
eZNS: Elastic Zoned Namespace for Enhanced Performance
Isolation and Device Utilization
JAEHONG MIN, University of Washington, USA

CHENXINGYU ZHAO, University of Washington, USA

MING LIU, University of Wisconsin-Madison, USA

ARVIND KRISHNAMURTHY, University of Washington, USA

Emerging Zoned Namespace (ZNS) SSDs, providing the coarse-grained zone abstraction, hold the potential to

significantly enhance the cost-efficiency of future storage infrastructure and mitigate performance unpre-

dictability. However, existing ZNS SSDs have a static zoned interface, making them in-adaptable to workload

runtime behavior, unscalable to underlying hardware capabilities, and interfering with co-located zones. Ap-

plications either under-provision the zone resources yielding unsatisfied throughput, create over-provisioned

zones and incur costs, or experience unexpected I/O latencies.

We propose eZNS, an elastic-zoned namespace interface that exposes an adaptive zone with predictable

characteristics. eZNS comprises two major components: a zone arbiter that manages zone allocation and active

resources on the control plane, a hierarchical I/O scheduler with read congestion control, and write admission

control on the data plane. Together, eZNS enables the transparent use of a ZNS SSD and closes the gap between

application requirements and zone interface properties. Our evaluations over RocksDB demonstrate that eZNS

outperforms a static zoned interface by 17.7% and 80.3% in throughput and tail latency, respectively, at most.
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1 INTRODUCTION
In modern data centers, performance isolation for storage systems has become a critical consid-

eration, particularly to prevent long-tail latencies and ensure Service Level Agreements (SLAs)

with users. Some storage systems address this by physically segregating tenants onto different SSD

devices, a strategy favored by latency-sensitive applications. However, this approach can lead to

inefficiencies, as SSD performance typically scales with NAND capacity, resulting in wasted storage

space. Instead, in shared storage systems, researchers have explored various solutions [31, 32, 58],

leveraging features such as IO Determinism [1] and Open-Channel SSD [10], previously proposed

for device management.

The NVMe Zoned Namespace (ZNS) is a newly introduced storage interface and has received

significant attention from data center and enterprise storage vendors. By dividing the SSD physical

address space into logical zones, migrating from device-side implicit garbage collection (GC) to host-

side explicit reclaim, and eradicating random write accesses, a ZNS SSD significantly reduces device

DRAMneeds, resolves thewrite amplification factor (WAF) issue, minimizes costly overprovisioning,
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and mitigates I/O interference. However, the performance characteristics of the ZNS interface are

not well understood. In particular, to build efficient I/O stacks over it, we should be cognizant of (1)

how the underlying SSD exposes the zone interface and enforces its execution restrictions; (2) what

trade-offs the device’s internal mechanisms make to balance between cost and performance. For

example, the device-enforced zone placement makes the actual I/O bandwidth capacity of a zone

contingent on how a ZNS SSD allocates zone blocks across channels/dies. Further, a zone is not a

performance-isolated domain, and one could observe considerable I/O interference for inter-zone

read and write requests. Therefore, there is a strong need to understand its idiosyncratic features

and bring enough clarity to storage applications.

We perform a detailed performance characterization of a commodity ZNS SSD, investigate its

device-internal mechanisms, and analyze the benefits and pitfalls under different I/O profiles in

both cases: application running on the exclusive device (Standalone), and applications sharing a

device with other tenants (Co-located). Using carefully calibrated microbenchmarks, we examine

the interaction between zones and the underlying SSD from three perspectives: zone striping, zone

allocation, and zone interference. We also compare with conventional SSDs when necessary to

investigate the peculiarity of a ZNS SSD. Our experiments highlight the interface’s capabilities

to mitigate the burden on I/O spatial and temporal management, identify constraints that would

cause sub-optimal performance, and provide guidance on overcoming the limitations.

We propose eZNS, a new interface layer that provides a device-agnostic zoned namespace to

the host system. It mitigates inter-/intra-zone interference and improves device bandwidth by

allocating active resources based on the application workload profile. eZNS remains transparent to

upper-layer applications and storage stacks. Specifically, eZNS comprises two components: the zone

arbiter on the control plane and a tenant-cognizant I/O scheduler on the data plane. The zone arbiter

maintains the device shadow view, which manages zone allocations and realizes dynamic resource

allocation through a zone ballooning mechanism. It manages available active resources in two

groups: essentials and spares. Essentials provide a minimum guarantee to applications, determining

the number of logical active zones, while spares boost the bandwidth of zones adaptively, based on

the zone utilization of applications, using the zone overdrive technique. By doing so, the zone arbiter

allows serving applications to maximize the device capability by enabling the maximum device

parallelism given the workload profile and rebalancing inactive bandwidth across namespaces. It

also employs a zone reclaiming mechanism to prevent one from holding spares, thus avoiding

trapping bandwidth in idle zones. The I/O scheduler of eZNS leverages the intrinsic characteristics

of ZNS, where there are no hardware-hidden internal bookkeeping operations. eZNS applies a

local congestion control for reads and a global admission control for writes. Read I/Os become

more predictable in ZNS interface, and one can directly harness this property to examine inter-

zone interference. Thus, the read congestion control applies to each logical zone independently,

monitoring read latency and maintaining the congestion window per zone. On the other hand,

write I/Os share a performance domain due to the write cache architecture of the SSD, which causes

global congestion across all active zones. To address this, eZNS applies the same I/O admission

rate to active logical zones, thereby preventing excessively busy writing zones from monopolizing

the write cache. It determines the admission rate based on the average write latency of the device,

allowing write I/Os from small writers to bypass the admission control while throttling those from

busy writers. Our I/O schedulers mitigate the interference independently but improve overall system

performance cooperatively. We demonstrate benefits in the evaluation (§5) over micro-benchmarks

and RocksDB.

In summary, our study not only empirically demonstrates the benefits of using a coarse-grained

zoned namespace interface but also reveals the inadequacies of underlying device mechanisms

causing performance non-determinism. Essentially, a ZNS SSD is a semi-transparent storage device
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Fig. 1. The architecture of a conventional and ZNS SSD.

to the host and should be viewed as a gray box. Our insights emphasize the importance of imbuing

data locality into storage allocation for high utilization, the necessity of employing a global central-

ized control for fairness guarantees, and the importance of coordinating co-located zone execution

for performance predictability. Meanwhile, eZNS keeps the promises of the original ZNS interface.

For example, eZNS does not overly utilize the write bandwidth as there is no housekeeping writes

(except the zone reclaiming which is very rare). In other words, it does not generate write I/Os in

addition to what the application requested. As long as the I/O demand of applications is consistent,

eZNS will only improve the QoS without sacrificing the lifetime of devices.

In summary, our study not only empirically demonstrates the benefits of utilizing a coarse-grained

zoned namespace interface but also exposes the shortcomings of underlying device mechanisms

that lead to performance non-determinism. A ZNS SSD is a semi-transparent storage device to the

host, akin to a gray box. Our insights underscore the necessity of implementing a global centralized

control for fairness guarantees, and the significance of coordinating co-located zone execution

for performance predictability. Meanwhile, eZNS remains faithful to the original ZNS interface’s

promises. For instance, eZNS ensures that write bandwidth isn’t excessively utilized, as it doesn’t

have housekeeping writes (aside from rare zone reclaiming events). In other words, it doesn’t

generate additional write I/Os beyond what the application requests. As long as the applications’

I/O demands remain consistent, eZNS enhances Quality of Service (QoS) without compromising

device lifespan.

2 BACKGROUND ANDMOTIVATION
This section reviews the basics of NAND-based SSDs, introduces the ZNS SSD and its features, and

discusses the problems with the existing zoned interface.

2.1 NAND-based SSDs
A NAND-based SSD combines an array of flash memory dies and is able to deliver a bandwidth

of several GB/s. It comprises four main architectural components (Figure 1): (1) a host interface

logic (HIL) that implements the protocol used to communicate with the host, such as SCSI [46]

and recent NVMe [34]; (2) an SSD controller, enclosing an embedded processor and a flash channel

controller, which is responsible for the address translation and scheduling, as well as flash memory

management; (3) onboard DRAM, buffering transmitted I/O data and metadata, storing the address

translation table, and providing a write cache; (4) a multi-channel subsystem that connects NAND

dies via a high-bandwidth interconnect. As shown in Figure 1, a NAND die consists of hundreds
of erase blocks, where each block contains hundreds to thousands of pages. Each channel holds

multiple dies to increase I/O parallelism and bandwidth. Each page encloses a fixed-sized data

region and a metadata area that stores ECC and other information. Flash memory supports three
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major operations: read, program, and erase. The access granularity of a read/program is a page,

while the erase command is performed in units of blocks. NAND flash memory has three unique

characteristics [2, 12, 14, 21, 31]: (1) no in-place update, where the whole block must be erased

before updating any page in that block; (2) asymmetric performance between reads and programs;

(3) limited lifetime (endurance) – each cell has a finite number of program/erase (P/E) cycles [25].

To effectively use the NAND flash and address its limitations, SSDs employ a special mapping

layer called the flash translation layer (FTL). It provides three major functionalities [15, 23, 39, 60]:

(1) dynamically mapping logical block addresses (LBA) to physical NAND pages addresses (PPA);

(2) implementing a garbage collection (GC) mechanism to handle the no in-place update issue and

asynchronously reclaim invalid pages; (3) applying a wear-leveling technique to evenly balance

the usage (or aging property) of all blocks and prolong the SSD lifespan. However, FTL brings in

considerable overheads. First, the translation table requires a large amount of DRAM to store the

mapping entries, e.g., 1GB for 1TB NAND capacity for 4KB data unit size. Second, when serving a

user I/O, the compounding effect of GC and wear-leveling would trigger additional SSD internal

writes (i.e., copying valid pages to erase the block) and lead to the WAF (Write Amplification Factor)

problem. Third, the FTL does not employ performance isolation mechanisms and incurs significant

interference issues under mixed I/O profiles [33, 37].

2.2 Zoned Namespace SSDs
ZNS SSDs, a successor to Open-Channel (OC) SSDs [7, 10], have recently been developed to

overcome the aforementioned limitations of conventional SSDs. There are several commodity

ZNS SSDs from various vendors [40, 43, 44, 57]. A ZNS SSD applies the same architecture as a

conventional one (Figure 1) but exposes the zoned namespace interface. A namespace is a separate

logical block address space, like a traditional disk partition, but managed by the NVMe device

controller rather than the host software. The device may control the internal block allocation of

namespaces to optimize the performance based on the device-specific architecture. In ZNS SSD, the

namespace comprises multiple zones instead of blocks in the conventional one, and each namespace

owns dedicated active resources that are used to open and write a zone.

A ZNS SSD divides the logical address space of namespaces into fixed-sized zones, where each

one is a collection of erase blocks and must be written sequentially and reset explicitly. ZNS SSDs

present three benefits: (1) Maintain coarse-grained mappings between zones and flash blocks and

apply wear-leveling at the zone granularity, requiring much smaller internal DRAM. For example,

a ZNS SSD with a 24MB block size has at least 6,144 times smaller table size compared to the

traditional 4KB page mapping [49]; (2) Eliminate the device-side GC and reclaim NAND blocks

via explicit zone resets by host applications, which mitigates the WAF and log-on-log [59] issues

and minimizes the over-provisioning overhead; (3) Enable the placement of opened zones across

different device channels and dies, providing isolated I/O bandwidth and eliminating inter-zone

write interference.

A zone has six states (i.e., empty, implicitly open, explicitly open, closed, full, read only, and offline).
State transitions are triggered by either write I/Os or zone management commands (i.e., RESET,

OPEN, CLOSE, and FINISH), as shown in Figure 2. A zone must be opened before issuing writes,

but it is capable of serving reads in any state except the offline state. A device internal error will

cause the zone to enter either a read only or an offline state, where it cannot transit to states other

than offline. Zones in empty or closed state transition to the open state in either explicit (by OPEN

management command) or implicit (by write I/O) way. An opened zone can transition to the closed

state (by CLOSE management command) or the full state (by FINISH or write I/O reaching the end

of the zone). closed and open (both implicit and explicit) are active states that require the device to
maintain NAND metadata for incoming user write I/Os, limiting the maximum number of active
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Fig. 2. The Zone State Diagram of ZNS SSD.

zones. SSDs employ the write cache in DRAM to align the wide range of user I/O sizes to the NAND

program unit and comply with the NAND-specific requirements (timings and program order). In

case of a sudden power-off failure, the device flushes uncommitted data in the cache using batteries

or capacitors as an emergency power source [53, 62]. Since active zones must have a buffer backed

by energy devices for at least one NAND program unit in the cache, the maximum number of active

zones is also constrained by the size of the write cache.

A zone provides three I/O commands: read, write, and append. The append works similarly to

the nameless write [61] but improves the host I/O efficiency rather than the internal NAND page

allocation. Compared with the normal write, a zone append command does not specify the LBA

in the I/O submission request, whilst the SSD will determine it at processing time and return

the address in the response. Thus, user applications can submit multiple outstanding operations

simultaneously in contrast with the normal writes that submits only one I/O at a time to avoid

out-of-order execution violating the sequential constraint of the zone interface in the storage stack

or device queues. Random writes are disallowed on ZNS SSDs, and the zone is erased as a whole

(via the RESET). A ZNS SSD delegates the FTL and GC responsibilities to user applications, where

they are performed at the zone granularity, thus eliminating traditional SSD overheads. While

the user software consumes more host memory (as it is now responsible for the performing the

mapping), it can be minimized by integrating the zone management into the application logic [8]

or file system [29, 30].

2.3 Small-zone and Large-zone ZNS SSDs
Zones can be classified into two types: physical zone and logical zone. Physical zones are the smallest

unit of zone allocation and consist of one or more erasure blocks on a single die. They are device-

backed and offer fine-grained control over storage resources. In contrast, logical zones refer to a

striped zone region consisting of multiple physical zones. They can be implemented by either the

device firmware or application and provide higher bandwidth through striping. Figure 3 presents

the physical zone placement in different types of ZNS SSDs. Large-zone ZNS SSDs provide coarse-

grained large logical zones with a fixed striping configuration that spans multiple dies across all

internal channels but offers limited flexibility for controlling device behavior from the host software.

This simplifies zone allocation but exposes a small number of active zones available for application
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Fig. 3. The examples of physical zone placement in small (Blue) and large (Green) zone SSDs.

allocation (e.g., 14 zones [57]). As a result, large-zone SSDs are more suitable for scenarios with

small numbers of tenants, where the number of active zones required is not high. In addition, the

application-agnostic fixed striping configuration does not adapt to workload profiles, resulting in

low bandwidth utilization. Small-zone ZNS SSDs operate under similar hardware constraints but

expose finer-grained physical zones. Each zone is contained within a single die but sufficiently

large to encompass at least one erasure block. Small-zone SSDs provide greater flexibility and more

active resources (e.g., 256 zones in our testbed ZNS SSD) to support more I/O streams. In addition

to increased flexibility, small-zone SSDs reduce the need for application-level garbage collection,

especially while managing large numbers of small objects. Recent studies also corroborate some

of these points. Specifically, Bae et al. [4] advocate a zone to be as small as possible to reduce the

interference caused by high zone-reclaiming latencies. ZNS+ [18] also prefers small zones as it

minimizes the latency of COPY operations performed frequently in its F2FS implementation.

2.4 Need for an Elastic Interface
The ZNS SSD brings in two key benefits. First, it exposes controllable garbage collection to host

applications, eliminating obtrusive I/O behaviors precipitated by device internal bookkeeping

I/Os. This also alleviates write amplification and reduces flash over-provisioning. Second, it only

allows sequential writes within a zone and thereby mitigates certain I/O interference observed in a

conventional SSD. Both prior studies [4, 9, 18, 52] and our characterizations (§3) below demonstrate

these points. However, existing ZNS SSDs have one significant drawback: the zoned interface
is static and inflexible. After a zone is allocated and initialized, its maximum performance is

fixed regardless of the underlying device capability, its I/O configurations cannot adapt to runtime

workload characteristics, and cross-zone I/O interference yields unpredictable I/O executions.

First, the performance profile of a zone-sized storage partition hinges on physical zone placement

and stripe configuration, which should align with application requirements. Despite significant

benefits from the flexibility of the user-defined logical zone, application-managed zone configuration

would sustain sub-optimal performance due to the lack of knowledge of other tenants sharing the

device. In addition, it imposes another burden on application developers, as with OC SSDs.

Figure 4 depicts an illustrative scenario involving three applications that employ different

optimization strategies. In this scenario, the computing device comprises 24 physical zones, with

each application having access to a maximum of four logical zones for application-specific zone

management. The static striping configuration, typically managed by the device, allocates physical
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Fig. 4. An example of the static striping configuration and the optimizations.
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zones evenly, provisioning two physical zones for each logical zone. However, this static allocation

may lead to suboptimal device utilization, particularly when applications only actively use a subset

of available zones, resulting in a utilization rate as low as 25%, as shown in Figure 4. To address this

issue, one may introduce an application-managed zone configuration. With this approach, each

application can concentrate its available physical zones on actively writing zones, as illustrated in

the second column of Figure 4. This dynamic allocation significantly improves utilization, raising it

to 46%. However, it is important to note that this application-local optimization may face challenges

in efficiently allocating resources, particularly when there is an idle application that holds valuable

zones. One alternative is implementing a centralized resource manager responsible for redistributing

physical zones from idle applications to active tenants. This centralized approach has the potential

to further enhance utilization, achieving a utilization rate of 63%. However, it necessitates a carefully

designed mechanism to prevent resource starvation when previously idle applications become

active, ensuring a balanced allocation of resources.

It is non-trivial to develop a complete application profile that captures every aspect of I/O

execution characteristics, such as read/write block size and distribution, I/O concurrency, and
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command interleaving degree. The existing zoned interface fails to adapt to the changing workload

behavior. Users have to over-provision the zone resources when configuring a zone based on the

worst-case estimation. In Figure 5, it is shown that the RocksDB over ZenFS [8] actively writes

to only a fraction of the zones it maintains in the active state. This leads to inefficient utilization

of valuable active resources in the ZNS SSD. Similarly, file systems like BtrFS [42] and F2FS [30]

support ZNS SSDs but write user data to only one zone at a time, resulting in suboptimal utilization

of the available active resources. This issue is further exacerbated when the device has multiple

namespaces serving different applications. In such cases, each application only utilizes a fraction of

the available bandwidth, wasting valuable active resources in the ZNS SSD.

2.5 Lack of Performance Isolation in Zone
Existing SSD interfaces and a ZNS SSD have difference models for the host responsibility and the

I/O processing. A conventional SSD is a black-box entity whose device-internal condition depends

on the past I/O execution history and hidden firmware logic. It is the storage system’s responsibility

to estimate its current I/O bandwidth capacity and schedule requests accordingly. A OC SSD is

a white-box system. It exposes the underlying NAND flash memory and storage management

functions directly to the host system, giving the host system full control over executing user I/O.

This results in deterministic performance and the ability to adapt to specific workloads.

On the other hand, the ZNS SSD is a semi-transparent storage device to the host and should be

viewed as a gray box. The interface holds much potential for reducing cost, improving performance,

and developing device-independent systems. It handles wear-leveling, LBA-to-PPA mapping, and

any NAND device constraints with the zone view hiding the device’s geometry. However, a zone

is not a completely performance-isolated domain, and co-located zones interact with each other

in a non-deterministic fashion. As a consequence, performance unpredictability still rises, and

inefficient use will cause sub-optimal performance. Ideally, each tenant should receive a weighted

share based on the consolidation degree. Specifically, its housing application should achieve its

targeted performance when the SSD is under-utilized but receive a proportional degradation

when the SSD is over-subscribed. But, unlike its predecessor OC SSD, ZNS SSDs manage zone

allocation and wear-leveling internally with no strong isolation support and expose an opaque

view to applications, yielding unpredictable performance interference and I/O execution unfairness.

Such an issue could be mitigated in a conventional SSD where FTL and GC blend and distribute

blocks across channels and dies uniformly regardless of the original command flow, ensuring the

attainment of the maximum bandwidth and equal utilization of channel and die.

In summary, a ZNS SSD requires a systematic understanding of its capabilities and limitations so

that one can efficiently integrate it into the storage application stack. One cannot directly carry

over the observations and practices of using the conventional or OC SSD. The goal of this work is

to develop a systematic understanding about these issues and propose potential solutions.

3 PERFORMANCE CHARACTERIZATION OF A ZNS SSD
This section characterizes a ZNS SSD with a focus on understanding why existing ZNS interfaces

are static and inflexible. We then discuss the possibilities of addressing the problem.

3.1 Experimental Setup
ZNS SSD and testbed.We use a commodity ZNS SSD for characterization. Table 1 presents its

hardware details. It has 40,704 physical zones, where each 96MB-size zone consists of NAND erase

blocks solely on a single die, and supports a maximum of 256 open zones simultaneously. We then

configure various logical zones using such fine-granular units. We also prepare a conventional SSD
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Device HW Parameters Specification
Capacity 3,816 GB

Channels # 16 Channels

NAND Dies # 128 Dies

NAND Page Size 16 KB

NAND Channel B/W ∼600 MB/s

Physical Zone Size 96 MB

Read B/W per Physical Zone ∼200 MB/s

Write B/W per Physical Zone ∼ 40 MB/s

Maximum Active Zones # 256

Table 1. The commodity ZNS SSD specification.

Layer 5: SSD ch./die

Applications

Layer 4: Physical zone

Layer 3: Logical zone

Layer 2: Namespace

Layer 1: Tenant

NVMe driver
(a). Layered view (b). SW stack (c). I/O path

Host CPU

Controller CPU

Write Cache

NAND Flash

wrrd

Zone MappingZoned block 
device layer

reset

Fig. 6. System model, SW stack, and I/O path of a multi-tenant ZNS SSD deployment. RD/WR=Read/Write.
The write cache flushes data to the NAND flash asynchronously. Zone resets are completed after invalidating
the mapping layer, where NAND blocks are erased lazily.

with an equivalent architecture for a fair comparison. Our server has two 2.50GHz E5-2680v3 Xeon

processors with 256GB DDR4 DRAM, and both SSDs are connected to ×4 PCIe Gen3 slots directly.
Workloads and performance metrics.We use the Fio benchmark tool [17] running on the

SPDK framework [50] to generate synthetic workloads. We report both per-IO average/tail latency

as well as achieved bandwidth. We add a thin layer to the SPDK to implement the logical zone

concept and realize different zone configurations. Given the ZNS protocol, we regulate the write

workloads to sequential accesses on a single logical zone in the following experiments, where read

workloads issue random I/Os unless specified.

3.2 System Model
We consider a typical system setup with a five-layered view to facilitate the understanding of a

multi-tenant ZNS SSD deployment and dissect the I/O behavior (Figure 6-a). From the top-down

perspective, the first layer contains a few co-located tenants, each running a storage application

(e.g., blob store, F2FS, and RocksDB). Next, a tenant exclusively owns one or several namespaces

based on the required capacity. A namespace provides independently configurable logical zones

(layer 3), exposing a private logical block address space. By manipulating the logical zone setup, a

namespace can be configured differently to meet the capacity and parallelism requirements. Within

a logical zone, reads happen everywhere, while writes are only issued in an append-only manner.
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This is unique to a ZNS SSD and in significant contrast to a conventional SSD, which can be viewed

as a fixed or statically configured SSD.

A logical zone comprises several physical zones (fourth layer). The number of physical zones

per logical zone is typically fixed within a namespace. The logical-to-physical zone mapping can

be arbitrary regardless of the request serving order and device occupancy. However, the logical

zones must not share their physical zones to conform with the ZNS protocol. At the bottom layer,

a physical zone is placed on one channel/die following the device specification. The zoned block

device (ZBD) layer (Figure 6-b) is the central component across the storage stack that abstracts

away architectural details of a ZNS SSD. It provides three functionalities: (1) interacting with

the application on namespace/logical zone management; (2) orchestrating the logical-to-physical

zone mapping in consideration of the application requirement; (3) scheduling a sequence of I/O

commands to maximize device utilization and avoid head-of-line blocking. Figure 6-c shows the IO

path of read/write/reset requests. We carefully configure each layer when designing characterization

experiments.

3.3 Zone Striping
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Since a logical zone is usually configured as an array of physical zones spatially, similar to RAID 0,

one could apply the striping technique to achieve higher throughput, especially for large-sized I/Os.
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Stripe Size Avg. Lat(us) P99.9 Lat. (us) B/W (MB/s)
4KB 64 76 59

8KB 71 84 108

16KB 88 103 175

32KB 163 269 190

64KB 314 619 198

Table 2. Read I/O average/P99.9 latency and bandwidth varying the stripe size on a physical zone.

Zone striping segments data blocks across multiple physical zones and accesses them concurrently.

There are two configuration parameters: (1) Stripe size is the smallest data placement unit in a

stripe, and (2) Stripe width defines the number of physical zones in an active state and controls the

write bandwidth.

3.3.1 Basic Performance. When there are enough outstanding I/Os submitted to an SSD, unsurpris-

ingly, the optimal striping efficiency is achieved when the stripe size matches the NAND operation

unit (i.e., NAND page size). As shown in Table 2, the achieved per-die bandwidth increases slowly

after the 16KB stripe size. In terms of latency, the access time reduction is non-linear for sizes

smaller than a NAND page (16KB). When the I/O size is larger than 16KB, the average latency rises

proportionally to the I/O unit because each request has to access the die multiple times sequentially.

Next, we change the logical zone setup and see the efficiency of different stripe sizes. We use

N-zones to refer to a logical zone configuration, where N is the number of physical zones in a

striping. As shown in Figure 7, when issuing 2MB reads (which generates enough I/O to construct a

full stripe I/O on each physical zone), for different zone configurations, the bandwidth over various

stripe sizes shows a similar result with the single-die performance. On the other hand, a wider

width that fully uses the stripe size (𝑠𝑡𝑟𝑖𝑝𝑒_𝑠𝑖𝑧𝑒 × 𝑠𝑡𝑟𝑖𝑝𝑒_𝑤𝑖𝑑𝑡ℎ) achieves higher bandwidth. For
example, the 4KB stripe size in 8-zones achieves 37.3% higher read bandwidth than the 8KB stripe

size in 4-zones. Note that the stripe size does not significantly affect the write performance as

one can coalesce stripes on the same physical zone into a single device I/O and submit it at once.

Instead, the stripe width determines the maximum write bandwidth.

3.3.2 Challenge #1: Application-agnostic Striping. When deciding the optimal stripe size and width,

one should consider the application I/O profile dynamically, including request type, size distribution,

I/O size efficiency, and concurrency. However, the existing zoned interface lacks such support and

hinges on users’ domain knowledge during configuration. A large stripe may hurt performance if

the size of user I/O is smaller than that of a full stripe. On the other hand, too small a stripe also

hurts the I/O efficiency of the device; a 4KB stripe with an 8-zone or wider width significantly lags

behind 8KB or larger stripes in Figure 7. A wide stripe width sustains high performance per logical

zone. However, since the device has a limited amount of active resources, it will instead limit the

maximum number of active logical zones and jeopardize application concurrency.

Figure 8 presents the sustained read bandwidth varying the stripe size from 4KB to 64KB for

four I/O profiles under the 16-zone configuration. For the 32KB I/O with a queue depth of 16

(32KB-QD16) and the 128KB synchronous I/O (128KB-QD1), the 16KB stripe performs the best

because NAND operates most efficiently when the stripe size aligns with the NAND page size. On

the other hand, for the 32KB with 1 and 4 queue depth cases (32KB-QD1, 32KB-QD4), 4KB/8KB

stripes outperform the 16KB one by 15.1%/13.6% and 5.8%/12.2%, respectively, because they activate

significantly more channels and dies for a single user I/O. The larger stripe sizes, 32KB and 64KB,

fail to explore any parallelism, resulting in poor performance due to narrower user I/Os. Overall,
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the results demonstrate the importance of leveraging more parallelism, particularly for small I/O

sizes. While a large I/O may encounter inefficiencies in NAND operations due to a small stripe

size, it can be optimized through simple techniques such as merging adjacent I/Os within the same

physical zone.

Observation: The use of logical zones with striping is beneficial for the application, but the

zone stripe width and size should be considered in combination with each other. However, it is

essential to carefully consider both the zone stripe width and size in tandem. It’s not desirable to

have a stripe size larger than the NAND page size, and adjustments should be made to the stripe

size when widening the stripe width to provide the most parallelism for user I/O of a specific size.

3.4 Zone Allocation and Placement
A ZNS SSD allocates physical zones across dies/channels, mainly taking access parallelism and

wear-leveling into consideration. Upon an allocation request, the ZNS SSD traverses the die array

following a certain order and then selects the next available die to place each physical zone. Within

a determined die, it chooses blocks with the least P/E cycles based on opaque wear-leveling policies.
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Fig. 9. Read/Write bandwidth varying the number of physical zones.

3.4.1 Basic Performance. Zone allocation should be locality-aware and parallelism-aware. A larger-

sized logical zone is expected to observe higher read/write bandwidth because it spreads physical

zones across different channels and dies in a deterministic sequence and achieves more I/O par-

allelism. The maximum performance is obtained when I/Os access all channels and dies without

blocking. We configure the stripe size to 16KB and increase the number of physical zones in a logical

zone (N ), then measure the I/O bandwidth of a single logical zone under four I/O profiles (Figure 9).

The performance of 2MB reads with queue depths 1 and 2 (i.e., 2MB-RD-QD1/2MB-RD-QD2) keeps

increasing until the number of physical zones approaches 20. But they max out for different reasons.

The QD2 case is bounded by the PCIe bandwidth (i.e., four Gen3 lanes or 3.2GB/s), whilst the QD1

scenario is simply limited by the application as it cannot issue enough outstanding I/Os at that

queue depth. In terms of 4KB random read with 32 queue depth and 2MB sequential write, they

sustain 80MB/s read and 40MB/s program bandwidth per physical die, respectively, requiring much

more physical zones (∼ 40 and 80) to utilize the channel or PCIe bandwidth fully.

3.4.2 Challenge #2: Device-agnostic Placement. An ideal allocation process should expose all of the

internal I/O parallelism of a ZNS SSD to a tenant. However, the existing mechanism is opaque to

housed tenants, where the global allocation pointer picks the next available die without consider-

ing the application’s prior allocation history or how it interacts with other tenants. This causes
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Fig. 10. Channel/die-overlapped zone placement. Assume the ZNS SSD has 16 dies across 4 channels and
each tenant has its own namespace. In the case (1), the SSD serves two allocations from tenants A and B
simultaneously (both asking for 4 physical zones). Due to the overlapped placement, both A and B benefit
from two channels. Similarly, in the case (2), the SSD serves four requests (which allocate 3 zones, 1 zone, 1
zones, 1 zone) from tenants C and D asynchronously. Because of the overlapped placement, tenants C and D
obtain three and two channels, respectively. In the last case (3), tenant E allocates four zones spanning across
two dies, limited by the die bandwidth.

unbalanced zone placement, hurts I/O parallelism, and jeopardizes performance. We find two types

of inefficient placements:
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Fig. 11. Read bandwidth under three channel overlapping (OL) allocations.

• Channel-overlapped placement: As shown in the case (1) and (2) of Figure 10, concurrent

zone allocations might cause overlapped zone placements across channels, limiting the maxi-

mum channel parallelism. Similarly, synchronized allocation requests might prevent placement

alignment, again limiting the aggregated bandwidth. Figure 11 presents 4KB and 128KB random

read bandwidth when increasing the QD for three inferior placements, where 2/4/8 physical

zones contend for the same channel in a 16-zone configuration. Physical zones stay across 16

different dies that limit the maximum bandwidth. The 2-overlapped allocation outperforms the

other two (i.e., 4-overlapped/8-overlapped) by 1.7×/2.9× and 1.7×/2.5× for 4KB and 128KB cases,

respectively.

• Die-overlapped placement: The case (3) of Figure 10 describes this issue. An intra-namespace

die overlapped placement limits the bandwidth and can be even more detrimental because a die

can only process one operation at a time. We configure such an experiment by placing physical

zones in the same die and gradually increasing the overlapping ratio. Figure 12 reports the logical
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Fig. 12. Bandwidth and tail latency varying with the die overlapping ratio.

zone’s sustained bandwidth and tail latency under two I/O profiles. When no physical zones

share the same die, it achieves 1,128MB/s and 2,051MB/s along with 317us and 284us p99.9 tail

latency for the 4KB random read and 128KB sequential read cases, respectively. With full overlap,

we observe 47.2%/23.8% bandwidth drop and 87.1%/28.0% tail latency increase. Such performance

degradation happens even when the overlapping ratio is lower than 25%, because both types of

I/Os suffer from the head-of-line blocking issue at the overlapped dies.

Observation: It is challenging to infer the zone’s physical location without knowing the device’s

internal specification. One may run a profiling tool in the runtime to extract the relation among

different zones [4]. However, it does not eliminate the imprinted overlap at the allocation time. To

maximize the I/O parallelism, one could build a device abstraction layer that (1) relies on a general

allocation model of the device; (2) maintains a shadow view of the underlying physical device; (3)

profiles its placement balanced level across different physical channels and dies.

3.5 I/O Execution under ZNS SSDs
A ZNS SSD eradicates background GC I/Os, thereby removing one form of performance non-

determinism. Within a logical zone, writes happen sequentially, but reads are issued arbitrarily.

When reads are congested, one would observe latency spikes under die/channel contention. If

considering cross-zone cases, either intra or inter namespace, interference would be more severe

than a conventional SSD because ZNS SSDs impose no physical resource partitions, and per

die/channel bandwidth is narrow.

3.5.1 Basic Performance. Irrespective of the NAND block layout of a logical zone, its I/O access

latency highly correlates with achieved bandwidth because there are no device internal I/Os that

consume bandwidth and are hidden from user applications. To demonstrate this, we prepare a

conventional SSD having the same hardware as the ZNS SSD and compare two SSDs under the

mixed read-write scenario. We configure a logical zone for the ZNS SSD that spreads across all the

channels and dies (i.e., 128-zone configuration with 16KB stripe size) to match the conventional

one. The fragmented conventional SSD is 70% filled and preconditioned with 128KB random writes.

Then we run eight read threads–where each issues one 128KB read I/O to all the dies uniformly

random–and one write thread that performs sequential write at a fixed rate. Figure 13 reports the

read/write tail latency as we increase the write bandwidth. More writes on a ZNS SSD leave less

bandwidth headroom for reads and cause the latency to increase. However, for the fragmented

conventional SSD, the internal GC activities make even less bandwidth available to serve reads due
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Fig. 13. Read tail latency varying the write bandwidth (ZNS vs Conventional SSD)

to write amplification. For example, when the write bandwidth is 1,000MB/s, the p99.9 read and

write latency of the conventional SSD is 4.3× and 2.8× worse than the ZNS one. In terms of the

read throughput, the conventional SSD shows 1.1× and 1.6× lower throughput than the ZNS SSD

at the 200MB/s and 1,000MB/s write bandwidth, respectively.

3.5.2 Challenge #3: Tenant-agnostic Scheduling. Existing zoned interfaces of ZNS SSDs provide

little performance isolation and fairness guarantees for the inter-zone case, regardless of deployed

workloads. One cannot overlook the read interference on a die because (1) an arbitrary number of

zones can collide on a die, (2) the bandwidth of a single die is poor, and hence, the interference

becomes severe even under a very low load on the device, and (3) it causes a severe head of line

blocking problem and degrades the performance of the logical zone. Since there is no internal GC in

the ZNS SSD, The I/O determinism [31] proposed for the conventional SSD does not apply as well.

Similar to conventional SSDs, the write cache, shared among all NAND dies, is an indispensable

component of the ZNS SSD, buffering incoming writes and flushing to the NAND dies in a batch.

Host applications will observe prompt write I/O completions when they are absorbed by the

cache but experience considerable latency spikes when the cache overflows. This has not been an

intractable issue in conventional SSDs because the device firmware blends all incoming write I/Os

and constructs a single large flow spanning entire NAND dies, maintaining the cache eviction rate

to the maximum device bandwidth. However, in the ZNS SSD, a write I/O must be flushed out to

the designated NAND die with an inadequate program bandwidth, even with zone striping. In this

situation, a heavy writer exhausts the available cache capacity and severely disturbs other short

flows.

We set up two readers performing 128KB read I/O in different profiles: (1) queue depth 8 with a

two-zone configuration and (2) queue depth 2 with an eight-zone configuration. Figure 14 shows

the interference between two readers in a die-collision. The QD-8 reader easily obtains 97.2% of

the total bandwidth of collision dies. Note that the interference and unfair bandwidth share also

occurs in the conventional one, but only when the device bandwidth is fully saturated [26, 47]. We

also demonstrate the write cache congestion in Figure 14. We first populate 15 logical zones with

a stripe width of 8, and each physical zone is allocated to a dedicated die. The cumulative write

bandwidth of 15 zones maxes out the PCIe bandwidth (3.2GB/s), and a single zone performs at

∼213.3MB/s. In this case, a physical zone in the logical zone receives write at a lower rate than

the maximum bandwidth (∼26.7MB/s), and the write cache does not overflow. Then, we add one

more writer with a narrow width of 2, which also runs on dedicated dies. Write I/Os towards the
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Fig. 14. Bandwidth under RD-RD and WR-WR congestion due to the die-collision.

narrow zone are equally fetched by the device, but it soon consumes all available cache because of

the scarce bandwidth (∼85MB/s) of underlying physical zones. It degrades others’ bandwidth by

27.3% or 155MB/s, and the device even fails to max out the PCIe bandwidth (∼2.4GB/s).
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Fig. 15. Performance comparison of three namespaces (with different logical zones) running the same
workload.

We set up three namespaces with different zone configurations (i.e., 4-zones, 8-zones, and 16-

zones) and ensured they have the same capacity using all the channels and dies. Figure 15 shows

the achieved bandwidth when these three namespaces run the same type of workload. In terms

of the 128KB write (QD=1), namespaces 2 and 3 achieve twice the bandwidth as namespace 1

because the maximum sequential write I/O is bounded to four channels in the 4-zone case. Since

the stripe size is 16KB, a 128KB write generates 8 outstanding I/Os that can harness 8 dies at best,

leading to the same performance of namespace 2 and 3. Considering the other two read scenarios,

even though three namespaces submit the same amount of I/Os, we observe different bandwidth

shares proportional to their underlying parallelism in the logical zone for large 128KB sequential

reads. However, the three namespaces show the same bandwidth for a small 4KB I/O with 32

queue depth because each random I/O could fall into any of the channels and dies regardless of

the zone configuration. Next, we consolidate two namespaces and issue different types of I/Os.

Figure 16 reports the results, where the number in parentheses indicates the queue depth. When

two tenants compete for the read bandwidth, irrespective of the logical zone configuration, the
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Fig. 16. Performance comparison of two tenants (with different logical zones) running different workloads.

running workload that can utilize more dies achieves higher bandwidth, as the 4KB (QD=32) in the

first two scenarios and 128KB (QD=32) in the third case.

3.5.3 ZNS v.s. Conventional SSDs. There is no performance isolation support on a conventional

SSD. Some recent proposals employ I/O determinism and NVM Sets [28, 31, 38] to minimize the

interference. Although they mitigate the interference in a given environment, such mechanisms

have a restriction due to static partitioning (NVM Sets) or limited predictable time window (I/O

Determinism). Instead, OC SSDs grant full access to the device geometry to applications, and thus,

one can predict possible interference using a complete view of physical allocation. However, one

cannot prevent interference even with this knowledge because read I/Os may target any of the

dies associated with a zone unpredictably. Some researchers propose a read reconstruction using

redundant arrays [32, 58], but such mechanisms sacrifice both capacity and bandwidth for reads

and fail to address a multi-tenant setup in a modern data center.

Observation:When using ZNS SSDs in a multi-tenant scenario, one should first understand

how different namespaces and logical zones share the channels and NAND dies of the underlying

device, classify their relationships into competing and cooperative types, and employ a conges-

tion avoidance scheme for the inter-zone scenario to achieve fairness. Since there are no device

bookkeeping operations, I/O latencies represent the congestion level on colliding dies. In addition,

write cache congestion needs to be addressed globally. Thus, a possible solution is to design (1) a

global central arbiter that decides the bandwidth share among all active zones; (2) a per-zone I/O

scheduler that orchestrates the read I/O submission based on the congestion level.

3.6 Zone Reset
ZNS SSDs delegate NAND block lifespan management responsibility to host applications via the

RESET command. It is a unique command in ZNS and OC SSDs, which a conventional one lacks.

The conventional SSD provides a DEALLOCATE command instead, but it only invalidates logical

pages without triggering the block erase activity explicitly. ZNS SSDs further optimize a reset

latency using the zone mapping layer while providing the same execution logic on block erase

as OC SSDs. When processing this request, a zone will transition to the EMPTY state, where its

write pointer is redirected to the start LBA. All associated NAND blocks are erased, and previously

written data becomes inaccessible. This allows applications to develop application-specific GC

mechanisms, whose goals should be minimizing the impact on concurrent read/write traffic as well

as reclaiming stale data timely.
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Reset # Avg.
Lat(us)

P99.9 Lat.
(us) B/W (GB/s)

1 204 233 455

2 220 338 841

3 239 449 1158

4 275 445 1342

5 313 889 1478

6 381 2343 1456

Table 3. Reset average/P99.9 latency and bandwidth varying the number of concurrent reset operations.
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Fig. 17. Read v.s. reset latency varying the number of reset operations.
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Fig. 18. Write v.s. reset latency varying the number of reset operations.

We find that the zone reset is essentially a lightweight command whose execution latency is

much lower than the block erase operation. This is mainly because the firmware sends back the

reset completion acknowledgement as soon as the zone mapping is cleared and performs the

actual erasure operation lazily. We gradually increase the number of concurrent reset operations

and measure the latency and bandwidth of resetting a physical zone. As shown in Table 3, its

unloaded latency is around 204us, whereas erasing a block takes around 3.5ms [22]. Also, reset is
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a high-bandwidth operation, achieving 1478GB/s at max. This is reasonable as the per-die erase

bandwidth of modern high-density NAND devices is higher than 10GB/s.

Unsurprisingly, read and write I/Os interfere with resets severely. Although the reset bandwidth

is extremely high, each operation takes significantly longer than blocking read and write. We use

the experiment setup as described above and co-locate it with a 4KB random read (QD=32) or a

128KB write (QD=1), respectively. In terms of the read v.s. reset interference scenario (Figure 17),

the read average and p99.9 latencies rise by 5.0× and 9.4× when there are 7 concurrent resets.

This also causes a significant bandwidth degradation (from 1492MB/s to 202MB/s). Regarding the

write vs. reset (Figure 18), under the most interfering case, we observe that the write average/p99.9

latencies increase by 2.9×/15.8×, along with a 2.8× bandwidth drop. Thus, zone reset is another

interference factor that jeopardizes the I/O predictability. For example, an irresponsible tenant

could continuously submit reset operations and break the GC-free illusion of other victim users

when they share the same NAND die. Therefore, zone reset should be coordinated globally across

co-located tenants.

Observations: The zone reset should be viewed as another type of user I/O command (in

addition to read/write) for scheduling with sufficient bandwidth. It is not necessary to process

a reset immediately as the bandwidth is hundreds of times higher than write. Instead, one can

invalidate a zone immediately and complete the user request, then coordinate zone reset in a global

and batched fashion across co-located tenants to minimize the chance of collision with read and

write.

3.7 Write Cache
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Fig. 19. CDF of write I/O latency for different traffic loads. x-axis is log scale.

Write cache is an indispensable component of NAND-based SSDs for two reasons: (1) There is a

mismatch between the LBA size and NAND page size, and the programming is not an atomic oper-

ation; (2) SSDs should follow strict timing rules [11] (such as the timing among upper/middle/lower

pages) to ensure data integrity. Consequently, writes are buffered temporarily in the write cache

until the accumulated buffer size is sufficient to complete a programming sequence. Hence, host

applications will observe prompt write I/O completions when they are hitting in the cache until

over-committing write I/Os.

ZNS SSDs also benefit from the write cache under the modest write I/O traffic. We set up an

experiment that writes to a single physical die at different rates. We configure four cases where the

first three issue 16KB write I/Os at a rate lower than the maximum die serving bandwidth (Table 1)

and the last one maxes out. Figure 19 reports the CDF of the I/O latency. When the write traffic
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Fig. 20. Latency varying with the number of busy writers on a conventional SSD.
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Fig. 21. Latency varying with the number of busy writers on a ZNS SSD.

is less than the maximum, the write cache can absorb the majority of the I/Os and provide fast

write completion (i.e., p50 is 93us). However, when the write runs at the maximum, we observe a

significant latency increase because it has to wait until the SSD flushes data and reclaims cache

space. The p50 latency rises to 2278us, which is even worse than the p99.9 latency of the first three

scenarios (i.e., 562us, 742us, 1434us).

A busy writer can adversely impact all concurrent writer flows, leading to elevated tail latency.

This issue primarily arises from the head-of-line-blocking effect induced within the SSD controller.

Unlike conventional SSDs, which mitigate this issue by employing striping that spans all dies,

ZNS SSDs face unique challenges. In this context, conventional SSDs reclaim cache space at the

maximum write bandwidth, and write latency remains stable unless the overall write demand

surpasses the device’s capability. However, ZNS SSDs exhibit a narrower write bandwidth per zone

and can experience significant delays in the cache when an excessive number of write I/Os are

overcommitted to a single zone.

To demonstrate this, we set up 32 writers issuing 16KB (QD1) write I/O with different manners:

(1) an unloaded writer that submits at a fixed rate lower than the maximum die bandwidth (20MB/s),

and (2) a busy writer that runs without capping bandwidth. Then, we measure the 16KB write

I/O latency of an unloaded tenant as increasing the number of co-located busy writers. Figure 21

demonstrates the high tail latency in the ZNS SSD. Adding a single busy writer will cause the

p50/p95/p99/p99.9 latency to increase by 5.6×/13.7×/8.7×/7.6×, respectively. More writers will not
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further jeopardize the case. Instead, we find that the tail latency will reduce slightly as the write

cache is flushed in higher bandwidth as more dies are busy, e.g., 18.4% drop of p99.9 under 16

writers. We conduct the same experiment on a conventional SSD in Figure 20. Since the cache is

shared among all writes and reclaimed at the maximum bandwidth, we observe that p50/p95/p99

latencies stay quite stable, while the p99.9 latency only increases by 50.5%.

Observations:Write cache is a hidden performance domain in ZNS SSDs. Unlike the conven-

tional SSD, where the write bandwidth is shared among every write, the ZNS SSD shares the cache

among all zones. By carefully pacing the I/O rate from each one, one can mitigate the tail latency

and achieve a fair write cache share. This could be realized via a software-managed I/O scheduler

using a monitoring mechanism for cache occupancy.

4 EZNS: ENABLING AN ADAPTIVE ZONED NS
This section describes the design and implementation of eZNS that realizes a new and elastic zoned

interface. We use the gathered insights from our characterization experiments and address the

aforementioned issues.

4.1 eZNS Overview
eZNS stays atop the NVMe driver and provides raw block accesses. eZNS exposes the v-zone
interface that offers runtime hardware adaptiveness, application elasticity, and tenant awareness.

We carefully design eZNS and spread its functionalities across the control plane and data plane.

As shown in Figure 22, it mainly consists of two components. The first is the zone arbiter that

(1) maintains the device shadow view in a hardware abstraction layer (HAL) and provides the

basis for other components, (2) performs serialized zone allocation avoiding overlapped placement,

and (3) dynamically scales the zone hardware resources and I/O configurations via a harvesting

mechanism. The second is a tenant-cognizant I/O scheduler, orchestrating read requests using a
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delay-based congestion control mechanism and regulating writes through a token-based admission

control. In sum, eZNS addresses the three issues discussed in §3.

4.2 Hardware Contract and HAL
We develop eZNS based on the following hardware contract, which are met by recent ZNS SSDs

with small zones: (1) a physical zone consists of one or more erasure blocks on a single die; (2)

the maximum number of active physical zones is a multiple of the number of dies, and all dies

hold the same number of active zones when they are fully populated (i.e., the ZNS SSD evenly

distributes physical zones over dies); (3) the zone allocation mechanism follows the wear-leveling

requirements, indicating that consecutive allocated zones will not overlap on a physical die until all

the dies have been traversed. We need to caveat that the last contract may not always be followed

in allocations if the device firmware enforces a specific policy other than round-robin across dies.

However, considering the large number of chips and the wear-leveling constraint, such cases are

rare. Our mechanism doesn’t require being cognizant of the two-dimensional geometric physical

view of SSD NAND dies and channels or maintaining an exact zone-die mapping.

eZNS maintains a shadow device view, exposing the approximate data locality for zone allocation

and I/O scheduling. Our mechanism (or HAL layer) only hinges on three hardware parameters from

device specifications. The first one is themaximum number of active zones (or MAR, maximum active

resources). This is based on an observation that the MAR is generally in proportion to or a multiple

of the number of physical dies on the SSD. One could estimate the number of active zones that a die

could hold by deliberately controlling the zone allocation order in an offline calibration experiment

(§3.4). The second parameter required is the NAND page size used for striping configuration. For

example, 16KB is a de facto standard for most TLC NVMe drives and is well-known for system

developers. The SSD shows the best efficiency when the stripe size is aligned with it (§3.3), and
thereby, we choose the stripe size as a multiple or factor of the NAND page size that is closest to

avoid inefficient stripe reads for sequential workloads. These two parameters reflect the device’s

capabilities. The third one is the physical zone size, deciding how a logical zone and strip groups

are constructed. With such information, HAL provides a shadow view having a consistent MAR

(e.g., 16) and the size of a zone (e.g., 2GB) regardless of the underlying device.

4.3 Serial Zone Allocator
eZNS develops a simple zone allocator that provides three guarantees: (1) it ensures that each stripe

group comprises a list of consecutive and serial opened physical zones, following the firmware-

enforced internal order; (2) there is no die collision within a stripe group; (3) across stripe groups,

die collision could happen for writes only if available active physical zones are fully populated

across all the dies. Given the above device model, the number of stripe groups colliding on a die is

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 # 𝑜 𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑧𝑜𝑛𝑒𝑠

𝐷𝑖𝑒 #
at most. Channel collision would not be an issue because its bandwidth is

usually higher than the aggregated program bandwidth across dies.

Our allocator works as follows. It has a per-device request queue, buffering OPEN commands

(including implicit ones followed by writes) from all logical zones. Our allocator serves each logical

zone request atomically. Since the completion of a zone OPEN command does not guarantee that

the zone is actually allocated on a physical die, we implement a zone reservation mechanism

during zone opens–flushing one data block that enforces binding a die to the zone. Writes complete

immediately as the write cache of the device absorbs a single block even in high load. To expedite

this process, we proactively maintain a certain amount of reserved zones in serial order and

provision them to an upcoming stripe group. Upon completion of the allocation, we then update

the allocation history and write it into a reserved persistent region (metadata block) following the
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block for reservation. Hence, we preclude interleaved allocations from concurrently opened logical

zones to prevent channel-overlapped placement and facilitate allocation reordering to mitigate die

overlaps (§3.4.2).

4.4 Zone Ballooning
v-zone, a specialized logical zone, can automatically scale its I/O striping configuration and hardware

resources to match changing application requirements in a lightweight fashion. Figure 23 illustrates

an example of a v-zone structure. Similar to a static logical zone, a v-zone contains a fixed number

of physical zones. However, unlike a static logical zone, it divides physical zones into one or more

stripe groups. When v-zone is first opened or reaches the end of a previous stripe group, it allocates
a new stripe group. All physical zones in the previous stripe group must be finished when the write

pointer reaches the end of the stripe group, allowing an active v-zone to take active resources for

only one stripe group. The number of physical zones in a stripe group is determined at the time

of allocation according to the local overdrive mechanism, which enables flexible zone striping. To

comply with the standard zone interface, v-zone has a size that is a power of 2, and its capacity is

the sum of user-available bytes in physical zones.

Similar to the virtualization memory ballooning technique [6, 45, 54], zone ballooning allows

a v-zone to (1) expand its stripe width by leasing spares from others when other namespaces are

under low active resource usage; (2) return them when it finishes the stripe group either by writing

to the end of the stripe group or explicitly issuing FINISH/RESET commands from the application.

4.4.1 Initial Resource Provisioning. eZNS divides all the available and opened physical zones on the

ZNS SSD into two groups: essential and spare. The essential group contains a minimal number of

active physical zones that can max out the SSD write bandwidth (𝑁𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 ), whilst the rest belong

to the spare group (𝑁𝑠𝑝𝑎𝑟𝑒 ). Our initial resource allocation follows the equal bandwidth partition

principle. We choose the write I/O bandwidth as the minimum guarantee because writing resources

(or active physical zones) of a ZNS SSD are scarce. Assuming the number of namespaces that a

ZNS SSD holds is 𝑁𝑛𝑠 and the maximum number of active v-zones per namespace is𝑀𝐴𝑅𝑙𝑜𝑔𝑖𝑐𝑎𝑙 . A

namespace takes
𝑁𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙

𝑁𝑛𝑠
exclusive active physical zones; when a v-zone in the namespace opens a

new stripe group, it receives
𝑁𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙

𝑁𝑛𝑠×𝑀𝐴𝑅𝑙𝑜𝑔𝑖𝑐𝑎𝑙
assured essential ones which is also the minimum stripe

width. In terms of spare zones, similarly, eZNS equally distributes them to a namespace (

𝑁𝑠𝑝𝑎𝑟𝑒

𝑁𝑛𝑠
)

during initialization. Both a v-zone and a namespace will expand/shrink their capacity to adapt to

workload demands.
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(a) Initial configuration

(b) Lent unused spare zones from inactive NS2 to NS1

(c) Spares are reclaimed from frozen NS3 and lent to NS1

Fig. 24. Three simple examples of the global overdrive mechanism

4.4.2 Local Overdrive: Zone Expanding. eZNS provisions available spares from the spare group
of its namespace to boost its write I/O capability. We realize this via an internal local overdrive
operation while opening a new stripe group. The mechanism works as follows. First, it estimates

the resource usage of the namespace by analyzing its previously opened v-zones, quantified as

the exponentially weighted moving average over the number of active v-zones (𝑁𝐴𝑐𝑡𝑖𝑣𝑒𝑍𝑜𝑛𝑒𝐻𝑖𝑠𝑡𝑜𝑟𝑦).

Second, it checks the remaining spares from the spare group (𝑁𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑝𝑎𝑟𝑒 ) and reaps additional

spares based on

𝑁𝑇𝑜𝑡𝑎𝑙𝑆𝑝𝑎𝑟𝑒

𝑁𝐴𝑐𝑡𝑖𝑣𝑒𝑍𝑜𝑛𝑒𝐻𝑖𝑠𝑡𝑜𝑟𝑦
. Essentially, a v-zone will receive more (fewer) spares if it embodies

writing activities but the namespace only opens fewer (more) v-zones. Third, the v-zone conflates
the harvested spares with assured essential ones for it to open the new stripe group, and the stripe

width is rounded down to the nearest power of two for efficient resource management. Note that

the local overdrive operates in a serial and best-effort fashion. Lastly, eZNS sets the baseline stripe

size to 32KB at the minimum width for the optimal I/O efficiency of the device. It then reduces the

stripe size for an overdriven zone according to the stripe width, down to the minimum block size

of the device. For example, if the width gets two times wider, the stripe size is reduced by half. We

determine the range of stripe sizes to optimize the performance as aforementioned in §3.3. The
reduced stripe size further contributes to the I/O scheduler ensuring fairness (§4.5).

, Vol. 1, No. 1, Article . Publication date: April 2024.



eZNS: Elastic Zoned Namespace for Enhanced Performance Isolation and Device Utilization 25

Fig. 25. Example of the zone reclaim operation. The original stripe group has width of 6 with 4 spares. The
reclaim operation shrinks it to the minimum width of 2 using only essentials. When the amount of valid data
exceeds the size of a minimum width stripe group, it finishes the stripe group and creates another one until
copies all valid data. Then it returns spares in the original stripe group to the pool.

4.4.3 Global Overdrive: Namespace Expanding. Across the whole device, our zone ballooning

mechanism further reallocates spares across namespaces based on their latest write activity. We

realize this via another internal global overdrive operation–lend spares from the spare group to

each other. Unlike local overdrive, global overdrive is triggered based on the write intensity across

the entire drive. Specifically, our arbiter monitors the past 𝑁𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 opened physical zones across

all active namespaces, computes their zone utilization, and redistributes the remaining spares from

inactive namespaces to active ones. Figure 24 illustrates an example case of global overdrive. Initially,
in Figure 24a, we evenly distribute essentials and spares across three namespaces. Subsequently,

NS1 and NS3 open two v-zones each. While NS1 continues to actively write data, NS3 becomes

inactive after opening its allocated v-zones. Simultaneously, NS2 remains devoid of write activity.

Once the arbiter identifies NS2 as an inactive namespace, it triggers the redistribution of unused

spare zones from NS2 to the active namespace, NS1, with a focus on boosting the performance of

NS1 as depicted in Figure 24b. In the event that NS2 starts writing data, we ensure the minimum

number of active zones and adequate bandwidth using essentials.

In the current design, we determine an inactive namespace as a namespace that has no allocation

history in the last 𝑁𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 physical zone allocations of the device, and lent spares are equally

distributed across active namespaces. When an inactive namespace becomes active again, eZNS

marks the leased spares as recall spares, and namespaces release them to the global pool as soon as

they FINISH/RESET the stripe group in v-zones. eZNS then returns them to the original namespace

at the next global overdrive operation.

4.4.4 Reclaim: Zone/Namespace Compaction. Generally, an overdriven v-zone after entering the
FINISH state will return spare zones. Therefore, spare zones circulate as long as namespaces

continue to write to v-zones. However, when a namespace overdrives v-zones, which becomes

inactive without releasing them, the arbiter has to use a reclaim operation to take back the spares

to prevent resource leakage. To ensure no slowdown on the performance path, we employ an

asynchronous window-based monitoring scheme, where the arbiter bookkeeps the status of each

inactive namespace and continuously counts how long its status is in the read-only state. If a

namespace presents no write I/Os for a certain amount of time, 𝑇𝑅𝑒𝑎𝑑𝑂𝑛𝑙𝑦 , the arbiter determines

the namespace as frozen and triggers the reclaim procedure to proactively collect the spare zones.

The execution cost of reclaim depends on the configuration within the opened stripe group. If there

are committed writes on the zone, reclaim will trigger a zone compaction and perform a sequence

of I/O reads/writes, i.e., finishing existing zones, opening a new stripe group with shrunk width,
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and copying data to the new one. Once the migration is done, the spare zones can be returned

to the global spare pool. Figure 25 presents an example of the zone reclaim process. When the

arbiter identifies NS3 as frozen, it initiates the reclamation process (i.e., zone compaction) within

the current stripe groups. These reclaimed spares are subsequently transferred to NS1.

The zone reclaiming indeed brings GC-like overheads back to the system. Thus, it is crucial

that the system does not trigger the operation in normal conditions. In eZNS, zone reclaiming is

only performed when namespaces have no write activity for two cycles of global overdrive. This is

likely to happen infrequently, such as when an application undergoes a significant change in its

running state. Moreover, reclaiming is triggered in a lazy fashion, executed in the background, and

regulated by the scheduler to limit its performance impact. As a result, eZNS can avoid triggering

zone reclaiming in normal conditions, maintaining high performance and efficiency.

4.5 Zone I/O Scheduler
eZNSmindfully orchestrates I/O reads/writes with the goal of providing equal read/write bandwidth

shares among contending v-zones, maximizing the overall device utilization, and mitigating super-

fluous head-of-line blocking when different types of requests interleave. Our zone I/O scheduler

comprises two components: congestion-avoiding read scheduler and cache-aware write admission

control.

4.5.1 Congestion-avoid Read Scheduler. Our design is based on the observations that (1) ZNS SSDs

have no internal housekeeping operations; (2) write I/Os are sequential and synchronous. Hence,

the read latency is stable and low until the die becomes congested, and it is thus possible to detect

congestion directly via latency measurements.

eZNS introduces a hierarchical design that performs weighted round-robin scheduling firstly

across active namespaces and then delay-based congestion control across each intra-namespace

v-zones. By conforming to the NVMe architecture, we create per-namespace NVMe queue pairs

and offload the round-robin scheduling to the device. Then, we employ a Swift-like [27] congestion

control mechanism to decide the bandwidth allocation for each stripe group in the v-zone, where
the delay is the device I/O command execution latency. As shown in Algorithm 1, during the

congestion-free phase, upon a read I/O completion, we additively increase (AI) the congestion

window until it approaches the maximum size (line 6). Since the congestion window (cwnd) is
shared in the stripe group, when set to the stripe width, it indicates that there is one outstanding I/O

per die in the sequential case. The SSD can max out its per-die bandwidth with a few outstanding

I/Os. Thus, when the cwnd starts with the stripe width, it quickly ramps up to the device bandwidth

capacity. Further, we limit the maximum congestion window (cwnd) to 4×𝑠𝑡𝑟𝑖𝑝_𝑤𝑖𝑑𝑡ℎ to minimize

the software overheads when handling excess concurrent I/Os and avoid a meaningless rapid

growth of cwnd that would imperil the efficiency of the MD phase. When congestion happens,

we reduce the congestion window multiplicatively (line 4), whose ratio depends on the latency

degradation degree. All the physical zones within a stripe group share the same congestion status.

It is reasonable because sequential read bandwidth will be capped by the most congested physical

zone. Random reads usually will not trigger frequent cwnd decrements because the minimum

window size is large enough to absorb them. Our congestion control works cooperatively with the

reduced stripe size of the overdrive and ensures a fair share of bandwidth regardless of the width

of the stripe group.

4.5.2 Cache-aware Write Admission Control. Due to the non-linear write latency and the shared

architecture, it is inappropriate to implement a local mechanism to mitigate the problem. Unlike

the read congestion case, write congestion happens globally across all zones from all namespaces

(§3.5). Therefore, eZNS monitors the global write latency and regulates writes using a token-based
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Algorithm 1 Zone I/O Scheduler

1: procedure Read Submission()

2: 𝑟𝑒𝑎𝑑_𝑖𝑜 ← ℎ𝑒𝑎𝑑(𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑞𝑢𝑒𝑢𝑒)

3: if 𝑐𝑤𝑛𝑑 ≥ 𝑖𝑜_𝑐𝑜𝑢𝑛𝑡 + 𝑠𝑖𝑧𝑒(𝑟𝑒𝑎𝑑_𝑖𝑜) then
4: submit(𝑟𝑒𝑎𝑑_𝑖𝑜)

5: procedure Read Completion()

6: 𝑙𝑎𝑡_𝑡ℎ𝑟𝑒𝑠ℎ ← 500𝑢𝑠

7: if 𝑖𝑜_𝑙𝑎𝑡 > 𝑙𝑎𝑡_𝑡ℎ𝑟𝑒𝑠ℎ then
8: 𝑐𝑤𝑛𝑑 = max(1, 𝑐𝑤𝑛𝑑 × 𝑙𝑎𝑡_𝑡ℎ𝑟𝑒𝑎𝑠ℎ

2×𝑖𝑜_𝑙𝑎𝑡 )

9: else ⊲ 𝛼 = additive factor

10: 𝑐𝑤𝑛𝑑 = min(𝑠𝑡𝑟𝑖𝑝𝑒_𝑤𝑖𝑑𝑡ℎ × 4, 𝑐𝑤𝑛𝑑 + 𝛼 × 𝑖𝑜_𝑐𝑜𝑢𝑛𝑡

𝑐𝑤𝑛𝑑
)

11: procedureWrite Submission()

12: 𝑤𝑟𝑖𝑡𝑒_𝑖𝑜 ← ℎ𝑒𝑎𝑑(𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑞𝑢𝑒𝑢𝑒)

13: if 𝑡𝑜𝑘𝑒𝑛𝑠 ≥ 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒(𝑤𝑟𝑖𝑡𝑒_𝑖𝑜) then
14: submit(𝑤𝑟𝑖𝑡𝑒_𝑖𝑜)

15: procedureWrite Completion()

16: 𝑝𝑒𝑟_𝑏𝑙𝑜𝑐𝑘_𝑙𝑎𝑡 = 𝑝𝑒𝑟_𝑏𝑙𝑜𝑐𝑘_𝑙𝑎𝑡 +
𝑖𝑜_𝑙𝑎𝑡

𝑛𝑢𝑚_𝑏𝑙𝑜𝑐𝑘𝑠

17: 𝑛𝑢𝑚_𝑖𝑜𝑠 += 1

18: procedure Write Latency Monitor()

19: On 𝑡 every 10ms

20: 𝑡𝑜𝑡𝑎𝑙_𝑙𝑎𝑡 =
∑
𝑎𝑐𝑡𝑖𝑣𝑒_𝑧𝑜𝑛𝑒 𝑝𝑒𝑟_𝑏𝑙𝑜𝑐𝑘_𝑙𝑎𝑡

21: 𝑡𝑜𝑡𝑎𝑙_𝑖𝑜𝑠 =
∑
𝑎𝑐𝑡𝑖𝑣𝑒_𝑧𝑜𝑛𝑒 𝑛𝑢𝑚_𝑖𝑜𝑠

22: 𝑎𝑣𝑔_𝑙𝑎𝑡 (𝑡 ) =
𝑡𝑜𝑡𝑎𝑙_𝑙𝑎𝑡

𝑡𝑜𝑡𝑎𝑙_𝑖𝑜𝑠

23: 𝑏𝑙𝑜𝑐𝑘_𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑒 =
𝑎𝑣𝑔_𝑙𝑎𝑡 (𝑡−1)+𝑎𝑣𝑔_𝑙𝑎𝑡 (𝑡 )

2

24: procedure Write Token Generator()

25: On every 1ms

26: for pending write zones do
27: 𝑡𝑜𝑘𝑒𝑛 +=

𝑛𝑜𝑤−𝑙𝑎𝑠𝑡_𝑟𝑒 𝑓 𝑖𝑙𝑙
𝑏𝑙𝑜𝑐𝑘_𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑒

× 𝑠𝑡𝑟𝑖𝑝𝑒_𝑤𝑖𝑑𝑡ℎ

admission control scheme. We generate tokens periodically (ALG 1 lines 14–16) and admit write

I/Os in a batch for each active v-zone to ensure overflow rarely happens. This requires a latency

monitor to analyze the write cache eviction activity (ALG 1 lines 8–12). Here, we profile the block

admission rate (defined as the minimum delay between two consecutive write blocks) and adjust

the token generation rate based on its normalized average latency. This is based on an empirical

observation that the latency of the write projects its capacity share in the write cache. Hence, we

equalize the latency for all write zones and calculate available tokens using the average value.

Additionally, we update the available tokens based on the elapsed time from the last token refill

upon a write submission. By doing so, we expect that writes are self-clocked in the congestion-less

condition.

Note that (1) when read and write I/Os mix on a physical die, the total aggregate bandwidth

will drop due to the NAND interference effect. However, our read scheduler and write admission

control require little coordination because both modules only use the latency (gradient) as a signal

to infer the current bandwidth capacity; (2) we coalesce stripes for the same physical zone within a

user I/O and submit one write I/O to the device in a batch, and thus, a small stripe size does not

degrade the write bandwidth.
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Fig. 26. B/W comparison between an overdrived and three statically configured zones.
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Fig. 27. Performance variation of four namespaces with global overdrive under 100s.
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Fig. 29. Efficiency of eZNS on handling read-read, write-write, and read-write congestion. (CC=Congestion
Control, AC=Admission Control)

We add a thin layer in the SPDK framework [50] to implement eZNS and realize the v-zone
concept. The primary reason for choosing the SPDK approach was its ease of implementation and
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integration into the software stack of a storage server accessible by remote clients. Moreover, the

SPDK-based design can also be used in a local system to serve virtual machines through the SPDK

vhost extension. This approach allows the storage server to provide efficient and high-performance

I/O operations, while remaining compatible with existing software stacks. We use the same test

environment as in §3.1. Non-SPDK applications require a standard ZNS block device exposed

via the kernel NVMe driver; thus, we set up eZNS as a disaggregated storage device over RDMA

(NVMe-over-RDMA) and connect to it using the kernel NVMe driver.

Micro-benchmarks:We use FIO [17] to generate synthetic workloads and allocate a separate

thread for each worker when the workload writes to multiple namespaces or zones. For read

workloads, we first precondition the namespace by performing sequential writes for the entire

range of read I/O. Additionally, we perform a pre-calibration step to determine the die allocations

in case the evaluation requires a die-level collision.

Ported Applications: We use RocksDB as a real-world ZNS application, to evaluate the perfor-

mance of eZNS We run RocksDB over ZenFS [8] to enable the ZNS support. As eZNS complies

with the standard NVMe ZNS specification, no modification is required for the application and

ZenFS. We initialize the DB instance with 500M entities of 20-byte keys and 1,000-byte values.
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Fig. 30. Throughput of overwrite workload on a single namespace without other tenants. (Over: Overdrive)

Default v-zone Configuration: By default, eZNS creates four namespaces (NS1–4), each of

which is allocated 32 essential and 32 spare resources. Since each namespace provides a maximum

of 16 active zones, the minimum stripe width for v-zone is 2 with a stripe size of 32KB. However,

eZNS can overdrive the width up to 16 with a stripe size of 4KB. For a fair comparison, we prepare

a static logical zone configured with stripe width and size of 4 and 16KB, respectively; hence, it also

accesses full device capability when the application populates enough active logical zones. Both a

v-zone and a static logical zone comprise 16 physical zones. Different configurations are used for

single-tenant evaluation (single namespace) and YCSB benchmark (six namespaces), as specified in

Section 5.3.

5.1 Zone Ballooning
We demonstrate the efficiency of zone ballooning when handling large writes (i.e., 512KB I/O with

a queue depth of one). First, within a namespace, we compare the performance between a v-zone
and a static logical zone, where the number of writers is configured to 4, 8, and 16, respectively.

Each writer submits a write I/O to different zones. Our local overdrive operation can reap more

spare zones and lead to better throughput. As shown in Figure 26, the v-zone outperforms the static

one by 2.0× under the 4-writer case as 4 static logical zones enable only 16 physical zones while
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Fig. 32. Latency of db_bench workloads (2 overwrite, 2 randomread) on different namespaces over eZNS and
static zone.

4 v-zone overdrive the width to 8 and expand to 32 physical zones. In the 8-writer and 16-writer

cases, v-zone reduces the overdrive width accordingly and utilizes the same number of physical

zones (32 and 64, respectively) with the static logical zone.

To evaluate eZNS’s adaptiveness under dynamic workloads, we set up overdriven zones from

different namespaces. The first three namespaces (NS1, NS2, and NS3) run two writers, while the

fourth namespace (NS4) runs eight. NS1, NS2, and NS3 stop issuing writes at t=30s and resume the

writing activity at t=80s. We measure the throughput and spare zone usage of four zones for a 100s

profiling window (Figures 27 and 28). When the other three zones become idle, the v-zone from
NS4 takes up to 3× more spare zones from other namespaces using the global overdrive primitive

and maxes out its write bandwidth (∼2.3GB/s). It can then quickly release the harvest zones when

other zones start issuing writes again.
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Fig. 33. Throughput of db_bench workloads (2 overwrite, 2 randomread) on different namespaces over eZNS
and static zone.

5.2 Zone I/O Fairness
We evaluate our I/O scheduler in various synthetic congestion scenarios by placing competing

zones in the same physical die group. We compare the performance of all co-located zones when

enabling and disabling our mechanism. The zone ballooning mechanism is turned off for all cases.

We report per-thread bandwidth in Figure 29.

Read-Read Fairness. We run a sequential read of 128KB I/O size at two types of zones on

co-located dies. To equally load the physical dies, we populate more threads for lower-width zones.

For example, a zone with a width of 2 runs four threads on each stripe group, while a zone with a

width 8 has only one thread. As shown in Figure 29-a, in scenario 1, when disabling our congestion

control mechanism, Zone A (configured with stripe width 2 and stripe size 32KB, QD-1) and Zone

B (configured with stripe width 8 and stripe size 8KB, QD-32), even holding the same sized full

stripe, achieve 76MB/s and 1287MB/s, respectively. This is because the zone with the higher QD

dominates on the competing die. Our scheme effectively controls the per-zone window size and

ensures that each zone submits the same amount of outstanding bytes. Hence, both Zone A and

Zone B sustain 290MB/s. In scenarios 2 and 3, we change the Zone A stripe configuration to <stripe

width 4, stripe size 16KB, QD-1> and <stripe width 8, stripe size 8KB, QD-1), and observe similar

behavior when turning off the read congestion logic. In scenario 3, the congestion level on the

die gets lowered as Zone A only submits one 128KB I/O (which was 4 and 2 in scenarios 1 and 2,

respectively). Hence, the read latency also becomes below the threshold, and the I/O scheduler

chooses to max out the bandwidth.

Write-Write Fairness.We carefully create different write congestion scenarios and see how

our admission control operates. The workload used is a sequential write of 512KB size. In the first

scenario, we co-locate 16 regular write zones (Zone A, where each has a striping width of 8 with

8KB stripe size and submits write I/Os at 5ms intervals, sustaining 95MB/s maximum throughput)

with a busy writer (Zone B, that has width 2 and 32KB stripe size, submits I/O without interval

delays, achieving 85MB/s at most). Figure 29-b reports the bandwidth utilization of one regular

zone (Zone A) and the busy writer (Zone B). Our admission control mechanism limits the write

issuing rate of Zone B and gives more room at the write cache to the regular zone (Zone A), leading

to 35.7% bandwidth improvement per thread. Next, we set up a highly-congested case by changing

16 regular zones to busy writers (scenario 2). Without the admission control, Zone B runs at 64.9
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MB/s, which is 32.5 MB/s per physical zone or 76.3% of the physical zone bandwidth, while Zone A

receives only 16.4 MB/s per physical zone or 38.4% of the physical zone bandwidth. As described in

§4.5.2, our scheme equally distributes the write bandwidth share across competing zones, and Zone

B receives 56.8% of the total bandwidth of 2 physical zones, increasing the bandwidth of Zone A

by 7.6%. As a result, it improves the overall bandwidth of the device from 2160.9 MB/s to 2304.3

MB/s, or by 6.6%. The last scenario is a collision-less one at the die level where we eliminate the

overlapping region among all the write zones by populating active physical zones lesser than the

number of dies. (i.e., reducing the number of regular zones to 15.) Similarly, when enabling the

admission control, the bandwidth allocated for Zone B slightly decreases (∼7.2%) to avoid cache

congestion, and the overall device bandwidth is increased by 24.7% (from 2403.3 MB/s to 2997.7

MB/s).
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Fig. 34. Read latency of YCSB workloads (A/B/C/F) on different namespaces over eZNS and static zone.
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Fig. 35. Throughput of YCSB workloads (A/B/C/F) on different namespaces over eZNS and static zone.

Read-Write Fairness.We examine how our congestion control mechanism coordinates with the

admission control when handling read/write mixed workloads. In this experiment, we set up three

types of zones: (1) ×16 regular readers (Zone A), where each has a striping width of 2 and 32KB

stripe size, performing 128KB random read at queue depth 32, across all physical dies; (2) 1 busy

, Vol. 1, No. 1, Article . Publication date: April 2024.



34 Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind Krishnamurthy

writer (Zone B), whose striping width is 2 with 32KB stripe size; (3) ×16 regular writers (Zone C),
which has a striping width of 8 and 32KB stripe size each, submitting I/Os under 5ms interval. Both

B and C issue 512KB large writes. Figure 29-c reports their per-thread bandwidth. When disabling

our scheduler, each reader achieves 199.6MB/s but writes are jeopardized significantly, as Zone B

and Zone C can only achieve 19.3% and 27.3% of their maximum bandwidth. As we gradually turn

on our mechanisms, the congestion control shrinks the window size such that more bandwidth is

allocated to the writes. Further, the admission control then equally partitions bandwidth among

competing writing zones. As shown in the CC+AC case, zones A, B, and C can sustain 71.6%, 57.5%,

and 70.1% of their maximum bandwidth capacity, respectively.

5.3 Application: RocksDB
To evaluate eZNS in a real-world scenario, we use RocksDB [41] over the ZenFS storage backend.

In addition to the built-in utility in the RocksDB db_bench tool, we port YCSB workload generators

[5] for the mixed workload evaluation.

Single-tenant performance. First, we run the overwrite profile of the db_bench to evaluate the

write performance of eZNS. Figure 30 demonstrates that eZNS improves the throughput by 46.1% and

84.5% with local and global overdrive, respectively. The ZenFS opens all available zones regardless
of actual usage; hence, our local overdrive has minimal impact, and the stripe width, 4, becomes the

same as with static zones. However, our I/O scheduler mitigates intra-namespace interference, and

each zone receives a fair share of the bandwidth, eliminating unnecessary application delays due

to zone interference. When global overdrive comes in, zones further harness more active resources

and attain higher bandwidth.

Next, we evaluate the performance of a single tenant using the readwhilewriting profile of

the db_bench, which runs one writer and multiple readers. This workload profile demonstrates

a read/write mixed scenario. In the case of a single-tenant configuration, eZNS creates a single

namespace on the device and allocates 128 essential and 128 spare resources to it. Since only two

stripe widths, 8 and 16, are possible in this configuration, eZNS sets the stripe size to 16KB for the

width of 8 to avoid the namespace running only on large stripe sizes. We compare the performance

of eZNS over two static configurations, both with a stripe width of 16 but with different stripe

sizes of 4KB and 16KB. Since there is only one namespace on the device, eZNS always overdrives

v-zones to the width of 16, which is identical to the static configurations. Therefore, both the static

namespace and eZNS can exploit all available bandwidth on the device. However, the I/O scheduler

of eZNS helps mitigate interferences between zones and improves overall application performance.

Figure 31 shows that eZNS improves the P99.9 and P99.99 read latency by 28.7% and 11.3% over

the static configurations with a stripe size of 16KB and 4KB, respectively. Additionally, eZNS also

improves the throughput by 11.5% and 2.5% with a stripe size of 4KB and 16KB.

Multi-tenant Performance. Next, we set up instances of db_bench on four namespaces (A, B, C,

and D), each with a different workload profile. A and B perform the overwrite profile, while C and

D execute randomread concurrently. We run the benchmark for 1,800sec and report the latency and

the throughput. Figure 32 shows that our I/O scheduler significantly reduces P99.9 and P99.99 read

(C/D) latency by 71.1% and 20.5%, respectively. In terms of throughput, eZNS improves write (A/B)

and read (C/D) throughput by 7.5% and 17.7%, respectively. Furthermore, while the read latency

and throughput are improved, the write latency is either maintained at the same level or decreased

compared to the static configuration because eZNS moves the spare bandwidth from read-only

namespaces (C/D) to write-heavy ones (A/B).

Mixed YCSB Workloads with four namespaces. YCSB [16] is widely used to benchmark

realistic workloads. In our experiments, we run YCSB workload profiles A, B, C, and F on each of

the six namespaces. We exclude YCSB workload profiles D and E because they increase the number
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of entities in the DB instance during the benchmark. As YCSB-C (read-only) does not submit any

write I/Os during the benchmark, eZNS triggers global overdrive and rebalances the bandwidth to

the write-most namespaces (A and F). Figure 34 shows that the I/O scheduler improves the P99.9

read latency of read-intensive workloads (YCSB B and C) and also the read-modify-write one (YCSB

F) by 79.1%, 80.3%, and 76.8%, respectively. The throughput improvement from global overdrive is

up to 10.9% for the write-most workload A in Figure 35.
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Fig. 36. Read latency of YCSB workloads (A/B/C/D/E/F) on different namespaces over eZNS and static zone.
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Fig. 37. Throughput of YCSB workloads (A/B/C/D/E/F) on different namespaces over eZNS and static zone.

Mixed YCSB Workloads with six namespaces. We also conducted evaluations using all six

workload profiles of YCSB (A-F) with a configuration involving six namespaces. To support six

namespaces, we reduced the maximum active zones to 11, allocating 22 essentials and 20 spares for

each namespace during the initialization process. The remaining 4 physical zones are designated as

part of the global spare pool.

Figures 36 and 37 present the tail latencies and throughput comparisons between eZNS and

the static zone configuration. For YCSB A-C and F, our results closely resemble those observed in

the four-namespace scenario. Notably, YCSB A demonstrates the most significant improvement in

throughput, with an increase of 8.6%, while the read-heavy workloads (YCSB B, C, and F) exhibit
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remarkable reductions in P99.9 read latency, with improvements of up to 77.6%. YCSB D, a read-

intensive profile focusing on the latest data, also showcases notable improvements, with P99.9

latency reduced by 76.9% and a throughput increase of 4.8%. In contrast, YCSB E, which represents

a range-scan workload, demonstrates the least improvement among the six workload profiles.

Although the P99.9 read latency for YCSB E is reduced by 44.3%, its throughput remains slightly

below that of the static zone at 99.0%. In addition, the P99.99 read latency is worse than the static

zone configuration. This is primarily due to YCSB E’s higher per-operation cost and increased

bandwidth of other tenants. The scan operation of YCSB E generates a large number of read I/Os

per operation, having more congested I/Os per operation than other workload profiles. At the same

time, the increased device bandwidth further raises the chance of congestion on accessing dies.

As a result, the worst case latency could be higher than the static configuration. If we keep the

throughput of tenants same as the static configuration, P99.99 will be dramatically decreased as

well.

eZNS on File System (F2FS) To evaluate the performance of eZNS on a general file system,

we replicated the scenario with four namespaces using RocksDB over F2FS [30] instead of ZenFS,

while maintaining an identical zone configuration to that of ZenFS. The read-intensive workloads

(YCSB B, C, and F) demonstrate improvements in both P99.9 read latencies and throughput, as

illustrated in Figures 38 and 39.

However, YCSB A does not benefit from eZNS and even performs worse than the static zone

configuration, achieving a throughput of only 95.3%. This can be attributed to the lower zone

utilization of F2FS. We observed that F2FS opens up to three zones but allocates only one zone

for writing user data, resulting in the lower write bandwidth for both eZNS and the static zone.

Additionally, since we have tuned the maximum active zones to 16 and the striping size cannot

be sized smaller than 4KB, eZNS cannot increase the striping width beyond 8. Consequently, the

global overdrive mechanism does not operate effectively in this scenario, forcing eZNS to make a

trade-off, sacrificing a small amount of throughput from YCSB A to ensure a fair distribution of

read bandwidth across all namespaces.
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Fig. 38. Read latency of YCSB workloads (A/B/C/F) on different namespaces over eZNS and static zone
running on F2FS.

5.4 Overhead analysis
End-to-end read latency overhead. Since eZNS serves as an orchestration layer between the

physical ZNS device and the NVMe-over-Fabrics target, there may be some overhead when the
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Fig. 40. Comparison of Avg. Read Latency for 4KB I/Os at various depths between the host-managed zone
access and eZNS.

I/O load is very low. To measure this overhead, we conducted a quantitative analysis using 4KB

random read I/Os and compared it with host-managed zone access, where the host directly accesses

the physical device without eZNS. Figure 40 demonstrates that eZNS does not add a noticeable

latency overhead for I/O depths up to 8. As the I/O depth goes over 16, up to 14.0% overhead is

observed due to the I/O scheduler delaying the I/O submission. However, the scheduler provides

significant advantages in real-world scenarios, as shown in previous experiments.

Memory footprint. eZNS relies on in-memory data structures for managing v-zone metadata,

including the logical-to-physical mapping and scheduling statistics. Additionally, it maintains a

copy of the physical zone information to reduce unnecessary queries to the device, enabling faster

zone allocation and deallocation. In our current implementation, the size of v-zone metadata is less

than 1KB, and the size of physical zone information is smaller than 64 bytes. For our testbed SSD

with four namespaces, each with 1TB of capacity, v-zone metadata and physical zone information

require 2MB and 2.5MB of memory, respectively. Compared to the memory requirements of the

page-mapping in conventional SSDs, the memory usage of eZNS is negligible.
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6 RELATEDWORK
Early ZNS Exploration. Researchers have made initial efforts to understand the ZNS interface

and integrate it into the host storage stack. Theano Stavrinos et al. [51] argue for a shift in research

to the zone interface and discuss future directions (e.g., applying application-level information for

zone management and I/O scheduling). Hojin Shin et al. [48] develop a performance analysis tool

for a ZNS SSD and profile its parallelism, isolation, and predictability properties. Compared with our

study, they didn’t investigate the underlying device’s internal mechanisms when realizing the zoned

namespace interface and, thereby, are unable to correlate the observed performance with the ZNS

SSD characteristics. ZNS+ [18] enhances the existing interface with two new architectural primitives

to optimize LFS file systems. With such support, the authors then propose copy-back-aware block

allocation and hybrid segment recycling techniques. Hanyeoreum Bae et al. [4] prioritize I/O

requests for less congested zones using an interference map, whilst updates incur significant

overheads. Although revising the ZNS interface and exposing the physical allocation of zones

could potentially eliminate this overhead, it may not be feasible for existing devices due to vendors’

resistance to disclosing internal architecture and policies. eZNS uses a delay to determine congestion

and doesn’t require an allocation map. Furthermore, eZNS addresses such as read and write

differences, zone striping, and bandwidth provisioning issues that were not discussed in their work.

Minwoo Im et al. [20] improved ZenFS on small-zone SSDs by introducing read/write parallelism

with a multi-threaded I/O engine and lifetime-based zone management at the application level.

However, it requires adjusting the RocksDB parameters to match the device capability instead of

the workload-optimized parameters. This can increase the complexity of parameter configuration,

resulting in sub-optimal settings for the workload. eZNS maximizes parallelism within the thin

layer, regardless of the underlying device and the application profile. It exploits the device’s parallel

I/O processing capability that can be executed on a single thread.

Addressing Inefficiencies of Conventional SSDs. Early SSD researches [3, 13, 19, 36] fo-

cused on internal parallelism and tradeoffs between concurrency, locality, bandwidth, capacity,

performance, and lifetime. Modern SSDs handle random write patterns with page mapping FTL,

write-cache, and superblock concepts [56] that group blocks together. It benefits from high par-

allelism that transforms writes into sequential NAND programming. However, multi-tenancy

workloads cause interference and high write amplification factor (WAF). ZNS SSDs eliminate

garbage collection and fix WAF to one but require careful parallelism management across zones

to avoid degraded device utilization. In addition, future QLC-based ZNS SSDs may have fewer

active zones due to a multi-pass programming algorithm [24]. eZNS addresses these challenges by

adjusting the parallelism of each logical zone based on the number of namespace flows, providing

fully dynamic parallelism and maximizing device capability while presenting an identical logical

view to applications.

IODA [31] is an I/O deterministic flash array that uses the I/O determinism feature and exploits

data redundancy for a strong latency predictability contract. SSDs can fail an I/O to allow predictable

I/Os through proactive data reconstruction. We target the ZNS SSD, where there are no random

I/Os, and GCs are user-controlled. This opens up a different design space. Although techniques

addressingGC-related interference are not beneficial to GC-free ZNS SSDs, others such as Engurance

Group(EG) and NVM Set can be useful to ensure physically isolated zone allocation. eZNS can take

advantage of the geometry hints via EG (or even finer-grained NVM Sets). Unfortunately, there is

no currently available SSD that supports both ZNS and EG, but it will be an interesting direction

for future work.

Open-Channel SSDs. These drives have no mapping layer in the controller and directly expose a

set of physically contiguous blocks to applications, and leave the data placement/wear-leveling
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responsibilities to the host. Researchers have built several domain-specific solutions using them.

For example, SDF [35] employs a hardware-software co-designed approach that exposes flash

channel details and delegates I/O control-plane and data-plane tasks to host applications. LOCS [55]

further improves the throughput of an LSM-tree-based KV store by optimizing the scheduling and

dispatching policies, considering the characteristics of access patterns of the LevelDB. RAIL [32]

designs a horizontal hot-cold separation mechanism and divides dies into two groups, where user

and GC writes are scheduled to different dies, and the hot/cold ratio is dynamically adjusted based

on runtime monitoring. By having full control over the device, one can implement a deterministic

v-zone using eZNS. Despite the potential architecture, it imposes too many responsibilities on

the software handling tasks that are offloadable to the device with no cost, for example, wear-

leveling, physical zone-to-die mapping, etc. Another challenge arises when the system consists of

heterogeneous devices resulting in the overhead of managing different H/W architectures (NAND

chip capacity, channel/die configuration, etc.).

eZNS as a firmware. One may implement eZNS solely in the SSD using the controller and

firmware. This approach can exploit internal knowledge such as NAND specification, Channel/Die

structure, queue length on a die, etc. Thus, it may control the interference better and outperform

the software-based implementation. However, completing eZNS in one device is not future-proof,

given the disaggregated systems architecture in data centers. The software-based solution can build

an eZNS-based system spanning multiple devices enabling elastic capacity scaling, load-aware

allocation, high availability, and more. At the opposite end is the Open-Channel SSD. By having

full control over the device, one can implement a deterministic v-zone using eZNS. Despite the

potential architecture, it imposes too many responsibilities on the software handling tasks that are

offloadable to the device with no cost, for example, wear-leveling, physical zone-to-die mapping,

etc. Another challenge arises when the system consists of heterogeneous devices resulting in the

overhead of managing different H/W architectures (NAND chip capacity, channel/die configuration,

etc.).

ZNS SSD architecture.We believe the ZNS interface is an appropriate compromise between

H/W and S/W ends. However, as one might expect, there certainly are H/W details and architec-

tural assurances that improve system performance and predictability without undermining ZNS’s

promising abstractions. For example, exposing channel/die structure as the number of parallel

units (PU) further optimizes the active zone management, isolating per-die write cache eliminates

inter-zone write interference, and so on. These are the issues to be considered as we evolve the

ZNS interface.

Filesystems: BtrFS, F2FS. BtrFS [42] and F2FS [30] are the filesystems that currently support

the ZNS SSD. However, they are still in a preliminary stage and lack the features that are needed

to max out the ZNS SSD capability. For example, they write user data to only one zone at a time,

limiting the bandwidth to a single zone, leading to sub-optimal performance.

7 CONCLUSION
This paper presents an in-depth study on understanding the characteristics of a commodity ZNS

SSD. Then, we propose eZNS, realizing an elastic zoned view via v-zone, providing a flexible

zone scaling interface transparent to the application that maxes out the device capability, and

ensuring a fair bandwidth share between zones. We demonstrate significant performance and

fairness improvements using eZNS over various scenarios.
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