
37

Dremel: Adaptive Configuration Tuning of RocksDB KV-Store

CHENXINGYU ZHAO, University of Washington, USA
TAPAN CHUGH, University of Washington, USA
JAEHONG MIN, University of Washington, USA
MING LIU, University of Wisconsin-Madison, USA
ARVIND KRISHNAMURTHY, University of Washington, USA

LSM-tree-based key-value stores like RocksDB are widely used to support many applications. However, config-
uring a RocksDB instance is challenging for the following reasons: 1) RocksDB has a massive parameter space
to configure; 2) there are inherent trade-offs and dependencies between parameters; 3) right configurations
are dependent on workload and hardware; and 4) evaluating configurations is time-consuming. Prior works
struggle with handling the curse of dimensionality, capturing relationships between parameters, adapting
configurations to workload and hardware, and evaluating quickly.

In this work, we present a system, Dremel, to adaptively and quickly configure RocksDB with strategies
based on the Multi-Armed Bandit model. To handle the massive parameter space, we propose using fused
features, which encode domain-specific knowledge, to work as a compact and powerful representation for
configurations. To adapt to the workload and hardware, we build an online bandit model to identify the best
configuration. To evaluate quickly, we enable multi-fidelity evaluation and upper-confidence-bound sampling
to speed up identifying the best configuration. Dremel not only achieves up to ×2.61 higher IOPS and 57%
less latency than default configurations but also achieves up to 63% improvements over prior works on 18
different settings with the same or less time budget.
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1 INTRODUCTION
Persistent key-value stores based on the Log-Structured Merge-tree (LSM-Tree) are widely used in
Facebook RocksDB [28], Google LevelDB [32], Amazon DynamoDB [20], Alibaba X-Engine [35],
Apache Cassandra [47], WiredTiger [56], TiDB [34], and more. Among them, RocksDB is an
industry-standard open-source implementation of the LSM-Tree that provides high performance and
versatility with flexible tunability. However, as cited from the developers’ tuning guide, optimally
configuring RocksDB is not trivial even for experts [12, 25, 28] due to the following challenges.
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(a) Trade-off curve and sub-optimal configurations (b) No config is always best

Fig. 1: Challenges for Tuning RocksDB

Challenge 1 – Massive configuration space: For RocksDB (v6.27.3), its header file option.h
supports up to 83 parameters to configure. Further, most parameters have a wide range of possible
values, sometimes from large continuous ranges (e.g., write_buffer_size can vary from KB to MB).
The resulting curse of dimensionality makes it hard for tuning methods to search such a large
configuration space with a limited time budget.

Challenge 2 – Fundamental configuration trade-offs: RocksDB is, essentially, a data struc-
ture for organizing and accessing data, facing well-known and inherent trade-offs between read
performance, write performance, and space costs [17, 18, 33, 38]. Figure 1(a) shows the trade-off
between read and write performance as we randomly select about 500 configurations to run over
the same workload. We observe that there is an optimal Pareto curve for the read-write performance
trade-off. Beyond the Pareto curve, we cannot improve read or write performance without hurting
the other. It is worth noting that many configurations don’t achieve Pareto optimally (i.e., they are
not on the Pareto curve). Besides striking a good trade-off, configuration tuning is also responsible
for filtering out sub-optimal configurations. Many RocksDB parameters control the above trade-off,
and identifying the optimal configuration in such settings is challenging.
Challenge 3 – Being adaptive to workloads and hardware: The need to support diverse

workloads and hardware further complicates configuration tuning. As Figure 1(b) shows, we select
four configurations and four different workload/hardware settings (30%/90% GET ratio, fast/slow
storage device). We can observe that the best configurations for these settings are different. No one
configuration is always best.

For RocksDB, there are three scenarios in which adaptivity is desired: 1) First case is the initial
setup of a RocksDB instance. RocksDB is widely deployed for production applications [12, 24, 25]
that have different workload characteristics, infrastructure environments, and resource require-
ments. Configuring RocksDB corresponding to a specific application is a crucial step to launch a
new instance. 2) Workload changes are common in production. Based on Facebook’s deployment ex-
perience [12], instances show a strong diurnal pattern of 24-hours. For example, for serving a social
network, GET/PUT ratio usually reaches a peak of 4:1 at about 17:00 (people read content during
off-work time). For working hours, GET/PUT ratio is usually 2:1. 3) Hardware heterogeneity is also
common. LSM-based KV-stores are increasingly deployed over diverse hardware environments
like cloud environment [35], disaggregated storage [55], and ZNS SSD [58]. Further, hardware
conditions can also change [55], so the system needs to adapt to current hardware characteristics.
Challenge 4 – Expensive evaluation: A typical approach to evaluating a configuration is

executing the desired workload (e.g., inserting/reading millions of kv-pairs) and measuring a metric
(e.g., IOPS). This is expensive in terms of time cost, typically lasting tens of minutes for each
configuration. Having a large configuration space further increases the evaluation cost.
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Fig. 2: Architecture of Dremel- a system to adaptively configure RocksDB.

Prior work and limitations: One line of work tries to navigate the design and tuning of
LSM-tree-based KV-stores by modeling the operation cost with analytical primitives or closed-
form expressions [17–19, 38, 51]. However, these models encode very few or none of the factors
affected by workload and hardware, so they are of limited value in recommending an appropriate
configuration for a given deployment setting. The second line of work tries to tune configurations
by modeling the relationship between parameters and performance as a black-box function and then
optimizing parameters by learning to fit the black-box function with some general optimization
framework like Bayesian Optimization and Reinforcement Learning [1, 49, 67]. Given the massive
number of configurations, inherent complexities, and expensive evaluation costs, it is difficult to
fit the black-box function well with limited optimization steps. The third line of work applies the
data-driven approach like collecting a large number of traces and then applying machine-learning or
optimization algorithms over training sets [40, 67]. Considering the dimensionality of the parameter
space and the effects from workload/hardware, collecting data is extremely time-consuming (e.g.,
needing six months [40]), which is not practical for most cases.

Our goal is to design a system that can quickly identify a RocksDB configuration that achieves
high performance while adapting to specific workload and hardware conditions. Our system,
Dremel, addresses the above challenges in the following ways (illustrated in Figure 2):
• First, we use insights from prior characterizations of storage systems that identify a fundamental

trade-off to strike between read, write, and space costs. We use domain-specific knowledge to distill
a large number of raw features into a small number of fused features that govern the trade-off
between read, write, and space costs. These fused features can then express configurations more
concisely and reduce the search space.
• Second, to allow RocksDB to be adaptive to workloads and hardware conditions, we adopt

online tuning following the principle of Lazy Tuning [37]; if one executes tuning decisions after
actual workload and hardware are seen, tuning decisions can better correspond to the specific
setting. Our online tuning is based on a Multi-Armed Bandit model to identify good configurations
represented by fused features. Each arm is a cluster of configurations that have the same normalized
feature values. Then, we formalize the process of identifying good configurations as the problem of
best-arm identification, a classical bandit problem. For the identified best-arm comprising a cluster
of configurations, we sample configurations from them by Upper-Confidence-Bound sampling.
• Third, to speed up the evaluation of configurations, we use the strategy of Multi-fidelity

evaluation. Multi-fidelity evaluation is an approximation strategy that stops poor configurations
early and saves time to explore more promising configurations.

Our evaluations show that Dremel achieves up to ×2.61 higher IOPS than default configurations
while tuning to maximize IOPS and 57% less latency while tuning to minimize latency. We compare
Dremel against four common tuning approaches on 18 different settings. While maximizing IOPS,
Dremel achieves up to 63% improvement over the prior work with the same or less time budget.
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Fig. 3: LSM-Tree Architecture. Memory component and Level 0 are to quickly buffer write and persist data in a
sequential manner. Other levels of storage component are organized by compaction to serve read.

2 BACKGROUND
2.1 LSM-tree-based KV-stores
Architecture: A Log-structured Merge-tree (LSM-Tree) [59] (illustrated in Figure 3) is a data
structure to store key-value pairs in persistent storage (e.g., SSD) and consists of two main compo-
nents: 1) Memory component organizes data as Memtables that are in-memory data structures (e.g.,
skip-lists) to buffer recent updates. Once the Memtable’s capacity is reached, it becomes immutable
and is replaced by a new one. Immutable Memtable waits for a background job to flush it out to
the persistent storage. 2) Storage component organizes data as Sorted Sequence Tables (SSTables)
that are files of sorted key-value pairs. When an Immutable Memtable is flushed out, its entries
are sorted and persisted as an SSTable. In persistent storage, SSTables are structured in a series of
levels 𝐿0, 𝐿1, ..., 𝐿𝑛 . SSTables within the same level are maintained in a sorted order, with a disjoint
key-range for each SSTable file (except in 𝐿0, where key-ranges of SSTables are allowed to overlap
with each other). Generally, from lower levers to higher levels (from 𝐿0 to 𝐿𝑛), the number of
SSTables grow exponentially with a multiplier factor (denoted by 𝑇 ).

Operations: LSM-Tree allows two types of operations:
1) Client operations: LSM-Tree supports GET/PUT interfaces to read/write KV-pairs with the

specified key. For write requests, Memtables immediately buffer the write requests in memory.
When Memtables become full, recent write requests are sorted as an SSTable and flushed to storage
in sequential batches. By doing this, LSM-Tree exploits the high sequential write bandwidth of
persistent storage. For read requests, data retrieval starts from Memtables and a BlockCache,
where LSM-Tree caches data in memory for reads. Upon a cache miss, it will lookup multiple
SSTables (from 𝐿0 to high levels) until finding the key. To speed up searching, each SSTable has a
corresponding Bloom Filter [9] to test whether an entry exists. If Bloom Filter reports negative, we
can save the cost of loading the SSTable from storage.

2) Background operations: LSM-Tree has two background operations, Flushing and Compaction,
executed by threads disjoint from client operations. Flushing is to flush out Memtables to 𝐿0 in
storage. To reduce the processing cost of flushing, SSTables in 𝐿0 are allowed to have overlapping
key ranges between each other. Compaction is to merge lower-level SSTables into higher levels.
Because lower-level SSTables store newer data, the LSM-Tree deletes obsolete entries (i.e., those
updated by newer values) during compaction and reduces the number of SSTables. Specifically, for
compaction from 𝐿𝑖 to 𝐿𝑖+1 (𝐿𝑖 ->𝐿𝑖+1 for short), one SSTable from 𝐿𝑖 is selected and then is merged
with the SSTables from 𝐿𝑖+1 that have overlapping key-ranges. After merging, newly generated
SSTable is put in 𝐿𝑖+1.

Amplification Factors and Trade-offs: LSM tree is, essentially, an Access Method [33, 38] that
is used to organize and access data. For Access Methods, there is a fundamental trade-off to strike
between the read cost (R), the update/write cost (U), and the memory/storage overhead (M), also
known as the RUM Trade-off [38]. Performance tuning of RocksDB can be viewed as striking a
good RUM trade-off that is appropriate for workloads and hardware. Specifically, for an LSM-Tree,
there are three amplification factors to write, read, and space costs.
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Write Amplification (WA) is defined as the ratio between the total bytes of data written to the
storage and the total bytes of user data written to the LSM-Tree. Compaction is the major cause
for WA. For 𝐿𝑖->𝐿𝑖+1 compaction (𝐿𝑖+1 is 𝑇 times larger than 𝐿𝑖 ), merging one SSTable results in
reading and writing 𝑇 overlapping SSTables from 𝐿𝑖+1 on average, which incurs a WA factor of 𝑇 .
Read Amplification (RA) is defined as the number of disk reads per read request. Read requests

are first served by the block cache. Upon a cache miss, a read is processed by searching the SSTables
from persistent storage. Before the actual disk IO of an SSTable, a Bloom Filter tests if the requested
entry exists in the SSTable. If the Bloom Filter reports positive, the block containing the entry is
loaded to the block cache. Thus, RA is determined by the number of SSTables searched, the false
positive rate of Bloom Filters, and the block size.
Space Amplification (SA) is defined as the ratio between the size of data on the disk and the

actual user data size. LSM-Tree relies on compaction to execute garbage collection (GC) to remove
obsolete entries in the LSM-Tree.

2.2 Multi-Armed Bandit
Multi-Armed Bandit (MAB) problem [4, 11, 27, 62] has a long history and has recently received
attention in various applications such as hyperparameter tuning for machine learning algorithms,
online advertising, and medical trials [13, 21, 26, 30, 42, 50, 57, 63]. MAB is, essentially, a simple
but powerful framework for a decision-making process based on observations.
Model:MAB model is comprised of 𝑘 arms. At each round, a player (agent) selects an arm to

pull and receives a reward. For 𝑖-th arm (1 ≤ 𝑖 ≤ 𝑘), its reward follows a probability distribution
with the mean as `𝑖 , which is unknown to the player. An arm with the highest mean reward is
called the best arm. At round 𝑡 , the player decides which arm to pull depending on the history of
observations (selections and rewards) up to time 𝑡 − 1. Under the setting of best-arm identification,
the player’s goal is to identify the best arm as rapidly as possible.

Exploration-Exploitation Trade-off:Whenmaking selections, the player faces an Exploration-
Exploitation trade-off. On the one hand, the player needs to explore more arms to get more
information. On the other hand, the player needs to exploit the seemingly most rewarding arms
to reduce uncertainty and concentrate reward bounds. One example strategy [65] for striking
the exploration-exploitation trade-off is to choose arm 𝑥𝑡 at round 𝑡 by upper-confidence-bound:
𝑥𝑡 = argmax `𝑡−1 (𝑥) + 𝜎𝑡−1 (𝑥) (𝑥 ∈ [𝑘]) where `𝑡−1 (𝑥) is the posterior mean reward for arm 𝑥

based on observations up to time 𝑡 − 1 and 𝜎𝑡−1 (𝑥) is the standard deviation. It always greedily
selects the arm with a reasonable upper bound. It strikes the exploration–exploitation trade-off
by preferring both two types of arms: arms which are promising to achieve high rewards (large
`𝑡−1 (𝑥)) and arms whose reward distribution is uncertain (large 𝜎𝑡−1 (𝑥));
Arm Evaluation: In practice, pulling an arm once and receiving the reward is usually time-

consuming. For example, for hyperparameter tuning in machine learning algorithms, pulling one
arm (one hyperparameter configuration) means executing cross-validation on a large training set.
In many cases, cheap approximations to evaluation are available. For example, a machine learning
model’s performance can be approximated by training models on a subset of data rather than the
whole dataset. Thus, we can apply the Early-Stopping strategy [31, 45] to terminate evaluation of
poor arms early to reduce the overall time-cost of evaluation.

3 MOTIVATING EXPERIMENTS
3.1 Setting
We use the tool db_bench [28], RocksDB’s standard tool, to measure RocksDB’s performance and
gather insights regarding its behavior. We use the YCSB [14] workload generator implemented by
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Balmau et al. [7]. For motivating experiments, we use a write-intensive (70% PUT) and low-skewed
workload (Zipf skewness is 0.3) to increase the frequency of compactions and stress the persistent
storage component of the LSM-Tree. We use the performance metric Input/Output Operations Per
Second (IOPS), which is a critical metric used to measure RocksDB’s performance.

(a) Performance curve with periodic pattern. (b) Performance curves with rank-preserved property.

(c) Performance curve extrapolation (d) Tune key factors affecting performance
Fig. 4: Motivating Experiments

3.2 RocksDB Performance Curves
Periodicity of Performance Degradation: As Figure 4(a) shows, the IOPS time-series curve
(blue line, reporting IOPS every second) exhibits a periodic pattern after the initialization phase
while the IOPS average curve (yellow one, average from the start) converges to a stable status.
Note that there is an initialization phase for building the structure of an LSM-Tree. The faster the
request rate is (e.g., with more application threads), the shorter the initialization phase is. After
the initialization phase, we notice that for some intervals, IOPS drop significantly, almost to 0.
Prior works on RocksDB [7, 48, 53, 64, 68] also observe a similar pattern which is related to the
mechanisms of RocksDB: There is a fixed trigger condition for both flushing and compaction based
on the number of filled buffers and 𝐿0 SSTables. Given the application request rate is stable, the
filling rate of Memtables and 𝐿0 are also relatively stable, and flushing and compaction would be
triggered periodically. Another periodic condition is that flushing and compaction incur write
stalls, which arise in two situations: 1) Memtables fill up due to slow flushing. Flushing, which
writes Memtables out to the persistent storage, competes for IO bandwidth with compaction and
read requests. If flushing is slowed down due to contention on IO bandwidth, more Memtables are
filled up but not flushed out in time, which triggers a write stall. 2) 𝐿0 might fill up due to slow
compaction. If compaction is too slow, more SSTables will accumulate in 𝐿0 resulting in a write
stall. Observation: RocksDB exhibits periodic performance degradation due to flushing and compaction
operations as well as write stalls incurred by Memtables and 𝐿0 being full.

Rank Preserved:As Figure 4(b) shows, we observe that the average IOPS curves start converging
after a short-term initialization phase, implying that long-term performance could be approximated
by a short-term observation. We validate such an approximation with the following two methods.
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First, we propose a Rank-Preserved property for RocksDB configurations: Given 𝑛 configurations
and a reasonable selection of time points 𝑡1 ≤ 𝑡2, the configuration ranks at time 𝑡2 (sorted by a
performance metric such as IOPS) are the same as the ranks at time 𝑡1. We examine its validity
using experiments. As Figure 4(b) shows, we sort configurations at two time points, 100 seconds
and 600 seconds. We observe that top-3 configurations at 600 seconds are the same as the top-3 at
100 seconds. Further, nine of the top-10 at 600 seconds are among the top-10 at 100 seconds.

Second, inspired by the work on predicting the learning curves for ML training [23, 41, 46], we
examine whether we can extrapolate the RocksDB performance curve from the first part of the
workload to its remainder. We apply the curve prediction tool [23], which integrates a probabilistic
learning curve model, to extrapolate the performance of the first 100 seconds to the performance of
a longer workload of about 600 seconds. As Figure 4(c) shows, the extrapolation fits the ground truth
very well. Observation: The performance curves of RocksDB configurations have the rank preserved
property. Further, long-term performance can be predicted by extrapolating short-term behavior.

3.3 Factors Affecting Performance
We now use previous observation and domain-specific knowledge to explore the relevance of
certain factors on RocksDB performance. For storage systems, read/write (GET/PUT for RocksDB)
performance directly determines IOPS. The performance of read requests is often governed by
how often reads are served from memory data structures (i.e., cache hits) or storage (i.e., cache
misses). Thus, for reads, we identify two factors: Read-Memory and Read-Disk frequency. For
writes, building on the discussion from the previous experiment (Section 3.2), we identify two
factors: WriteBuffer-Full-Frequency and Compaction-IO. WriteBuffer-Full-Frequency captures the
frequency of write stalls caused by Memtables and 𝐿0 SSTables filling up. Compaction-IO captures
the compaction behavior of LSM-Tree and affects write requests from two aspects in contrasting
ways. 1) Compaction-IO competes for bandwidth with flushing, thus causing backlogs and write
stall; 2) Freeing up 𝐿0 SSTables by compacting them with 𝐿1 SSTables could help avoid write stalls.
We first associate RocksDB configuration parameters with these four factors based on our

analysis of RocksDB. For Read-Memory frequency, we select parameters related to managing
memory allocations. For Read-Disk frequency, we select parameters related to controlling the
level structure of the LSM-Tree. For WriteBuffer-Full-Frequency, we select parameters that control
the size of Memtables and 𝐿0. For Compaction-IO, we select parameters related to compaction
triggers and the size of levels (More details are in Section 4.1). The four factors capturing Read/Write
performance significantly affect IOPS. To demonstrate it, we tuned only those parameters that affect
the factor while fixing others for each factor and found Good/Fair/Poor configurations ranked by
IOPS. Figure 4(d) shows that the performance varies significantly depending on the configuration.
Observation: Carefully crafted composite features can help navigate the performance trade-offs.

4 DESIGN
Figure 5 presents the overview of Dremel. The various possible values of RocksDB parameters define
the parameter space through which we generate configurations. After generating configurations,
we use a rule-based filter to remove ineligible configurations due to resource constraints and
domain-specific requirements. For configurations passing the filter, we compute numeric values of
fused futures for each configuration and conduct quantile bucketing to normalize the numeric values.
Next, configurations with the same bucketed features form an arm of a multi-armed bandit model.
After building the multi-armed bandit model, we perform the exploration over arms by evaluating
configurations sampled from arms. To speed up evaluation, we conduct the multi-fidelity evaluation
to identify the best arm from which Dremel finally recommends a performant configuration.
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Fig. 5: An overview of the Dremel workflow. Parameter Space (Section 4.1) defines RocksDB configurations.
Rule-based Filter (Section 4.2) removes ineligible configurations. Feature Fusion (Section 4.3) and Quantile
Bucketing generates a powerful representation for each configuration. Multi-Armed Bandit (Section 4.4) is built
by fused features. By Multi-Fidelity Evaluation (Section 4.5), we identify the best arm of multi-armed bandit
and select the best configuration. Sampling strategy (Section 4.6) is to initialize the Multi-Fidelity Evaluation.

4.1 Parameter Space
To define the parameter space (presented in Table 1), we first identify which RocksDB parameters
significantly affect the performance metrics. We use three methods to identify important parameters
from over fifty candidates: 1) One-way analysis of variance: for each candidate, we vary its value
and compute the variance of observed metrics like IOPS and latency. We sort candidates by variance
and choose ones with a larger variance which means higher impacts. 2) We analyze key components
and mechanisms of LSM-Tree design and RocksDB implementation. We pick parameters related to
three key mechanisms: LSM-tree memory component management, LSM-tree storage component
management, and multi-threading parallelism. 3) We refer to the RocksDB tuning guide [28] and
other literature [1, 17, 18, 24, 40]. By using these three methods, we produce the parameter space.

4.2 Rule-Based Filter
After generating all possible configurations through the parameter space, we use a rule-based
configuration filter to remove configurations that will not meet the resource constraint rules and
RocksDB-specific requirements. We generate these rules based on the RocksDB codebase, the
official tuning guide [28], prior works [17, 18, 24], and human experience. We list these rules
as two separate sets (Resource constraints rules and RocksDB-Specific Rules) and explain their
implications, respectively. We consider resource constraints rules first:

• Rule 1: Worst-case space amplification is 𝑂 (∑#𝐿𝑒𝑣𝑒𝑙
𝑖

1
𝑇 𝑖 ) (notations defined in Table 1)

• Rule 2: Worst-case read amplification is 𝑂 (#𝐿𝑒𝑣𝑒𝑙 + #𝐿0𝐹𝑖𝑙𝑒)
• Rule 3: Worst-case write amplification is 𝑂 (𝑇 × #𝐿𝑒𝑣𝑒𝑙)
• Rule 4: Memory budget is O(MemtableUsage + BlockCacheUsage + BloomFilterUsage)

Rule-1 is to bound the disk space usage of RocksDB. We use an analytical model for the worst-
case space amplification, similar to prior works [17, 18, 24]. For RocksDB, the worst case of space
amplification is that entries stored in last level have newer entries with the same keys stored in
levels 0 to 𝐿 − 1. For such a case, the space amplification factor is 𝑂 (∑#𝐿𝑒𝑣𝑒𝑙

𝑖
1
𝑇 𝑖 ). By Rule-1, 𝑇

(max_bytes_for_level_multiplier) should not be too small, and we filter out configurations with 𝑇
smaller than four.
Rule-2 is to bound the read cost. For RocksDB, the worst case of read amplification is that one

read request results in searching all files in level 0 and searching one file for each level from 1 to
𝐿 (e.g., due to false positives in bloom filters). By Rule-2, level 0 should not be too large, so the
rule-based filter will filter out configurations with 𝑃 (level0_stop_writes_trigger) larger than 24.
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Class Name Notation Description Range Default
D level0_file_num_compaction_trigger C Number of files in level-0 when com-

pactions start
[2,16] 4

D level0_slowdown_writes_trigger D Number of files in level-0 that will slow
down writes

[6,20] 8

D level0_stop_writes_trigger P Number of files in level-0 that will trigger
put stop

[10,24 ] 16

D max_bytes_for_level_multiplier T A multiplier to compute max bytes for
level

[4,16] 10

D max_bytes_for_level_base S Max bytes for level-1 [64,2048]MB 256MB
D target_file_size_multiplier R A multiplier to compute target level-N

file size
[1,8] 1

D target_file_size_base F Target file size at level-1 [32,128]MB 64MB
D num_levels L The total number of levels [2,10] 10
M max_write_buffer_number Q The number of in-memory memtables [2,8] 6
M write_buffer_size W Number of bytes to buffer in memtable

before compacting
[32,80]MB 64MB

M min_write_buffer_number_to_merge M The minimum number of write buffers
that will be merged together

[1,4] 2

M bloom_bits E Bloom filter bits per key 10 10
M cache_size O Number of bytes to use as a cache of un-

compressed data
[384,1024] MB 616MB

M block_size B Number of bytes in a block [2048,16384]B 4096B
P max_background_compactions H The maximum number of concurrent

background compactions
[1,8] 1

P max_background_flushes U The maximum number of concurrent
background flushes

[1,4] 1

· op_num N Number of operations to do · ·
· key_size K Size of each key · ·
· value_size V Size of each value · ·

Table 1: RocksDB parameter space. The first column denotes the classification of parameters: D refers to
LSM-tree storage component management;M refers to LSM-tree memory component management; P refers
to multi-threading parallelism. For convenience, the names and descriptions of parameters keep the same as
RocksDB source code [28]. Note that the last three parameters N, K, V are not RocksDB configuration parameters
that are listed for later usage. We discuss ranges for parameters in Section 4.2.

Rule-3 is to bound the write cost. For RocksDB, the worst case of write amplification is that one
entry gets involved in 𝑂 (𝑇 ) compactions per level, and the cost is amortized across entries within
the same SSTable. By Rule-3, 𝑇 (max_bytes_for_level_multiplier) should not be too large, and the
rule-based filter will filter out configurations with 𝑇 larger than 16.
Rule-4 is to bound the memory usage. For RocksDB, the primary consumers of memory are

Memtables, BlockCache, and bloom filters. We set the memory budget as a constant (e.g.,𝑀𝑏𝑢𝑑𝑔𝑒𝑡 is
1 GB for our experiments), and the filter removes configurations whose usage exceeds the budget.

Next, We consider RocksDB-specific rules:
• Rule 5: level0_compaction_trigger < level0_slowdown_trigger < level0_stop_trigger
• Rule 6: max_bytes_for_level_multiplier > target_file_size_multiplier
• Rule 7: min_write_buffer_number_to_merge < max_write_buffer_number
• Rule 8: max_bytes_for_level_base ≈ L0 size
We also add a few rules that capture the relationships between the different RocksDB parameters.

Rule-5 expresses the constraints on parameters used by RocksDB’s rate-limiting mechanism. The
threshold for trigger compactions should be smaller than the thresholds for rate limiting. Rule-6
controls the number of SSTables within a level and prevents scenarios such as one level only
has a single SSTable. Rule-7 captures the semantics of the threshold for the number of merging
Memtables. Rule-8 is from the tuning guide, and it is to ensure that L0->L1 compactions are fast.

4.3 Feature Fusion
Although the rule-based filter removes some ineligible configurations, the dimensionality of the
parameter space is still high, and the curse of dimensionality still leads to a massive number of
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Fused Features Asymptotic Worst-Case Analysis Closed-form Expression

Compaction-Frequency
(Write Amplification)

O( #𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑇ℎ𝑟𝑒𝑎𝑑𝑠

#𝐿𝑒𝑣𝑒𝑙 ×∑#𝐿𝑒𝑣𝑒𝑙
𝑖=1 𝐿(𝑖−1)→𝑖𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) 𝐻

𝐿
× 𝑇+1

𝐹
×

𝑅− 1
𝑅#𝐿𝑒𝑣𝑒𝑙−1
𝑅−1

WriteBuffer-Full-Frequency 𝑂 ( 1
𝐿0𝑆𝑖𝑧𝑒

+ 1
𝑀𝑒𝑚𝑡𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

× 1
#𝐹𝑙𝑢𝑠ℎ𝑇ℎ𝑟𝑒𝑎𝑑𝑠

) 1
𝐶×𝑀×𝑊 +

1
𝑄×𝑊 ×𝑈

Read-SSTable-Cost
(Read Amplification)

𝑂 ( #𝐿0𝐹𝑖𝑙𝑒+#𝐿𝑒𝑣𝑒𝑙
#𝐸𝑛𝑡𝑟𝑖𝑒𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 ) (𝐶 + #𝐿𝑒𝑣𝑒𝑙) × 1

𝐵

BlockCache-Hit-Rate 𝑂 ( #𝐸𝑛𝑡𝑟𝑖𝑒𝑠𝐼𝑛𝐵𝑙𝑜𝑐𝑘𝐶𝑎𝑐ℎ𝑒
#𝐸𝑛𝑡𝑟𝑖𝑒𝑠 ) 𝑀𝑏𝑢𝑑𝑔𝑒𝑡 −𝑄 ×𝑊

Table 2: Fused Features. Notations in the last column are defined in Table 1.
candidate configurations (e.g., more than millions in our setting). As described earlier, RocksDB
performance is governed by the constituent read/write performance, and the settings of the various
parameters control the performance trade-offs between read and write performance. We now
use domain-specific knowledge and distill fused features that control read/write performance. By
leveraging fused features, we can reduce the search space associated with tuning configurations.

Based on the characterization experiments in Section 3, we propose the four fused features shown
in Table 2. This work focuses on striking a good trade-off between read and write performance,
which directly affects performance metrics. For space costs, as mentioned before in Section 4.2, it is
governed by one parameter, the level size multiplier𝑇 . We use a rule-based filter to bound it within
an acceptable range.
For characterizing write performance, we use two fused features Compaction-Frequency and

WriteBuffer-Full-Frequency by revisiting the analysis inmotivating experiments (Section 3): RocksDB
performance is highly affected by compaction operations as well as write stalls incurred by Memta-
bles and level-0 being full. For characterizing read performance, we use Read-SSTable-Cost and
BlockCache-Hit-Rate by revisiting previous analysis: read performance is often governed by how
often reads are served frommemory data structures (i.e., cache hits) or the cost of accessing SSTables
(i.e., cache misses). Next, we introduce these features:

4.3.1 Feature-1: Compaction Frequency.
Compaction-Frequency captures how frequently compaction happens, which could slow down

the flush process and cause write operations to stall as a cascading effect. Also, Compaction-
Frequency represents the write amplification factor because compaction is the main cause of write
amplification. To derive the expression, we first derive the asymptotic worst-case analysis following
a similar line of reasoning as the seminal work that introduced LSM-Trees [59]:
Given the level design of RocksDB, the worst-case for compaction frequency occurs when

compaction operations for every level happen at the same time.1 So the maximum Compaction-
Frequency is the following sum:

∑#𝐿𝑒𝑣𝑒𝑙
𝑖=1 𝐿(𝑖−1)→𝑖𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 here 𝐿(𝑖−1)→𝑖𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 means the

compaction frequency for 𝐿𝑖−1->𝐿𝑖 compaction operations. RocksDB implements multi-threaded
compaction, so the number of compaction threads limits the maximum number of compaction
jobs. Thus, we multiply the sum of the level compaction rates by the term #𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑇ℎ𝑟𝑒𝑎𝑑𝑠

#𝐿𝑒𝑣𝑒𝑙 to
encode the multi-threading mechanism. Hence, the asymptotic worst-case Compaction-Frequency
is O( #𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑇ℎ𝑟𝑒𝑎𝑑𝑠#𝐿𝑒𝑣𝑒𝑙 ×∑#𝐿𝑒𝑣𝑒𝑙

𝑖=1 𝐿(𝑖−1)→𝑖𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦).
With the asymptotic worst-case analysis, we nowderive the closed-form expression of Compaction-

Frequency. First, we derive the expression of the number of levels #𝐿𝑒𝑣𝑒𝑙 .2 Using one estimate, we
assume the last level of RocksDB holds 𝑁 × 𝑇−1

𝑇
entries (the same approximation as prior work

1In practice, due to some SSTables involved in more than one compaction, compaction operations with dependencies are
not initiated at the same time, so our big-O analysis provides the upper bound.
2RocksDB has one parameter 𝑛𝑢𝑚_𝑙𝑒𝑣𝑒𝑙𝑠 which is the upper limit of the total number of levels. Here, we derive the actual
number of levels given the workload.
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[17–19]). Using another estimate, the last level of RocksDB is 𝑇 #𝐿𝑒𝑣𝑒𝑙 times larger than Level-0,
which holds 𝐶×𝐹

𝐾+𝑉 entries. Hence,

𝑁 × 𝑇 − 1
𝑇

=
𝐶 × 𝐹
𝐾 +𝑉 ×𝑇

#𝐿𝑒𝑣𝑒𝑙 → #𝐿𝑒𝑣𝑒𝑙 = 𝑙𝑜𝑔𝑇
𝑁 × (𝐾 +𝑉 )

𝐶 × 𝐹
𝑇 − 1
𝑇

(1)

Next, we derive the term
∑#𝐿𝑒𝑣𝑒𝑙
𝑖=1 𝐿(𝑖−1)→𝑖𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦. We make two assumptions, which are

similar to Theorem 3.1 in the seminal work of LSM-Tree [59]: 1) All entries are never deleted until
they arrive at the last level of LSM-Tree. 2) When RocksDB is at a steady rate, the rate at which
compaction operations migrate entries from 𝐿𝑖−1 to 𝐿𝑖 is the same for all levels. We denote this
rate as 𝛾 , and this could also be viewed as the rate of newly ingested data at a level. For 𝐿𝑖−1 -> 𝐿𝑖
compaction, the input rate from 𝐿𝑖−1 is 𝛾 . To perform the compaction, we would then have to read
𝑇 × 𝛾 amount of data from 𝐿𝑖 and write out (𝑇 + 1) × 𝛾 to 𝐿𝑖 . Hence,

𝐿(𝑖−1)→𝑖 𝐼𝑂𝑅𝑎𝑡𝑒 → 2 × (𝑇 + 1) × 𝛾 (2)
Given the IO rate, the IO size for each compaction determines the compaction frequency. Gen-

erally, RocksDB takes one SSTable from 𝐿𝑖 for 𝐿𝑖->𝐿𝑖+1 compaction. Thus, the I/O size for each
compaction is determined by the SSTable size for each level. Hence,

#𝐿𝑒𝑣𝑒𝑙∑︁
𝑖=1

𝐿(𝑖−1)→𝑖𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 →
#𝐿𝑒𝑣𝑒𝑙∑︁
𝑖=1

𝐿(𝑖−1)→𝑖 𝐼𝑂𝑅𝑎𝑡𝑒

𝑆𝑆𝑇𝑎𝑏𝑙𝑒𝑖𝑆𝑖𝑧𝑒
(3)

For 𝑆𝑆𝑇𝑎𝑏𝑙𝑒𝑖𝑆𝑖𝑧𝑒 , we can derive its expression from the definition of F (target_file_size_base)
and R (target_file_size_multiplier):

#𝐿𝑒𝑣𝑒𝑙∑︁
𝑖=1

1
𝑆𝑆𝑇𝑎𝑏𝑙𝑒𝑖𝑆𝑖𝑧𝑒

=

#𝐿𝑒𝑣𝑒𝑙∑︁
𝑖=1

1
(𝑆𝑆𝑇𝑎𝑏𝑙𝑒1𝑆𝑖𝑧𝑒 × 𝑅𝑖−1)

=
𝐾 +𝑉
𝐹

#𝐿𝑒𝑣𝑒𝑙∑︁
𝑖=1

1
𝑅𝑖−1

=
𝐾 +𝑉
𝐹

𝑅 − 1
𝑅#𝐿𝑒𝑣𝑒𝑙−1

𝑅 − 1 (4)

Finally, according to Equations 1, 2, 3, and 4, we can derive the close-formed expression for
Compaction-Frequency and ignore 𝛾 , 𝐾 , and 𝑉 , which are workload-dependent and are constant
across all configurations. Hence,

𝑂 ( #𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑇ℎ𝑟𝑒𝑎𝑑𝑠
#𝐿𝑒𝑣𝑒𝑙

×
#𝐿𝑒𝑣𝑒𝑙∑︁
𝑖=1

𝐿(𝑖−1)→𝑖𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) →
𝐻

𝐿
× (𝑇 + 1)

𝐹
×
𝑅 − 1

𝑅#𝐿𝑒𝑣𝑒𝑙−1

𝑅 − 1 (5)

4.3.2 Feature-2: WriteBuffer-Full-Frequency.
WriteBuffer-Full-Frequency captures the frequency of Memtables being full and 𝐿0 being full.

Assuming that the write request rate is 𝜔 , the rate at which Memtables fill up is proportional to
𝜔

𝑀𝑒𝑚𝑡𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
. For RocksDB supporting multi-threaded flushing, the rate at which Memtables are

flushed out is proportional to #𝐹𝑙𝑢𝑠ℎ𝑇ℎ𝑟𝑒𝑎𝑑𝑠 . Considering both the speed of filling and flushing,
the frequency of Memtables being full is proportional to 1

𝑀𝑒𝑚𝑡𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
× 1

#𝐹𝑙𝑢𝑠ℎ𝑇ℎ𝑟𝑒𝑎𝑑𝑠 , where 𝜔 is
the same constant for all configurations and is thus ignored. By applying the same analysis for 𝐿0,
the frequency of 𝐿0 being full is 1

𝐿0𝑆𝑖𝑧𝑒
. Due to the overlapping SSTables in 𝐿0, 𝐿0->𝐿1 compaction

is conducted by a single thread, and there is no multi-threading term for 𝐿0. Note that there is no
parameter to precisely control the 𝐿0 size for RocksDB.We estimate the 𝐿0 size by the approximation
method from the RocksDB tuning guide [28]:

#𝐿0𝐹𝑖𝑙𝑒 ≈ 𝑙𝑒𝑣𝑒𝑙0_𝑓 𝑖𝑙𝑒_𝑛𝑢𝑚_𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛_𝑡𝑟𝑖𝑔𝑔𝑒𝑟 → 𝐿0𝑆𝑖𝑧𝑒 ≈ 𝐶 ×𝑀 ×𝑊 (6)

Then we can derive its expression from the definition of parameters:
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1
𝐿0𝑆𝑖𝑧𝑒

+ 1
𝑀𝑒𝑚𝑡𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

× 1
#𝐹𝑙𝑢𝑠ℎ𝑇ℎ𝑟𝑒𝑎𝑑𝑠

→ 1
𝐶 ×𝑀 ×𝑊 +

1
𝑄 ×𝑊 ×𝑈 (7)

4.3.3 Feature-3: Read-SSTable-Cost.
Read-SSTable-Cost captures the worst-case read cost when reads miss in the BlockCache and are

served by SSTables. The worst-case scenario occurs when the bloom filter reports false positives,
which leads to SSTable accesses. Also, Read-SSTable-Cost represents the read amplification factor
because disk reads due to false positives is a primary factor driving read amplification. For the
worst case, all files in 𝐿0 might be accessed as they have overlapping key ranges. After searching all
of the files in 𝐿0, only one SSTable is touched for each 𝐿𝑖 (i>0) as there is no overlapping between
SSTables at the same level 𝐿𝑖 (i>0). The unit for disk read is a block, so the cost is amortized by the
number of entries in the block.

Thus, Read-SSTable-Cost is 𝑂 ( #𝐿0𝐹𝑖𝑙𝑒+#𝐿𝑒𝑣𝑒𝑙
#𝐸𝑛𝑡𝑟𝑖𝑒𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 ). By Equation 1 for #𝐿𝑒𝑣𝑒𝑙 , Equation 6 for #𝐿0𝐹𝑖𝑙𝑒 ,

and the definition of #𝐸𝑛𝑡𝑟𝑖𝑒𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘 , we derive the closed-form expression where we ignore 𝐾
and 𝑉 , which are workload-dependent and constant across all configurations:

𝑂 ( #𝐿0𝐹𝑖𝑙𝑒 + #𝐿𝑒𝑣𝑒𝑙
#𝐸𝑛𝑡𝑟𝑖𝑒𝑠𝑃𝑒𝑟𝐵𝑙𝑜𝑐𝑘

) → (𝐶 + #𝐿𝑒𝑣𝑒𝑙) × 1
𝐵/(𝐾 +𝑉 ) → (𝐶 + #𝐿𝑒𝑣𝑒𝑙) ×

1
𝐵

(8)

4.3.4 Feature-4: BlockCache-Hit-Rate.
BlockCache-Hit-Rate captures the cache efficiency for read requests and is determined by the

percentage of entries cached, that is, 𝑂 ( #𝐸𝑛𝑡𝑟𝑖𝑒𝑠𝐼𝑛𝐵𝑙𝑜𝑐𝑘𝐶𝑎𝑐ℎ𝑒#𝐸𝑛𝑡𝑟𝑖𝑒𝑠 ). #𝐸𝑛𝑡𝑟𝑖𝑒𝑠𝐼𝑛𝐵𝑙𝑜𝑐𝑘𝐶𝑎𝑐ℎ𝑒 is determined
by the size of BlockCache. We can derive the closed-form expression, where we ignore 𝑁 , 𝐾 , and𝑉
as before:

𝑂 ( #𝐸𝑛𝑡𝑟𝑖𝑒𝑠𝐼𝑛𝐵𝑙𝑜𝑐𝑘𝐶𝑎𝑐ℎ𝑒
#𝐸𝑛𝑡𝑟𝑖𝑒𝑠

) →
𝑀𝑏𝑢𝑑𝑔𝑒𝑡 −𝑄 ×𝑊

𝐾 +𝑉 × 1
𝑁
→ 𝑀𝑏𝑢𝑑𝑔𝑒𝑡 −𝑄 ×𝑊 (9)

4.4 Multi-Armed Bandit Model
After feature fusion, each configuration has four numeric values corresponding to the fused features.
Next, we discuss how to construct the Multi-Armed Bandit model by using fused features.

4.4.1 Normalize feature values by Quantile Bucketing.

Fig. 6: Quantile Bucketing. The example numeric value of the first feature lies in the 4-th bucket.

We normalize numeric feature values by Quantile Bucketing, as shown in Figure 6. By the
definitions of the fused features, it is likely that configurations with similar feature values are likely
to have similar behaviors. For example, configurations with similar numerical values for BlockCache-
Hit-Rate are likely to have a similar cache-hit rate. We, therefore, use Quantile Bucketing to
normalize numerical feature values into a small number of buckets. In particular, for the 𝑖-th feature,
we bucketize the numerical values such that each bucket has the same number of configurations.
For example, Figure 6 shows bucketing with 5-quantiles for the first feature. We then take each
configuration and normalize its numerical feature values with the indices of the buckets the values
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lie in. For example, Figure 6 shows we normalize a configuration’s first feature as 4 because its
numeric value lies in the 4-th bucket (2/1/5 for second/third/fourth features, respectively).

We have now converted the large parameter space into a small fused feature space (e.g., 5×5×5×5
as Figure 6 shows). Fused feature space has much less dimensionality, which can enable the efficient
search method described next.

4.4.2 Multi-Armed Bandit.
Now we build a Multi-Armed Bandit model in which each arm is a cluster of configurations

whose normalized features are the same for all four fused features. For example, as Figure 6 shows,
we construct an arm which is a cluster of configurations whose normalized features are (4,2,1,5).

We define our Multi-Armed Bandit model as follows: A player is given 𝑛 arms, indexed by
[𝑛] = [1, 2, 3, ..., 𝑛]. For example, with 5-quantile bucketing, our Multi-Armed Bandit model
has 54 = 625 arms. The 𝑖-th arm is associated with 𝑀 configurations {𝐶 𝑗

𝑖
|∀𝑗1, 𝑗2, 1 ≤ 𝑗1, 𝑗2 ≤

𝑀, 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐶 𝑗1
𝑖
) = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐶 𝑗2

𝑖
)}. The 𝑖-th arm is also associated with a

reward, which is performance metrics (e.g., IOPS) while running configuration 𝐶 𝑗
𝑖
. At every round

𝑡 , the player pulls one arm (i.e., runs one configuration from it) and observes performance metrics
as its reward. Note that each arm has a bunch of configurations, and we assume that we randomly
sample one configuration from this arm to run (We will discuss later other policies for sampling
configurations in Section 4.6). Our goal is to identify the best arm (i.e., the arm having the maximal
expected reward, that is, best performance). Next, we describe our policy on how to evaluate arms
and then identify the best arm.

4.5 Multi-fidelity Evaluation
We have now built a Multi-Armed Bandit model with 𝑛 arms. Next, we present our policy on how
to explore the 𝑛 arms to identify the best one.

4.5.1 Successive Halving.
Evaluating RocksDB configurations is usually expensive because workload traces for evaluating

configurations are generally in the order of tens of minutes (even hours) [12, 22, 25]. We need
to replay the workload trace for each configuration, so even evaluating a limited number of
configurations incurs a significant time cost.

Based on the characteristics of the RocksDB performance curves (Section 3.2), we enable themulti-
fidelity evaluation for RocksDB configurations by using a cheap approximation to expensive longer
duration testing. We refer to the conventional method of evaluating configurations by running
the whole workload as the single fidelity method (In our setting, fidelity means the duration of
testing). Alternatively, we pursue a multi-fidelity method where we terminate testing earlier for
configurations performing poorly on a small subset of the workload. For promising configurations,
we assign a longer evaluation time. By doing this, we speed up the process of identifying the best
arm. The rationale for the multi-fidelity evaluation is that configurations performing poorly are also
more likely to perform worse over complete runs, given the nature of the RocksDB performance
curves we discussed in motivating experiments (Section 3).
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Algorithm 1: Successive Halving
Input: 𝑛 arms, round R, time points T [.], rank

function 𝑅𝐴𝑁𝐾 (.)
1 Initialize 𝑆0← sample 𝑛 configurations one

configuration per arm
2 for 𝑟 = 0 𝑡𝑜 R do
3 run each configuration 𝑖 ∈ 𝑆𝑟 until arriving

at time point T [𝑟 ]
4 𝑆𝑟+1← set of ⌈ |𝑆𝑟 |2 ⌉ configurations with

top-50% 𝑅𝐴𝑁𝐾 (.) values
Output: configurations in 𝑆𝑅

Fig. 7: Runtime of Successive Halving

Specifically, we apply the Successive Halving algorithm [44] to implement multi-fidelity evalu-
ation (As Algorithm 1 shows). Basically, each round runs all configurations with a time budget,
collects performance metrics for all configurations, performs an early stop for the worst half, and
repeats until one configuration remains. Figure 7 shows one example of executing Successive
Halving where each vertical line represents the halving step.

Our Successive Halving algorithm executes halving with a rank function. We can flexibly define
the rank function to achieve the desired objective. We give three examples: 1) If the single objective
is to maximize IOPS, the rank is given by sorting IOPS such that the higher the IOPS, the higher is
the ranking. 2) If the single objective is to minimize latency, the rank is given by sorting latency
such that the lower the latency, the higher is the ranking. 3) If multiple objectives are sought (say
to achieve high IOPS and low latency), for each configuration, we have two ranks, IOPS_rank
and Latency_rank. We take the lower one of these two ranks. By doing this, we only select the
configurations with latency and IOPS both being ranked in top-%50 for each halving step.

4.5.2 Selection of Time Points.
As Figure 7 shows, at the starting stage of the workloads, the IOPS curve has not yet converged

to a stable state due to the structure of the LSM-Tree (i.e., the persistent storage component has not
achieved a stable state). We conduct the Successive Halving until the performance curve exhibits
less fluctuation. We use one metric Windowed Variance to measure convergence: for time point
𝑡 , its windowed variance is defined as the variance of IOPS reported per second during the last 𝑘
seconds. When to converge is affected by the rate of request. In our practice, we control the request
rate by the number of application threads. Fixing the number of application threads, then we apply
the windowed variance to monitor the fluctuation. If the fluctuation is less than a threshold (e.g.,
10% of average IOPS), we select such a time point to execute Successive Halving.

4.6 Sample Configuration from Arms
In the previous section, we just randomly sample one configuration when pulling each arm. Next,
we present two alternative sampling methods that take into account the performance variance of
configurations within the same arm.

4.6.1 Heuristic Sampling. We pick configuration from a specific arm according to the rank of the
numeric feature values. Although configurations within the same arm have the same normalized
feature values, their numeric values before normalization have slight differences. We sort configu-
rations by the numeric value of one fused feature (WriteBuffer-Full-Frequency by default) and then
pick the configuration with the smallest value. The rationale to select the smallest WriteBuffer-
Full-Frequency is that the configuration could have the least frequency of write buffer being full.
With such a Heuristic Sampling method, we sample one configuration per arm. Next, we present a
method to sample more configurations from an arm.
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4.6.2 Upper Confidence Bound Sampling. We propose a sampling method based on the concept of
Upper Confidence Bound (UCB) [5, 10, 42, 43] to sample configurations for Successive Halving. We
associate the 𝑖-th arm with a list 𝐼𝑖 recording metrics (e.g., IOPS) of ever-tried configurations from
the 𝑖-th arm. UCB for the 𝑖-th arm is defined as:𝑈𝐶𝐵𝑖 = 𝑀𝑒𝑎𝑛(𝐼𝑖 ) +𝑆𝑡𝑑𝑑𝑒𝑣 (𝐼𝑖 ). UCB sampling works
as follows: Basically, we initialize UCB for each arm by running one configuration (heuristically
sampling) from the arm and collecting performance metrics. Note that we cannot calculate the
stddev with only one data point, so we use the stddev across all arms initially (denoted as global
stddev). Next, we sample more configurations from the top-k arms ranked by UCB, evaluate them,
collect metrics, and update their UCB. We can repeat the process multiple times to sample more
configurations, thus relying on UCB Sampling to strike a good exploration-exploitation trade-off and
find a better configuration. To integrate heuristic sampling and UCB sampling into the workflow:
we replace the initialization set of Successive Halving (line 1 in Algorithm 1) with the heuristic
sampling output (As Algorithm 2 in Appendix A.2 shows). Then we evaluate configurations sampled
heuristically and then resort to UCB sampling to explore additional configurations within the arms.

5 EVALUATION
5.1 Setting

Testbed. Our testbed comprises a cluster with x86 servers as client nodes and Stingray PS1100R,
a SmartNIC-based disaggregated storage solution, as storage nodes. Each server has Intel Xeon
processors and 96GB of memory running CentOS 7.4. Storage nodes use Samsung DCT983 960GB
NVMe SSDs. We use Intel SPDK (v19.07) as a storage IO stack, supporting rate limits on IO
bandwidth. We use RocksDB (v6.15), which is compatible with the SPDK environment.
Implementation. We implement all components of Dremel into a tuning controller that is

independent of the RocksDB instance. The tuning controller sends the configuration to the RocksDB
instance and fetches the performance log after testing. For Quantile Bucketing, we use two buckets
by default for each fused feature. For Successive Halving and UCB Sampling, we describe its
parameters later for specific experiments.

Comparison Baselines. We compare Dremel against four baselines described as follows:
• Single-Task Bayesian Optimization (SingleTaskBO) [6] is a classical Bayesian Optimization

(BO) method that uses BO to solve the optimization problem of a black-box function, which in our
case is optimizing an objective such as IOPS. The BO method incorporates the RocksDB parameters
into a Gaussian Process model to navigate the search space. We use an efficient implementation of
the Gaussian Process in BoTorch [6].
•Multi-Task Bayesian Optimization (MultiTaskBO) [1, 16] is an extension of BO that leverages

the concept of multi-task learning to speed up the search process. This method utilizes a Gaussian
Process kernel supporting multi-task learning on the data originating from decomposing main
objective into sub-objectives. We implement the method with GPyTorch [29] for the multi-task
learning kernel and BoTorch [6] for the BO framework.
• RandomSearch [8] is used to randomly sample configurations in the parameter space. We also

use rule-based filters to remove some ineligible configurations due to resource constraints.
• TuningGuide [28] is released by developers of RocksDB to provide some suggestions and

general principles for tuning RocksDB based on developers’ understanding and experience. In our
experiments, we view the performance metric under the guide’s configuration as the base value
(1.0) to normalize other baselines for comparison.

Workloads. We use the tool db_bench [28], RocksDB’s standard tool, to benchmark performance.
We use the YCSB workload generator implemented by Balmau et al. [7]. We use 16 threads as
application threads that generate requests quickly to drive RocksDB into a stable state quickly. By
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default, we set the key size as 16 Bytes and the value size as 1024 Bytes, which are representative
of real traces. We use preloading (e.g., running fillseq for two minutes) to simulate the scenario
of adapting on the fly when workload changes occur in an existing instance. For the scenario of
optimizing for an initial setup, there is no preloading phase. We vary the SSD bandwidth by using
a rate limiter to simulate the scenario of hardware changes. We evaluate 18 settings with different
workload characteristics and hardware conditions described as follows:
• Synthetic workloads: For the scenario of initial setup (i.e., no preloading), we consider 9

workloads with varying Zipf skewness [0.3, 0.6, 0.9] and varying GET request proportions [30%,
60%, 90%] (i.e., the remainder requests are PUTs). We limit the SSD bandwidth to 100 MB/s. For
the scenario of adapting on the fly (i.e., with preloading), we have 3 workloads with varying GET
proportions [30%, 60%, 90%], while we set Zipf skewness as 0.9 and limit the SSD bandwidth as 100
MB/s. For the scenario of hardware changes, we consider 3 workloads with varying GET proportions
[30%, 60%, 90%], while we increase the SSD bandwidth to 200 MB/s and set Zipf skewness as 0.9.
• Production workloads: We have three production workloads: 1) We use YCSB-A [14], corre-

sponding to 50%GET and 50%PUT with the Zipf skewness of 0.5 and SSD bandwidth set to 200
MB/s. 2) We use YCSB-B, a read-intensive workload corresponding to 95%GET and 5%PUT with
the Zipf skewness of 0.5 and SSD bandwidth set to 200 MB/S. 3) We use the Nutanix workload
sampling from the production deployment [7] corresponding to 57% GET, 41% PUT, and 2% SCAN
with the Zipf skewness of 0.5 and SSD bandwidth set to 100 MB/s.

Metrics. In this work, we use Input/Output Operations Per Second (IOPS) and 99% read tail
latency. Besides performance metrics, we also report the tuning time.

5.2 Efficacy of Dremel
5.2.1 Optimizing for IOPS.
In this experiment, we apply Dremel to produce the best-identified configuration to maximize

IOPS for 18 workload settings while comparing against four other methods with the same time
budget. For Dremel, we execute the quantile bucketing with two buckets for each fused feature,
i.e., we have 24 = 16 arms. First, heuristic sampling obtains 16 arms, and then UCB sampling
obtains top-5 configurations per round for three rounds. So we have 16 + 3 × 5 = 31 configurations
to evaluate for Dremel. For successive halving, by analyzing the windowed variance, we set
time points as [60s, 80s, 100s] to conduct halving. Thus, the total tuning time for Dremel is
60 × 31

2 + 80 ×
31
4 + 100 ×

31
4 = 2325 seconds. We assign the same time budget for the other four

comparison methods. For the configuration finally recommended by Dremel and others, we take
the average IOPS for running the workload for 120 seconds. So the time of each optimization step
for MultiTaskBO, SingleBO, and RandomSearch is 120 seconds.
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(a) No-Preloading, Skew0.3, SSD 100MB/S (b) No-Preloading, Skew0.6, SSD 100MB/S

(c) No-Preloading, Skew0.9, SSD 100MB/S (d) With-Preloading, Skew0.9, SSD 100MB/S

(e) With-Preloading, Skew0.9, SSD 200MB/S (f) Production Setting
Fig. 8: Maximize IOPS for 18 different settings of workload and hardware. Three settings for each figure.

Figure 8 presents the IOPS comparisons for different settings of workloads and hardware.
Dremel achieves the largest improvements on all 18 settings compared with other methods using
the same time budget. Dremel improves IOPS over the tuning guide’s configuration by up to 2.61×.
Figures 8(a), 8(b), and 8(c) present results for settings with no preloading. It demonstrates that
Dremel can generate efficient configurations for initial setups before launching RocksDB instances.
Figure 8(d) demonstrates that Dremel can generate efficient configurations for on-the-fly adapting
when workload changes for an existing instance (i.e., with preloading data). Figure 8(e) demon-
strates Dremel can effectively adapt to different hardware conditions, e.g., where we increase SSD
bandwidth to 200 MB/S. Figure 8(f) presents results for three settings from a production environ-
ment. Note that the Nutanix workload involves 3% Scan operations (the remainder is GET/PUT),
which shows that Dremel can work with more types of operations besides GET and PUT. Moreover,
the Nutanix workload has a different value size (400 Bytes, 1024 Bytes for other workloads).

5.2.2 Tuning Time.
We demonstrate how quickly Dremel finds the best-identified configuration. We plot the tuning

process for the settings used in the previous experiments. We present 4 representative settings here.
More results are in Appendix A.3.1.
Figure 9 presents the tuning time for Dremel and other methods. Lines of Dremel start from

1200 seconds rather than 0 like others. This is because Dremel needs to play each arm at least
once before identifying the best arm, and we have at least 16 arms to conduct successive halving
on (60 × 16

2 + 80 ×
16
4 + 100 ×

16
4 = 1200 seconds). After finishing the evaluation of configurations

from heuristic sampling (1200 seconds), UCB sampling starts to pull more configurations from
promising arms. Note that we can terminate the tuning for Dremel before starting UCB sampling if
the time budget is extremely limited. As Figure 9(b) and 9(d), IOPS achieved by heuristic sampling
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(a) No-Preloading, Skew0.3, 100MB/S, 60%GET (b) No-Preloading, Skew0.6, 100MB/S, 60%GET

(c) With-Preloading, Skew0.9, 100MB/S, 30%GET (d) With-Preloading, Skew0.9, 100MB/S, 60%GET
Fig. 9: Tuning time comparison for 4 settings of workload and hardware.

is sufficiently high. If we allow for more tuning time, UCB sampling can further improve the IOPS
(see Figures 9(a) and 9(c)). We observe that each step of Dremel uses less time compared with others
because Dremel applies the multi-fidelity evaluation to speed up the process. Also, note that in
Figure 9(a), IOPS reduces a little bit after we start UCB sampling as the successive halving process
could introduce errors due to approximation. But, this error is eliminated after evaluating more
configurations. We quantify such errors later (Section 5.3.3).

5.2.3 Optimization for Latency.

(a) No-Preloading, Skew0.9, SSD 100MB/S (b) With-Preloading, Skew0.9, SSD 100MB/S
Fig. 10: Minimize read latency (99%) for 6 different settings of workload and hardware.

In this experiment, we apply Dremel to minimize read latency (99%). Dremel can flexibly switch
the objective from maximizing IOPS to minimizing latency by assigning different rank functions
for successive halving. For BO-based approaches like MultiTaskBO, their design is highly coupled
with the objective. For new objectives, MultiTaskBO needs to design a new decomposition of tasks,
which is beyond the scope of the original work. Therefore, for this experiment, we only compare
against RandomSearch and TuningGuide. Figure 10 shows that Dremel can lower the read latency
to 43% of that under the default configuration for both preloading and no-preloading settings. More
results are in Appendix A.3.2.

5.2.4 Achieve both low-latency and high-IOPS . This experiment demonstrates that Dremel can rec-
ommend a configuration to simultaneously achieve low-latency and high-IOPS. Besides optimizing
for a single objective, Dremel also supports multi-objective optimization by defining a rank function
that balances multiple objectives simultaneously. Figure 11 presents three types of configurations
against the default one. Max_IOPS and Min_Latency are single-objective optimizations (maximizing
IOPS and minimizing latency, respectively). Balance is the configuration that strikes a trade-off
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(a) No-Preloading, Skew0.6, Read 60, 100MB/S (b) YCSB-A
Fig. 11: Achieve both low-latency and high-IOPS. One setting for each figure.

between high-IOPS and low-latency. Balance is better than the default TuningGuide in terms of
both latency and IOPS. In Figures 11(a) and 11(b), Balance is better than Max_IOPS or Min_Latency
in terms of one metric (latency and IOPS, respectively).

5.3 Evaluate Components of Dremel
5.3.1 Impact of Feature Fusion.

Workload Avg. IOPS Inter-Arm STDDEV Intra-Arm STDDEV
30%GET 34065 1322.76 7407.66
60%GET 29319 1148.48 6058.23
90%GET 17937 877.81 3137.99

Table 3: Impact of Feature Fusion. No preloading, Zipf skewness is 0.3, and SSD is 100 MB/S.

In this experiment, we evaluate the utility of feature fusion. We view feature fusion as a form
of clustering over configurations, with each arm now representing a cluster of configurations.
An effective clustering approach would group configurations with high similarities in terms of
features’ definitions and leave out configurations with low similarity. For our default setting (two
buckets for each feature), we have 16 arms. We randomly sample five configurations from each
arm to evaluate its IOPS, and we define two metrics to evaluate the quality of the clustering. 1)
For each arm, Inter-Arm STDDEV is the standard deviation of IOPS values of five configurations
from the same arm. We take the average over all the arms. 2) Intra-Arm STDDEV is the standard
deviation of IOPS values of 5 configurations randomly sampled regardless of arms. By definition, a
good clustering approach can achieve a low Inter-Arm STDDEV and high Intra-Arm STDDEV. We
conduct the experiments in three different settings. Table 3 reports the standard deviation values
and average IOPS over all the configurations as a reference. It shows that feature fusion achieves a
much lower Inter-Arm STDDEV than Intra-Arm STDDEV, which means feature fusion is useful to
cluster configurations.

To further evaluate the utility and importance of feature fusion, we conduct experiments by taking
out one of the fused features while running Dremel. Figure 12 shows experiments using the subset
of fused features, where No-WFF, No-CF, No-RSS, No-BCH mean that we exclude WriteBuffer-
Full-Frequency, Compaction-Frequency, Read-SSTable-Cost, or BlockCache-Hit-Rate, respectively.
As Figure 12 shows, using all four features can achieve the highest IOPS on all workload settings.
Excluding one of the fused features weakens the efficacy of Dremel on tuning configurations,
although using subsets of features can shorten the tuning time.

Fig. 12: Using subsets of fused features. Skew 0.9,
No-Preloading, SSD 200MB/S

Fig. 13: Varying the number of buckets. Skew 0.9,
No-Preloading, SSD 200MB/S
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5.3.2 Impact of Bucket Number.
In this experiment, we evaluate Dremel’s design choice on the number of buckets for quantile

bucketing, which determines the number of arms to pull and configurations to evaluate. For our
default setting with the number of buckets set as two, Dremel has 24 arms. If we increase the number
of buckets to three, Dremel has 34 arms. Heuristic sampling pulls one configuration per arm. Thus,
more arms mean more configurations to evaluate, and more arms increase the probability of finding
better configurations but need a longer time to evaluate. Figure 13 and 14 presents maximizing

(a) No-Preloading, Skew0.9, 100MB/S (b) With-Preloading, Skew0.9, 100MB/S
Fig. 14: IOPS comparison for quantile bucketing with two or three buckets. Three settings for each figure.

IOPS by Dremel with varying the number of buckets from 2 to 4 for quantile bucketing. We use
TuningGuide as a baseline for reference. As expected, Dremel with four or three buckets for quantile
bucketing performs better than the 2-bucket setting in terms of IOPS. However, the 4-bucket setting
needs about 16x times longer evaluation time than the 2-bucket setting. (The 3-bucket setting is 5x
longer than the 2-bucket setting.) The 4-bucket setting needs about five hours to tune configurations
for one workload/hardware setting. The 2-bucket setting just needs about a half-hour. The 2-bucket
setting sufficiently maximizes IOPS compared with the baseline while needing less tuning time.

5.3.3 Impact of Multi-fidelity Approximated Evaluation.

Workload Best-Seen IOPS Achieved IOPS Achieved Percents
NoPreloading_skew0.3_30%GET 55214 50189 90.8%
NoPreloading_skew0.3_60%GET 49633 48656 98.0%
NoPreloading_skew0.3_90%GET 30430 30430 100%

Table 4: Accuracy of multi-fidelity approximated evaluation. SSD bandwidth is 100 MB/S.

In this experiment, we measure the error incurred by the approximation of successive halving.
Successive halving conducts an early-termination strategy to stop configurations that are perform-
ing poorly, and this could erroneously terminate some configurations that would perform better
when run for a longer time. We quantify the accuracy of successive halving. For our default setting,
Dremel evaluated 31 configurations in total (16 for heuristic sampling and 15 for UCB sampling). We
identify Best-seen IOPS as the IOPS achieved by the best one among the 31 configurations when all
of them are run sufficiently long. Achieved IOPS is from the configuration that is recommended by
Dremel. We define the achieved percentages as the ratio between the Achieved IOPS and Best-seen
IOPS. 100% is perfect, which means there is no error incurred by the approximated evaluation.
Table 4 reports the results from several settings from previous experiments. From the last column,
we can see that the error is acceptable, and for some cases, Dremel identifies the best configuration.
More results are in Appendix A.3.3.

5.3.4 Impact of Upper-Confidence-Bound Sampling.
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(a) UCB-0 (b) UCB-10 (c) UCB-20
Fig. 15: Runtime of Upper-confidence-bound sampling. No-Preloading, skewness 0.6, SSD 100MB/S, 30%GET

In this experiment, we measure the impact of Upper-Confidence-Bound sampling. The idea
of Upper-Confidence-Bound sampling is to sample more configurations from promising arms
after evaluating all arms once. Figure 15 presents one example of UCB sampling runtime trace
(one application thread). From left to right, the figures show Dremel samples 0, 10, 20 more
configurations by UCB sampling. As we increase the number of UCB samples from left to right,
more configurations are evaluated. Among the additional configurations from UCB sampling, most
of them are from regions with a higher confidence bound to achieve greater IOPS as UCB sampling
navigates Dremel to explore the promising arms more intensively. Thus, UCB sampling can utilize
the tuning time budget more efficiently. More results are in Appendix A.3.4.

6 DISCUSSION
6.1 Applicability to Other Systems
Besides RocksDB, Dremel is also applicable to other systems that use LSM-tree-based storage.
For example, we discuss below how we could apply Dremel to Apache Cassandra and Apache
Flink. Further, the design of the Dremel pipeline is sufficiently general for tuning some other
systems, especially storage systems that embody the RUM tradeoff [38] between the read cost (R),
the update/write cost (U), and the memory/storage overhead (M).
Apache Cassandra [3] is a NoSQL distributed database whose storage engine uses an LSM-

tree-based structure. Cassandra’s memory component and persistent storage component support
operations similar to RocksDB. Also, Cassandra supports leveled compaction policy similar to
RocksDB. So Dremel’s fused features and tuning workflow are directly applicable to Cassandra,
with the difference limited to the parameter names of Cassandra configurations compared with
RocksDB parameters. Table 6 in Appendix A.1 shows parameters of Cassandra configurations
corresponding to RocksDB parameters. For parameters that are not tunable in Cassandra, we can
replace them with constants while applying fused features, which could reduce the power of fused
features representing configurations but not affect the correctness.
Apache Flink [2] is a framework and processing engine for stateful computations over data

streams, and it uses key-value stores, such as RocksDB, to manage the computations. In fact,
RocksDB is the de facto store for Flink’s state management. Thus, Dremel’s fused features and
workflow are applicable for tuning the performance of Flink’s state engines. Table 6 in Appendix
A.1 shows parameters used by Flink and their correspondence to RocksDB parameters.

Generality and Limitation: To generate adaptive configuration, Dremel firstly distills a large
number of raw features into a small number of fused features and then expresses configurations
more concisely so as to reduce the search space. With the condensed search space, Dremel builds a
Multi-Armed Bandit model and enables the effective evaluation of configurations. Besides RocksDB,
Dremel’s workflow is applicable to tune other systems, especially storage systems, with a condensed
configuration space. The only issue is that feature fusion requires some domain-specific expertise
for other systems. A possible way to derive fused features is using learning methods to distill a
large set of features, which is our future work.
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6.2 Mechanisms to Adapt Configurations On-the-fly
Besides the initial setup of the RocksDB instance, Dremel also targets adaptivity in the form of
on-the-fly adaptation of configurations. For the initial setup phase, the RocksDB instance has not
been launched yet. So operators can directly use the configuration produced by Dremel to configure
the new instance. For the on-the-fly adaptation, the running instance already has one configuration
being used. Next, we discuss two mechanisms to update a configuration on-the-fly, which are
orthogonal to Dremel’s workflow components that recommend an efficient configuration.

Dynamic Adjustment Instance Migration
level0_file_num_compaction_trigger, level0_slowdown_writes_trigger, max_bytes_for_level_multiplier, max_bytes_for_level_base,

level0_stop_writes_trigger, min_write_buffer_number_to_merge, target_file_size_multiplier, target_file_size_base,
max_background_compactions, max_background_flushes num_levels, max_write_buffer_number,

write_buffer_size, bloom_bits, cache_size, block_size

Table 5: Two mechanisms to on-the-fly update configuration parameters.

Dynamic Adjustment: For parameters that are thresholds to trigger operations such as com-
paction and flushing, we can dynamically update the values from the old configuration to the new
one. (See left column of Table 5). Specifically, a configuration file can maintain the latest parameters
values, and this file can be queried periodically to determine when operations should be triggered.
Implementing the dynamic adjustment of parameters in RocksDB is part of our future work.
Instance Migration: For parameters that control the level structure of the LSM-tree and the

layout of SSTables (see right column of Table 5), we launch an instance with the new configuration
and migrate data from the old instance to the new one. In practical deployment [25, 34], data
migration can be done without stopping the service. Note that RocksDB works as a single node
library, and applications using RocksDB generally set up multiple replicas of the instance for the
purpose of fault tolerance. Therefore, data migration can be done incrementally without interrupting
the application’s running service.

7 RELATEDWORK
LSM-Tree-based KV-stores modeling and optimization. Prior work has explored worst-case
closed-form expressions to model read/write/space cost and amplification factors of LSM-Tree while
trying to navigate the design of new LSM-Tree-based KV-stores [17–19, 38, 39, 51]. However, these
models encode very few or none of the factors affected by workload and hardware. Further, these
models do not consider optimizations enabled by RocksDB implementation like multi-threading.
The fused features that we propose not only capture the cost factors but also encode the mechanisms
implemented by RocksDB. Further, we integrate these factors into a multi-armed bandit model to
be adaptive to workload settings and the hardware conditions. Another line of work is to propose
optimizations for LSM-Tree-based KV-stores: optimizing data structures [15, 48, 52, 61], scheduling
operations [7, 60], and exploiting emerging hardware [36, 55, 68]. We appreciate these ideas, but
the new mechanisms further increase the complexity of tuning LSM-Tree-based KV-stores and
motivate the need for automatic tuning.

Tuner for RocksDB and other databases. Several RocksDB tuners have been proposed: Alabed
et al. [1] uses multi-task Gaussian Process to model RocksDB, which is then incorporated in a
Bayesian Optimization loop to find the configuration that maximizes IOPS. As we discussed before,
due to the massive parameter space and intrinsic complexities, black-box learning like BO is not
sufficient to capture the relationship between the parameters and system performance with a limited
time budget. Further, the objective (IOPS) is set in stone with the specific definition of tasks, and this
requires new task designs for new objectives. Luo et al. [54] introduces a memory tuner that tunes

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 37. Publication date: June 2022.



Dremel: Adaptive Configuration Tuning of RocksDB KV-Store 37:23

the memory allocation between the write memory and the buffer cache. They focus on the memory
component, which is just one part of the whole complex system. Jia et al. [40] apply multi-objective
optimization algorithms for auto-tuning RocksDB. Their method pays a much higher time-cost by
collecting over 12,000 experimental records in 6 months. Besides tuners for NoSQL databases like
RocksDB, researchers present several tuners for SQL database such as BO-based OtterTune [67] and
ResTune [70], RL-based CDBTune [69] and QTune [49], and Neural-Network-based iBTune [66].
Compared with these studies, a key difference is that Dremel injects domain-specific knowledge of
LSM-Tree-based RocksDB into fused features to build an efficient bespoke model.
Bandit algorithms for hyper-parameter tuning. For hyperparameter tuning of machine

learning algorithms, bandit-based approaches have gained lots of attention [5, 23, 42, 43, 46, 50]
because of high-efficiency and robust models. HyperBand [50] formulates hyper-parameter tuning
as a pure-exploration bandit problem. Kandasamy et al. [43] applies multi-fidelity approximations
to the experiment. Auer et al. [5] shows how confidence bounds can be used to deal with an
exploitation-exploration trade-off. We borrow some concepts from the ML setting and also tailor
our multi-armed bandit model and multi-fidelity evaluation to our RocksDB setting.

8 CONCLUSION
This paper presents Dremel, a configuration tuning system that can quickly identify a RocksDB
configuration that achieves high performance while adapting to specific workload and hardware
conditions. Dremel integrates several strategies: feature fusion to handle the curse of dimensionality,
online tuning with multi-armed bandit models to enable adaptation to workload and hardware
conditions, and quick evaluation with multi-fidelity approximation and upper-confidence-bound
sampling. We design, implement, and evaluate Dremel on 18 settings with diverse workloads and
hardware conditions. We also evaluate the key strategies we proposed. Our evaluations show
Dremel achieves better end-to-end performance even with less tuning time than four common
approaches and that all components of Dremel are required to achieve the design goals. This work
does not raise any ethical issues.
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A APPENDIX
A.1 Parameter Name Reference
Table 6 shows names of parameters from Cassandra and Flink configurations corresponding to
RocksDB parameters.

Param. in RocksDB Notation Param. in Cassandra Param. in Flink
level0_file_num_compaction_trigger C min_threshold hbase.hstore.compactionThreshold
level0_slowdown_writes_trigger D not applicable not applicable

level0_stop_writes_trigger P not applicable not applicable
max_bytes_for_level_multiplier T fanout_size not applicable

max_bytes_for_level_base S not applicable state.backend.rocksdb.compaction.level.max-size-level-base
target_file_size_multiplier R not applicable not applicable

target_file_size_base F sstable_size_in_mb state.backend.rocksdb.compaction.level.target-file-size-base
num_levels L not applicable not applicable

max_write_buffer_number Q memtable_cleanup_threshold state.backend.rocksdb.writebuffer.count
write_buffer_size W memtable_heap_space_in_mb state.backend.rocksdb.writebuffer.size

min_write_buffer_number_to_merge M not applicable state.backend.rocksdb.writebuffer.number-to-merge
bloom_bits E bloom_filter_fp_chance state.backend.rocksdb.bloom-filter.bits-per-key
cache_size O cache_size_in_mb state.backend.rocksdb.block.cache-size
block_size B not applicable state.backend.rocksdb.block.blocksize

max_background_compactions H concurrent_compactors state.backend.rocksdb.thread.num
max_background_flushes U memtable_flush_writers not applicable

Table 6: Parameter names in Cassandra and Flink corresponding to RocksDB parameters

A.2 Pseudo code
We describe the detailed algorithm of Upper-Confidence-Bound Sampling here (Algorithm 2). To
integrate Upper-Confidence-Bound Sampling with heuristic sampling, we just initialize 𝑛 configu-
rations with heuristic sampling (line 1 of Algorithm 2).
Algorithm 2: Upper-Confidence-Bound Sampling
Input: 𝑛 arms, R, K

1 𝑆 ← sample 𝑛 configs one config per arm
2 𝐼𝑖 ← collect IOPS for each arm by runing configs in𝑈0
3 𝛿 ← 𝑠𝑡𝑑𝑑𝑒𝑣 (𝐼1 ∪ 𝐼2 ∪ ... ∪ 𝐼𝑛) ; /* global stddev */

4 𝑈𝐶𝐵𝑖 ←𝑚𝑒𝑎𝑛(𝐼𝑖 ) + 𝛿
5 for 𝑟 = 1 𝑡𝑜 𝑅 do
6 for 𝑖-th arm in top-k ranking by𝑈𝐶𝐵 do
7 𝑆.𝑎𝑝𝑝𝑒𝑛𝑑( one more config from 𝑖-th arm )
8 𝐼𝑖 .𝑎𝑝𝑝𝑒𝑛𝑑( IOPS collected by running new-append config)
9 𝑈𝐶𝐵𝑖 ←𝑚𝑒𝑎𝑛(𝐼𝑖 ) + 𝑠𝑡𝑑𝑑𝑒𝑣 (𝐼𝑖 ) ; /* 𝑠𝑡𝑑𝑑𝑒𝑣 (𝐼𝑖 ) is local stddev */

Output: config set 𝑆

A.3 Additional experiments
A.3.1 Tuning Time Comparison. As supplement materials of experiments in Section 5.2.2, Figure
16 presents the tuning time for Dremel and other methods on 18 settings. With the same time
budget (2500s), Dremel achieves the best results on 18 settings compared against other methods.
Dremel can finish the process at 1200s without executing UCB sampling. We can see that IOPS
achieved by heuristic sampling is sufficiently high in experiments of Figures 16(c), 16(e), 16(f), and
more. After 1200s, UCB sampling further optimize the IOPS for several experiments of Figures 16(a),
16(b), 16(e), 16(q), and more. In this experiment, we comprehensively evaluate Dremel’s ability to
maximize IOPS with the same or less time budget on diverse settings.
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(a) No-Preloading, Skew0.3, 100MB/S, 30%GET (b) No-Preloading, Skew0.3, 100MB/S, 60%GET

(c) No-Preloading, Skew0.3, 100MB/S, 90%GET (d) No-Preloading, Skew0.6, 100MB/S, 30%GET

A.3.2 Optimization for Latency. As supplement materials of experiments in Section 5.2.3, Figure
17 shows that Dremel can lower the read latency to 63% of that under the default configuration for
15 settings with varying workloads and hardware.

A.3.3 Impact of Multi-fidelity Evaluation. As supplement materials for experiments in Section
5.3.3, Table 7 reports more results on the accuracy of the approximation of successive halving. From
the last column, for most cases, Dremel achieves the best-seen IOPS (accuracy is 100%).

Workload Best-Seen IOPS Achieved IOPS Achieved Percents
N_skew0.3_30%GET 55214 50189 90.8%
N_skew0.3_60%GET 49633 48656 98.0%
N_skew0.3_90%GET 30430 30430 100%
N_skew0.9_30%GET 65425 69371 94.3%
N_skew0.9_60%GET 76757 76757 100%
N_skew0.9_90%GET 105718 105718 100%
Y_skew0.9_30%GET 57074 57074 100%
Y_skew0.9_60%GET 65376 65376 100%
Y_skew0.9_90%GET 83399 83844 99.4%

Table 7: Accuracy of multi-fidelity approximated evaluation. SSD bandwidth is 100 MB/S. In the first column, N
denotes no-preloading while Y denotes preloading.

A.3.4 Impact of Upper-Confidence-Bound Sampling. As supplement materials for experiments in
Section 5.3.4, Figure 18 presents one example of UCB sampling runtime trace (one application
thread) under the setting of preloading. We can see that successive halving works well for the
preloading setting. From left to right, Dremel selects more configurations from promising arms with
higher confidence bounds. It demonstrates that UCB sampling is applicable for both with-proloading
and no-preloading settings.
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(e) No-Preloading, Skew0.6, 100MB/S, 60%GET (f) No-Preloading, Skew0.6, 100MB/S, 90%GET

(g) No-Preloading, Skew0.9, 100MB/S, 30%GET (h) No-Preloading, Skew0.9, 100MB/S, 60%GET

(i) No-Preloading, Skew0.9, 100MB/S, 90%GET (j) With-Preloading, Skew0.9, 100MB/S, 30%GET

(k) With-Preloading, Skew0.9, 100MB/S, 60%GET (l) With-Preloading, Skew0.9, 100MB/S, 90%GET

(m) With-Preloading, Skew0.9, 200MB/S, 30%GET (n) With-Preloading, Skew0.9, 200MB/S, 60%GET

(o) With-Preloading, Skew0.9, 200MB/S, 90%GET (p) YCSB-A Setting
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(q) YCSB-B Setting (r) Nutanix Setting
Fig. 16: Tuning time comparison for 18 settings of workload and hardware. One setting for each figure.

(a) No-Preloading, Skew0.3, SSD 100MB/S (b) No-Preloading, Skew0.6, SSD 100MB/S

(c) No-Preloading, Skew0.9, SSD 100MB/S (d) With-Preloading, Skew0.9, SSD 100MB/S

(e) With-Preloading, Skew0.9, SSD 200MB/S
Fig. 17: Minimize read latency (99%) for 15 different settings of workload and hardware.

(a) UCB-0 (b) UCB-10 (c) UCB-20
Fig. 18: With-Preloading, Skew0.9, 100MB/S, 90%GET
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