit 1 in bitmap) to the host receiver for further
aggregation.
Host Receiver. The receiver host similarly maintains a receive
window to record the packet’s appearance. On the first appearance,
a packet will be processed, i.e., an unaggregated key-value tuple
in the packet is aggregated locally; on the later appearances, the
packet is dropped; in both cases, the receiver replies with an ACK
to the sender.
Bounding Switch States. The reliability mechanism requires the
switch to maintain a per-flow state, which could affect the system’s
scalability. Since all streams on the same server multiplex the ASK
data channels, the per-flow state (seen and PktState) can be asso-
ciated with each data channel. In the current implementation, the
max sliding window size is set to be 256, thus 256 + 256 × 32 bits
(1056𝐵, for seen and PktState) are needed for one data channel
on the switch. A top-of-rack (TOR) switch can spare 264KB SRAM
(out of ~15MB) to sufficiently support 64 servers.

3.4 Hot-Key Agnostic Prioritization
Key-value streams arrive at ASK online, and keys are unforeseeable.
That is, each key’s multiple appearances arrive asynchronously.
In asynchronous aggregation, key-value tuples are addressed to
aggregation in runtime in a First-Come-First-Serve (FCFS) manner;
a reversed aggregator would be held by its key in the entire lifetime

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Algorithm 1: Shadow Copy
1 Switch():
2 copy_indicator← not(copy_indicator)
3 Read(key):
4 read_part← 1 - copy_indicator
5 index← hash(key) % N + read_part * N
6 return AA[index].val
7 Write(key, val):
8 write_part← copy_indicator
9 index← hash(key) % N + write_part * N

10 key′← AA[index].key
11 if key′ == key or is_blank(key′) then
12 Aggregate {key, val} into AA[index]
13 return true /* aggregation success */
14 ˙ return false /* conflict */

of the aggregation task, because the key’s last appearance is un-
known. However, real-world key-value streams could exhibit key
distribution skewness. For example, according to Zipf’s law [44], in
all languages, the frequency of a word is inversely proportional to
its index (index starts from 1) if all words are sorted in descending
order by their frequency. If a low-frequency key, a.k.a. cold key,
reserves an aggregator during the entire aggregation task, the late-
arrived high-frequency keys, a.k.a., hot keys, could not preempt
the aggregator. As a result, the aggregators would not be utilized
to the best extent.

ASK makes a key-distribution agnostic design. It builds a shadow
copy [61] for each AA, and periodically swaps between copies in
runtime. When switching to a new copy, key-value tuples would
get a new chance to reserve the empty aggregators. Statistically
(for many rounds), hot keys would have more opportunity than
(collided) cold keys to reserve the aggregator, and the overall ag-
gregation efficiency could be improved.

For an AA with 2N aggregators, we divide it into two copies,
referring to the first N aggregators and the last N aggregators.When
the switch performs an aggregation operation on one of the copies,
the host receiver can read the intermediate results on the other
copy. The switch is modified with a copy indicator (one bit) to direct
packets to one of the two copies. As shown in Algorithm 1, when
the number of arrived packets at the host receiver reaches a tunable
threshold, the host receiver sends a swapping notification to the
switch; the switch flips the copy indicator (Switch() in line 1),
which directs packets to the new copy; the receiver further fetches
the results in the old copy and cleans up the old copy (Read() in
line 3-6). At the same time, the switch will use the new copy to
perform the aggregation operation (Write() in line 7-14).

Since PISA [23] restricts that each stage can only process one
data packet at a time, when the switch pipeline is processing a
copy-switching notification packet, there must be no other packets
reading the copy indicator, thus ensuring the Switch() operation to
be atomic. Moreover, in the runtime, Read() and Write() operate
on two physically disjoint areas, avoiding the problem of read-write
conflicts and ensuring the correctness of the final result.

4 IMPLEMENTATION
ASK consists of the aggregation function on the switch, and the
network stack and service framework on hosts. The ASK switch
aggregation function is implemented in P4 [22] with ~5000 lines of
code, and the ASK network stack and service framework on hosts
are implemented in DPDK [3] with ~4500 lines of C code. There
are 32 AAs per pipeline, and each AA has 32768 aggregators. The
switch’s multiple pipelines can be used independently or chained
together to form a longer pipeline. Thus, one packet can pack 32
8-byte key-value tuples using one pipeline or up to 128 8-byte key-
value tuples if chaining pipelines. On the host, ASK daemon is
implemented as a DPDK process with a thread pool. ASK uses one
thread as the control channel and binds each data channel to one
remaining thread in the pool.

The application interacts with ASK through a plugin. This plugin
can convert data formats between the application and ASK. We
build plugins for Spark and BytePS. The Spark [14] plugin has ~1800
lines of JAVA code, and the BytePS [6] plugin has ~500 lines of C++
code.

5 EVALUATION
In this section, we show ASK’s good properties in supporting key-
value stream aggregation.
• ASK effectively supports real-world and artificial key-value
stream aggregation, and the performance gain is from both
traffic reduction and computation offload (§5.2).
• The design choices of multi-key vectorization and hot-key
prioritization effectively improve the system performance
(§5.3 and §5.4).
• ASK accelerates the big data system (§5.5) and is backward
compatible with value stream aggregation systems like dis-
tributed training (§5.6).

5.1 Experiment Settings
Cluster Setup. We conduct the experiment using one 32-port
Tofino [5] switch and nine servers. Each server runs Ubuntu 18.04
(kernel 4.15.0-20) and has 56 Xeon𝑅 Gold 5120T cores, 192GB RAM,
19TB disk, and one NVIDIA GeForce RTX 2080Ti GPU with driver
version 430.34 and CUDA 10.0, and is connected to one of the switch
port with a 100Gbps ConnectX-5 NIC [10].
Baselines. We evaluate ASK6 in benchmarks, a big data system,
and distributed training. (1) In benchmarking, we compare ASK
with a host-only aggregation solution (PreAggr) 7 to demonstrate
ASK can reduce CPU overhead while speeding up the key-value
stream aggregation. (2) In big data system, the baseline is the
vanilla Spark [68], Spark with RDMA for network IO acceleration
(SparkRDMA [11]), and Spark with shared memory (SparkSHM8)
which writes intermediate data on shared memory to exclude disk
IO overhead. (3) In distributed training, we compare ASK with
ATP [47] and SwitchML [61] to show that ASK can seamlessly sup-
port value stream aggregation, and have similar performance with
6By default, 4 ASK Data Channels are configured on each host.
7PreAggr: Instead of aggregating all key-value tuples at the receiver, each sender will
aggregate key-value tuples by sorting them by key first and then merging neighboring
tuples with the same key [14] (aka pre-aggregation).
8SparkSHM only use ASK for data transmission but does not perform INA, which
excludes the influence of ASK’s engineering optimization.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

8 16 32 64 128

Number of mappers/reducers
(a) Job completion time

0

30

60

90

120

J
C

T
(s

ec
on

d
s)

ASK (1 dCh)

ASK (2 dCh)

ASK (4 dCh)

PreAggr

8 16 32 64 128

Number of mappers/reducers
(b) Normalized CPU usage

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

C
P

U

ASK (1 dCh)

ASK (2 dCh)

ASK (4 dCh)

PreAggr

Figure 7: Comparison of ASK (1/2/4 Data Channels (dCh))
and end host based solution.

single-key INA systems. (4) Finally, we compare ASK with pure
network transmission (denoted as NoAggr) to study the system
overhead, scalability, and tradeoff, explore how small packet size
impacts the aggregation throughput, and give an analysis of ASK’s
scalability.
Datasets. When benchmarking the big data system, we use traces
from production, including yelp [19], NG [2], BAC [16], and LMDB [55].
We also generate artificial traces such as uniform distribution and
Zipf distribution [44] to understand the effectiveness of hot-key ag-
nostic prioritization. In distributed training, we use popular models
(ResNet50/101/152 and VGG11/16/19) with ImageNet [36, 63].
Metrics. We measure following metrics to compare different solu-
tions’ performance and overhead: (1) Job Completion time (JCT),
a job’s (multiple aggregation tasks) total execution time; (2) through-
put/goodput of each host; (3) the training throughput (image/second)
of image classification tasks in distributed training, and (4) CPU
utilization.

5.2 In-Network Aggregation Benchmark
5.2.1 Computation Offload. Like other INA solutions, ASK offloads
computation from hosts to the switch, which can reduce CPU over-
head significantly while speeding up the performance. We show the
computation offload in a MapReduce [30] job by comparing ASK
with the host-only solution “PreAggr”. We use only one sending
host whose bandwidth equals the receiver’s, excluding the network
bottleneck’s impact. In this experiment, we start the same number
ofmap threads (mapper) and reduce threads (reducer) on the sending
host and receiving host, respectively. Among them, the map thread
is used to generate key-value streams, and the reduce thread is used
to aggregate key-value tuples. In all experiments, the total data vol-
ume (key-value tuples) is fixed and follows a uniform distribution.
The number of mapper/reducer threads is tunable.

Figure 7 shows that ASK consistently outperforms PreAggr in
terms of JCT but consumes much fewer CPU cycles. In PreAggr,

1 8 16 32 48 64
KV tuples per packet

(a) Single server goodput

0

20

40

60

80

100

G
o
o
d

p
u

t
(G

b
p

s)

ASK

Ideal

1 4 8 16 24 32
Non-blank KV tuples per packet

(b) Cumulative distribution

0

0.2

0.4

0.6

0.8

1.0

C
D

F

Uniform

yelp

BAC

NG

IMDB

Figure 8: Impact of multi-key design on single server’s good-
put and Non-blank key-value tuples per packet.

Table 1: Traffic reduction on different datasets. The traf-
fic reduction is defined as 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑡𝑢𝑝𝑙𝑒𝑠

𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑡𝑢𝑝𝑙𝑒𝑠
(first line) and

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
(second line), respectively.

Dataset yelp NG BAC LMDB
Aggregated key-value tuples (%) 92.18 85.73 94.32 91.49

Switch ACKed Packets (%) 72.01 84.35 90.36 88.59

mappers’ local aggregation reduces data volume significantly, from
51.2GB raw data to 256MB intermediate results, and the network
transmission time is negligible. ASK achieves a JCT of about 16
seconds with 1 data channel, and a minimum JCT of about 6 sec-
onds with 4 data channels; PreAggr spends 111.20s/33.22s with
8/32 threads. Because ASK consumes CPU only for packet IO
(1.78%/3.57%/7.14% CPU for 1/2/4 data channels) but PreAggr con-
sumes CPU for both computation and IO (14.3% for 8 threads, and
100% at the peak for 56 threads).

5.2.2 Traffic Reduction in Real-World Traces. In data-intensive sce-
narios such as big data or distributed training, a large amount of
traffic will put a huge burden on the network and affect the perfor-
mance of other tasks. Reducing network traffic is crucial to allevi-
ating network congestion and improving application performance.
ASK can significantly reduce network traffic by aggregating traffic
on TOR and actively discards the aggregated packets to prevent
them from entering the network further and causing congestion.
We repeat the experiment above with production datasets and count
the ratio of key-value tuples/packets aggregated by the switch. As
shown in Table 1, the switch can aggregate 85.73% ∼ 94.32% key-
value tuples and absorb 72.01% ∼ 90.36% network traffic.

5.3 Effectiveness of Multi-key Vectorization
The multi-key design can effectively improve the goodput. Assum-
ing one packet contains 𝑥 8-byte key-value tuples and the overhead

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

1
64

1
32

1
16

1
8

1
4

1
2

1

Number of Aggregators
Number of Distinct Keys

(a) Without Prioritization

0

20

40

60

80

100

IN
A

P
er

ce
n
ta

ge

Zipf

Uniform

Zipf (Reverse)

1
64

1
32

1
16

1
8

1
4

1
2

1

Number of Aggregators
Number of Distinct Keys

(b) With Prioritization

0

20

40

60

80

100

IN
A

P
er

ce
n
ta

ge Zipf

Uniform

Zipf (Reverse)

Figure 9: Key-value tuples aggregated by the switch
with/without agnostic prioritization, varying with the ratio
of the total number of aggregators to the number of distinct
keys in the aggregation task.

of sending a packet is 78 bytes9. In the 100Gbps network, the ideal
goodput will be 8𝑥

8𝑥+78 × 100𝐺𝑏𝑝𝑠 . We conduct data transfer ex-
periments between two servers and vary the number of key-value
tuples per packet from 1 to 64, then measure the actual goodput.
Figure 8(a) compares the results of ASK with the theoretical ideal
goodput. When the key-value tuples per packet do not exceed 32,
the goodput increases almost linearly with the packet size. In this
range, ASK’s throughput is bounded by the PPS on the host. The
small glitches (at 18 and 26 on the X-axis) out of the linearity are
caused by the overhead of transferring a packet from the memory
to the NIC via PCIe10. When the tuples per packet exceed 32, the
experiment result matches the theoretical value.

ASK’s key space partition to construct multi-key packets could
cause some tuple slots in the packet to be blank when packing
keys in a key-skewed dataset. Figure 8(b) measures the cumulative
distribution of the number of non-blank (valid) key-value tuples
contained in packets constructed from different datasets. Ideally,
when the key distribution is uniform (line Uniform), there is no
blank tuple in almost every packet. Real-world traces show a bit
worse efficiency, but the worst traces (yelp [19]) still contains aver-
age 16.91 valid key-value tuples per packet, better than previous
works [41, 47, 64] which only support one key per packet.

5.4 Effectiveness of Key Agnostic Prioritization
We show that the key agnostic prioritization in ASK can improve
aggregator utilization, i.e., aggregating more hot keys with fewer
aggregators. We generate two datasets from uniform distribution

978 = 12 (Inter-Packet Gap) + 7 (Preamble) + 1 (Start Frame Delimiter) + 14 (Ethernet
Header) + 20 (IP Header) + 20 (ASK Header) + 4 (CRC).
10The Transaction Layer Packet (TLP [13]) transferred from the memory to NIC needs
to start from PCIe lane0 (16 lanes in total) and at an even cycle of the CPU clock, and
each TLP has at least 24 bytes overhead on the PCIe.

5 10 15 20

Key-value tuples/mapper (×107)

0

5

10

15

20

25

J
C

T
(s

ec
on

d
s)

ASK

SparkSHM

SparkRDMA

Spark

Figure 10: A comparison of ASK and Spark in terms of job
completion time.

and Zipf distribution (§3.4) [44], respectively. The Zipf distribu-
tion has a skewed key distribution, which holds for all natural
languages [57] and even artificial systems [59]. In the experiment,
the Zipf dataset means that hot keys appear in the front and the
cold keys appear in the rear in the key-value stream; Zipf (reverse)
dataset reverses the key appearance order, making cold keys in the
front and hot keys in the rear; in Uniform dataset, all keys have
the same frequency (no hot and cold keys). We fix the number of
distinct keys to 216 (each dataset contains about 108 keys), and vary
the number of aggregators from 24 to 216.

Figure 9(a) shows that switch aggregators are underutilized with-
out key-agnostic prioritization. Because an aggregator could be
occupied by a cold key (never appearing in the future), it will not
be released until the end of the aggregation task. Increasing the
number of aggregators, allowing more keys to be held in the switch,
could increase the switch aggregation ratio. Making the hot keys
appear early and occupy the aggregator, could also increase that
ratio — ASK performs better on Zipf than Zipf (reverse). Both meth-
ods do not always apply — for the former, the switch momory
could be scarce and limited; for the latter, key-value streams could
be unforeseeable without being sortable by frequency ahead of
sending.

Figure 9(b) shows that key-agnostic prioritization significantly
improves the aggregator utilization, avoiding a cold key occupying
the aggregator for the entire task. We can use much fewer aggre-
gators than distinct keys to complete the aggregation of almost all
key-value tuples, e.g., the aggregator-to-distinct-key ratio of 1/16,
achieving 95.85% on-switch aggregation.

5.5 Effectiveness in Data Analytic Systems
We measure the ASK’s synthetic performance acceleration to the
Big Data system. We run WordCount in HiBench’s SparkBench [7].
In the experiments, we set up 3 machines, each with 32 mappers (a
map task in Spark [68]) and 32 reducers (a reduce task in Spark);
each mapper has 218 distinct keys. We randomly generate 5 × 107,
10 × 107, 15 × 107 and 20 × 107 key-value tuples per mapper. The
baselines are Spark, SparkSHM, and SparkRDMA (§5.1 baselines).
Figure 10 shows the results, and we get the following observations.

First, SparkRDMA and SparkSHM do not provide significant per-
formance gain to Spark. Because after pre-aggregation in mappers,
the intermediate results’ volume is very small. Thus, improving the
network throughput and disk I/O cannot obviously improve the
overall JCT for aggregation jobs.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

0 5 10 15 20 25

Time (s)
(a) map task

0

0.2

0.4

0.6

0.8

1.0

C
D

F

ASK

Spark

SparkRDMA

SparkSHM

0 1 2 3 4 5

Time (s)
(b) reduce task

0

0.2

0.4

0.6

0.8

1.0

C
D

F

ASK

Spark

SparkRDMA

SparkSHM

Figure 11: A comparison of ASK and Spark in terms of task
completion time.

Second, ASK outperforms all other baselines in terms of JCT. Its
JCT can be reduced by 67.3% to 75.1% compared with other base-
lines in all settings. The performance gain is from the computation
offload. The aggregation is performed on the switch at the line
rate instead of the CPU. Figure 11 shows the task completion time
(TCT) of mappers and reducers, further validating the reason for
the performance gain. In Spark with ASK, the mappers’ TCT is
significantly shorter than other baselines (mean 1.67s v.s. 15.89s-
17.67s in the other three), because ASK’s mappers do not use CPU
for aggregation. ASK reducers have a longer TCT because some
mappers are co-located with the reducer on the same machine, and
these mappers’ data needs to be aggregated by the local reducers.
The mapper TCT decrement is more significant than the reducer
TCT increment, so the overall JCT is reduced.

5.6 Extend to Deep Learning Systems
ASK can also cover the special case of value stream aggregation and
be compatible with distributed training. We implement a parame-
ter server system for distributed training by integrating ASK with
BytePS [39]. We compare ASK with existing INA-based distributed
training frameworks ATP [47] and SwitchML [61] on model train-
ing, and measure the training speed (image/second).

Figure 12 shows that ASK, ATP, and SwitchML have similar per-
formance because they all use the switch to accelerate the gradient
aggregation process. ASK and ATP slightly outperform SwitchML
on some models because SwitchML’s small packet size cannot fully
utilize the network bandwidth.

5.7 Overhead and Scalability
We compare ASK with pure network transmission to study its
bandwidth overhead and analyze the tradeoff between overhead, ef-
ficiency, and scalability. Compared with pure network transmission,
ASK packets introduce overhead to bandwidth efficiency, and we

ResNet50 ResNet101 ResNet152 VGG11 VGG16 VGG19
0

100

200

30

Im
ag

e/
S

ec
on

d

ASK ATP SwitchML

Figure 12: Single job throughput in distributed training.

argue that the overhead is acceptable compared with the significant
computation acceleration and excellent scalability.

5.7.1 Bandwidth Overhead. With one pipeline, the hardware limi-
tation restricts the number of AAs to be 32 and the packet payload to
be 256Bytes. Figure 13(a) shows the aggregation throughput when
there are only one sending host and one receiving host. “NoAggr”
transmits packets with DPDK and 1500 bytes MTU. We tune the
number of data channels. Overall, both ASK and NoAggr can sat-
urate the NIC bandwidth, but the goodput of NoAggr and ASK
is 91.75Gbps v.s. 73.96Gbps; and NoAggr saturates the bandwidth
with 2 cores while ASK with 4 ones.

5.7.2 Scalability. ASK’s processing speed could linearly scale with
the number of senders, which significantly outperforms host-only
solutions. We use one host as the receiver, tune the number of send-
ing hosts, and show the average sender throughput in Figure 13(b).
ASK’s average throughput stays constant even with more servers
because most of the traffic is directly aggregated and acknowledged
by the switch, eliminating the bottleneck at the receiving host. But
the average throughput in NoAggr is inversely proportional to the
number of sending hosts (e.g., 11.88Gbps for 8 servers), where the
receiving host’s link becomes the bottleneck.

We argue that ASK’s bandwidth overhead is acceptable consid-
ering its benefits. (1) The CPU cycles saved by computation offload
are much larger than the ones cost in sending small packets (see
Figure 3); (2) ASK shows excellent scalability, which is critical for
distributed systems. (3) If the switch can spare more port band-
width to chain pipelines and recirculate packets, the goodput can
be further promoted (e.g., 4 pipelines achieving ~90Gbps/host).

6 RELATEDWORK
INA has been deeply explored in distributed machine learning. Un-
der some circumstances, the network would be the bottleneck in
communication-intensive models [54]. ATP [47], SwitchML [61],
SHARP [33], NetReduce [52], iSwitch [51], NVIDIA’s accelerator
centric network [43], and PANAMA [32] propose to apply INA to ac-
celerate the gradient aggregation in distributed training. Flare [28]
proposes a RISC-V-based switch module to aggregate vectors. The
INA solutions above target value stream aggregation. Some other
works deploy middleboxes [56] or high-performance dedicated
servers [27, 50] other than switches to achieve in-network aggre-
gation in specific scenarios, such as wireless communication and
MapReduce. ASK is the first on-switch, generic, vectorized, reliable,

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

1 2 3 4 5 6 7 8
Number of Data Channels

(a) Throughput on a single server

0

50

100

T
h

ro
u

gh
p

u
t

(G
b

p
s)

ASK NoAggr

1 2 3 4 5 6 7 8
Number of servers

(b) Throughput per server

0

50

100

T
h

ro
u

gh
p

u
t

(G
b

p
s)

ASK NoAggr

Figure 13: Aggregation throughput. The filled bar represents
the goodput, and the empty bar represents bandwidth over-
head consumed by the packet header, crc, etc.

and hot-key prioritized key-value aggregation service for diverse
applications.

Key-value stream aggregation can also be accelerated by speed-
ing up the network transmission, e.g., using the high-speed network
(SparkRDMA [11]), or compressing traffic (OmniReduce [31]). ASK
is complementary with these methods. Programmable switches
can also accelerate operations other than aggregation, e.g., storage
(NetCache [41] and DistCache [53]), replication (NetChain [40], Hy-
perLoop [42] and Harmonia [70]), load balancing (AppSwitch [26]),
and filter (Cheetah [64], FPISA [67], and NetAccel [48]), and ASK
can work together with these operators in system building.

Trio [66] is a new type of programmable switch that adopts
the run-to-completion architecture instead of the pipeline. Trio in-
creases the memory available to the data plane of the programmable
switch from 𝑂 (10𝑀𝐵) to 𝑂 (1𝐺𝐵) while reducing restrictions on
memory access and increasing programmability at the cost of pro-
cessing speed. The design of ASK can be very well adapted to this
architecture. With Trio, the shadow copy mechanism and variable-
length key processing of ASK can be further improved to support
more jobs.

7 DISCUSSION
Deployment in Mutli-rack networks.When ASK is extended to
the hierarchical aggregation, the senders are leaf nodes, the receiver
is the root, and switches are the intermediate nodes. However, each
switchmustmaintain the states for all data channels of its leaf nodes,
where states could explode. To avoid state explosion, ASK could
be deployed on TOR switches, providing a best-effort service only
to hosts within one rack. And cross-rack traffic would bypass the

receiver TOR switch and proceed to the receiver host for eventual
aggregation.
CongestionControl.Whenmultiple jobs coexist in the cluster and
contend for bandwidth, a congestion control mechanism is needed
for the jobs to share and saturate the bandwidth. ASK is compatible
with existing ECN-based and loss-based INA congestion control
mechanisms, e.g., ATP [47] and PANAMA [32]. When applying a
congestion control mechanism, the congestion window should not
exceed the maximum window defined in the reliability mechanism
(§3.3), protecting the switch receive window from malfunctioning.
Multi-Tenancy. ASK supports multi-tenancy. When there are ag-
gregation tasks from multiple tenants, these tasks need to encode
the tenant ID into the task ID. Then the ASK daemon would isolate
these tasks on the host, and ASK switch controller would isolate
these tasks’ memory regions in the switch.
Whether there is an alternative design of the Shadow Copy
Mechanism. The shadow copy mechanism aims to process more
hot keys in the limited switch memory. A seemingly obvious ap-
proach is to manage the AAs as set associative with a replacement
policy such as LRU. However, this approach cannot be simply im-
plemented on the programmable switch. In an “unreliable” network,
the action of “evicting cold items to the receiver” (making space
for hot items) requires the switch to make Active Repeat Request
(ARQ) until the eviction succeeds (identified by a receiver-to-switch
acknowledgement), but the switch programming language does not
natively support repeat requests, and it is not practical to suspend
packet processing for the trial-and-error eviction operation.

Actually, the two copies in the ASK shadow copy mechanism
form an AA set as mentioned in the approach above. ASKmakes the
receiver periodically initiate the “eviction and replacement”, which
is triggered by the statistics on the receiver. And implementing
ARQ (i.e., reliable Read() in §3.4) for eviction is more feasible on
the receiver host than the switch.

8 CONCLUSION
In-network computing provides a novel architecture for improving
the performance of distributed systems. Although in-network com-
puting has demonstrated its potential in distributed training, there
is still a lack of sound system design to support a broader range
of aggregation jobs. ASK is the first switch-host co-designed sys-
tem that provides key-value stream aggregation service to diverse
applications simultaneously, which can accelerate applications’ per-
formance by reducing traffic volume and offloading computation.
ASK overcomes challenges of vectorizing multi-key by key ad-
dressing and placement, correctness guarantee by a lightweight
reliability mechanism, and utilizing switch memory to a better ex-
tent by hot-key agnostic prioritization. The evaluation shows that
ASK could significantly accelerate key-value stream aggregation
and applications such as big data and distributed training.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for the valuable comments.
Wenfei Wu is supported by Peking University Start-up funding.
Ming Liu is supported in part by NSF grants CNS-2106199 and
CNS-2212192.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao

REFERENCES
[1] 2011. Large Movie Review Dataset. https://ai.stanford.edu/~amaas/data/

sentiment/.
[2] 2020. 20 Newsgroups. http://qwone.com/~jason/20Newsgroups/.
[3] 2020. DPDK (Data Plane Development Kit). http://dpdk.org.
[4] 2021. Intel@ Tofino𝑇𝑀 3. https://www.intel.com/content/www/us/en/products/

network-io/programmable-ethernet-switch.html.
[5] 2021. Intel@ Tofino𝑇𝑀 Series of P4-Programmable Ethernet Switch

ASIC. https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch.html.

[6] 2022. BytePS. https://github.com/bytedance/byteps.
[7] 2022. HiBench. https://github.com/Intel-bigdata/HiBench.git.
[8] 2022. Intel FlexPipe. https://www.intel.com/content/dam/www/public/us/en/

documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf.
[9] 2022. IP Packet Overhead. https://infohub.delltechnologies.com/l/powerscale-

network-design-considerations/ip-packet-overhead.
[10] 2022. Mellanox ConnectX-5. http://www.mellanox.com/related-docs/user_

manuals/ConnectX-5_VPI_Card.pdf.
[11] 2022. Mellanox SparkRDMA. https://github.com/Mellanox/SparkRDMA.git.
[12] 2022. MPI Forum. https://www.mpi-forum.org.
[13] 2022. PCI Express. https://en.wikipedia.org/wiki/PCI_Express.
[14] 2022. Spark. https://spark.apache.org.
[15] 2022. Spark Stream. https://spark.apache.org/streaming/.
[16] 2022. The Blog Authorship Corpus. http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm.
[17] 2022. TPC-H Benchmark. http://www.tpc.org/tpch/.
[18] 2022. XPliant Ethernet Switch Product Family. http://www.cavium.com/XPliant-

Ethernet-Switch-Product-Family.html.
[19] 2022. Yelp Open Dataset. https://www.yelp.com/dataset.
[20] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In SIGCOMM (New Delhi, India).

[21] Wei Bai, Li Chen, Kai Chen, and Haitao Wu. 2016. Enabling {ECN} in multi-
service multi-queue data centers. In 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16). 537–549.

[22] Pat Bosshart et al. 2014. P4: Programming Protocol-Independent Packet Proces-
sors. ACM SIGCOMM Computer Communication Review 44, 3 (2014).

[23] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-Action Processing in Hardware for SDN. In Proceed-
ings of the ACM SIGCOMM 2013 Conference on SIGCOMM (Hong Kong, China)
(SIGCOMM ’13). Association for Computing Machinery, New York, NY, USA,
99–110. https://doi.org/10.1145/2486001.2486011

[24] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[25] Ge Chen, Gaoxiong Zeng, and Li Chen. 2021. P4COM: In-Network Computation
with Programmable Switches. arXiv preprint arXiv:2107.13694 (2021).

[26] Eyal Cidon, Sean Choi, Sachin Katti, and Nick McKeown. 2017. AppSwitch:
Application-Layer Load Balancing within a Software Switch. In Proceedings of
the First Asia-Pacific Workshop on Networking (Hong Kong, China) (APNet’17).
Association for Computing Machinery, New York, NY, USA, 64–70. https://doi.
org/10.1145/3106989.3106998

[27] Paolo Costa, Austin Donnelly, Antony Rowstron, and Greg O’Shea. 2012. Cam-
doop: Exploiting In-network Aggregation for Big Data Applications. In 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 12).
USENIX Association, San Jose, CA, 29–42. https://www.usenix.org/conference/
nsdi12/technical-sessions/presentation/costa

[28] Daniele De Sensi, Salvatore Di Girolamo, Saleh Ashkboos, Shigang Li, and
Torsten Hoefler. 2021. Flare: Flexible In-Network Allreduce. arXiv preprint
arXiv:2106.15565 (2021).

[29] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation - Volume 6 (San Francisco, CA) (OSDI’04).
USENIX Association, USA, 10.

[30] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[31] Jiawei Fei, Chen-Yu Ho, Atal N Sahu, Marco Canini, and Amedeo Sapio. 2021.
Efficient sparse collective communication and its application to accelerate dis-
tributed deep learning. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
676–691.

[32] Nadeen Gebara, Manya Ghobadi, and Paolo Costa. 2021. In-network Aggregation
for Shared Machine Learning Clusters. Proceedings of Machine Learning and
Systems 3 (2021), 829–844.

[33] Richard L Graham, Lion Levi, Devendar Burredy, Gil Bloch, Gilad Shainer, David
Cho, George Elias, Daniel Klein, Joshua Ladd, Ophir Maor, et al. 2020. Scalable hi-
erarchical aggregation and reduction protocol (sharp) tm streaming-aggregation

hardware design and evaluation. In International Conference on High Performance
Computing. Springer, 41–59.

[34] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In
SIGCOMM. ACM, New York, NY, USA. https://doi.org/10.1145/2934872.2934908

[35] Moritz Hardt, Ben Recht, and Yoram Singer. 2016. Train faster, generalize better:
Stability of stochastic gradient descent. In International Conference on Machine
Learning. PMLR, 1225–1234.

[36] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[37] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010. The
HiBench benchmark suite: Characterization of the MapReduce-based data anal-
ysis. In 2010 IEEE 26th International conference on data engineering workshops
(ICDEW 2010). IEEE, 41–51.

[38] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable User-
level TCP Stack for Multicore Systems. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). USENIX Association.

[39] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
2020. A Unified Architecture for Accelerating Distributed DNN Training in
Heterogeneous GPU/CPU Clusters. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association.

[40] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-
tion. In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). USENIX Association, Renton, WA, 35–49. https://www.usenix.org/
conference/nsdi18/presentation/jin

[41] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium on Operating
Systems Principles (Shanghai, China) (SOSP ’17). Association for Computing Ma-
chinery, New York, NY, USA, 121–136. https://doi.org/10.1145/3132747.3132764

[42] Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson, Vyas Sekar,
and Srinivasan Seshan. 2018. Hyperloop: Group-Based NIC-Offloading to Accel-
erate Replicated Transactions in Multi-Tenant Storage Systems. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication
(Budapest, Hungary) (SIGCOMM ’18). Association for Computing Machinery,
New York, NY, USA, 297–312. https://doi.org/10.1145/3230543.3230572

[43] Benjamin Klenk, Nan Jiang, Greg Thorson, and Larry Dennison. 2020. An in-
network architecture for accelerating shared-memory multiprocessor collectives.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 996–1009.

[44] Clyde Kluckhohn. 1950. Human behavior and the principle of least effort.
[45] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging

system for log processing. In Proceedings of the NetDB, Vol. 11. 1–7.
[46] Ignacio Laguna, Ryan Marshall, Kathryn Mohror, Martin Ruefenacht, Anthony

Skjellum, and Nawrin Sultana. 2019. A large-scale study of MPI usage in open-
source HPC applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–14.

[47] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael Swift. 2021. ATP: In-network Aggregation for Multi-tenant
Learning. In 18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21). USENIX Association, 741–761. https://www.usenix.org/
conference/nsdi21/presentation/lao

[48] Alberto Lerner, Rana Hussein, and Philippe Cudré-Mauroux. 2019. The Case for
Network Accelerated Query Processing. In CIDR.

[49] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao Zhang. 2019. SocksDirect:
Datacenter sockets can be fast and compatible. In Proceedings of the ACM Special
Interest Group on Data Communication. 90–103.

[50] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
distributed machine learning with the parameter server. In 11th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI} 14). 583–598.

[51] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian
Huang. 2019. Accelerating distributed reinforcement learning with in-switch
computing. In 2019 ACM/IEEE 46th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE, 279–291. https://ieeexplore.ieee.org/abstract/
document/8980345.

[52] Shuo Liu, Qiaoling Wang, Junyi Zhang, Qinliang Lin, Yao Liu, Meng Xu, Ray CC
Chueng, and Jianfei He. 2020. NetReduce: RDMA-Compatible In-Network Reduc-
tion for Distributed DNN Training Acceleration. arXiv preprint arXiv:2009.09736
(2020).

[53] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019. DistCache: Provable Load Balancing for
Large-Scale Storage SystemswithDistributed Caching. In 17th USENIX Conference
on File and Storage Technologies (FAST 19). USENIX Association, Boston, MA,

https://ai.stanford.edu/~amaas/data/sentiment/
https://ai.stanford.edu/~amaas/data/sentiment/
http://qwone.com/~jason/20Newsgroups/
http://dpdk.org
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://github.com/bytedance/byteps
https://github.com/Intel-bigdata/HiBench.git
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
https://infohub.delltechnologies.com/l/powerscale-network-design-considerations/ip-packet-overhead
https://infohub.delltechnologies.com/l/powerscale-network-design-considerations/ip-packet-overhead
http://www.mellanox.com/related-docs/user_manuals/ConnectX-5_VPI_Card.pdf
http://www.mellanox.com/related-docs/user_manuals/ConnectX-5_VPI_Card.pdf
https://github.com/Mellanox/SparkRDMA.git
https://www.mpi-forum.org
https://en.wikipedia.org/wiki/PCI_Express
https://spark.apache.org
https://spark.apache.org/streaming/
http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm
http://www.tpc.org/tpch/
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
https://www.yelp.com/dataset
https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1145/3106989.3106998
https://doi.org/10.1145/3106989.3106998
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/costa
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/costa
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1109/CVPR.2016.90
https://www.usenix.org/conference/nsdi18/presentation/jin
https://www.usenix.org/conference/nsdi18/presentation/jin
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3230543.3230572
https://www.usenix.org/conference/nsdi21/presentation/lao
https://www.usenix.org/conference/nsdi21/presentation/lao
https://ieeexplore.ieee.org/abstract/document/8980345
https://ieeexplore.ieee.org/abstract/document/8980345

A Generic Service to Provide In-Network Aggregation for Key-Value Streams ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

143–157. https://www.usenix.org/conference/fast19/presentation/liu
[54] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind Krishna-

murthy. 2018. Parameter Hub: A Rack-Scale Parameter Server for Distributed
Deep Neural Network Training. In Proceedings of the ACM Symposium on Cloud
Computing (Carlsbad, CA, USA) (SoCC ’18). Association for Computing Machin-
ery, New York, NY, USA, 41–54. https://doi.org/10.1145/3267809.3267840

[55] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, DanHuang, Andrew Y. Ng, and
Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis. In Pro-
ceedings of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies. Association for Computational Linguistics,
Portland, Oregon, USA, 142–150. http://www.aclweb.org/anthology/P11-1015

[56] Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa, Matteo Migliavacca, Pe-
ter Pietzuch, and Alexander L. Wolf. 2014. NetAgg: Using Middleboxes for
Application-Specific On-Path Aggregation in Data Centres. In Proceedings of the
10th ACM International on Conference on Emerging Networking Experiments and
Technologies (Sydney, Australia) (CoNEXT ’14). Association for Computing Ma-
chinery, New York, NY, USA, 249–262. https://doi.org/10.1145/2674005.2674996

[57] Bill Z Manaris, Luca Pellicoro, George Pothering, and Harland Hodges. 2006.
Investigating Esperanto’s Statistical Proportions Relative to other Languages
using Neural Networks and Zipf’s Law.. In Artificial Intelligence and Applications.
102–108.

[58] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan,
Chuan Wu, and Chuanxiong Guo. 2019. A Generic Communication Sched-
uler for Distributed DNN Training Acceleration. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada)
(SOSP ’19). Association for Computing Machinery, New York, NY, USA, 16–29.
https://doi.org/10.1145/3341301.3359642

[59] Steven T Piantadosi. 2014. Zipf’s word frequency law in natural language: A
critical review and future directions. Psychonomic bulletin & review 21, 5 (2014),
1112–1130.

[60] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-Network Computation is a Dumb Idea Whose Time Has Come.
In Proceedings of the 16th ACM Workshop on Hot Topics in Networks (Palo Alto,
CA, USA) (HotNets-XVI). Association for Computing Machinery, New York, NY,
USA, 150–156. https://doi.org/10.1145/3152434.3152461

[61] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. 2021. Scaling Distributed Machine Learning with In-Network Aggrega-
tion. In 18th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 21). USENIX Association, 785–808. https://www.usenix.org/conference/
nsdi21/presentation/sapio

[62] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed file system. In 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). Ieee, 1–10.

[63] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[64] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2020. Cheetah:
Accelerating Database Queries with Switch Pruning. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2407–2422.

[65] Sven Ulland. 2011. Kernel panic/crash, bnx2 flow control flooding and network
outages. Linux-PowerEdge – Linux on Dell PowerEdge Servers discussion http:
//lists.us.dell.com/pipermail/linux-poweredge/2011-October/045485.html.

[66] Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby, Scott Mackie, Swamy
Sadashivaiah Renu Kananda, Chang-Hong Wu, and Manya Ghobadi. 2022. Using
trio: juniper networks’ programmable chipset-for emerging in-network applica-
tions. In Proceedings of the ACM SIGCOMM 2022 Conference. 633–648.

[67] Yifan Yuan, Omar Alama, Jiawei Fei, Jacob Nelson, Dan R. K. Ports, Amedeo Sapio,
Marco Canini, and Nam Sung Kim. 2022. Unlocking the Power of Inline Floating-
Point Operations on Programmable Switches. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22). USENIX Association,
Renton, WA. https://www.usenix.org/conference/nsdi22/presentation/yuan

[68] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Clus-
ter Computing. In 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12). USENIX Association, San Jose, CA, 15–28. https:
//www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[69] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and Michael J Freedman.
2018. Riffle: optimized shuffle service for large-scale data analytics. In Proceedings
of the Thirteenth EuroSys Conference. 1–15.

[70] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica, and
Xin Jin. 2019. Harmonia: Near-Linear Scalability for Replicated Storage with
in-Network Conflict Detection. Proc. VLDB Endow. 13, 3 (Nov. 2019), 376–389.
https://doi.org/10.14778/3368289.3368301

Received 2022-07-07; accepted 2022-09-22

https://www.usenix.org/conference/fast19/presentation/liu
https://doi.org/10.1145/3267809.3267840
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1145/2674005.2674996
https://doi.org/10.1145/3341301.3359642
https://doi.org/10.1145/3152434.3152461
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
http://lists.us.dell.com/pipermail/linux-poweredge/2011-October/045485.html
http://lists.us.dell.com/pipermail/linux-poweredge/2011-October/045485.html
https://www.usenix.org/conference/nsdi22/presentation/yuan
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://doi.org/10.14778/3368289.3368301

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Aggregation Patterns
	2.2 Promise of In-Network Key-Value Aggregation
	2.3 Challenges

	3 Design
	3.1 Architecture and Workflow
	3.2 Multi-key Addressing and Placement
	3.3 Reliability and Correctness
	3.4 Hot-Key Agnostic Prioritization

	4 Implementation
	5 Evaluation
	5.1 Experiment Settings
	5.2 In-Network Aggregation Benchmark
	5.3 Effectiveness of Multi-key Vectorization
	5.4 Effectiveness of Key Agnostic Prioritization
	5.5 Effectiveness in Data Analytic Systems
	5.6 Extend to Deep Learning Systems
	5.7 Overhead and Scalability

	6 Related Work
	7 Discussion
	8 Conclusion
	Acknowledgments
	References

