
Motivating In-Network Aggregation for Distributed Deep
Neural Network Training

Liang Luo∗, Ming Liu∗, Jacob Nelson†
Luis Ceze∗, Amar Phanishayee†, Arvind Krishnamurthy∗

∗University of Washington, †Microsoft Research

ABSTRACT
DNN training is moving from single node to cluster level with
the aid of current DNN training frameworks[1, 2]. However, we
find distributed DNN training time scales only sublinearly with the
number of participating nodes in the system. Our experiments show
this is due to frequent large-size parameter updates during parame-
ter synchronization which is capped by the network capacity. This
is especially relevant as model complexity is growing.

We present a comprehensive characterization and pinpoint the
network as the bottleneck of DNN training today. We examine
In-Network Aggregation (INA) in the context of distributed DNN
training which targets directly at eliminating the bottleneck, and
show the effectiveness of INA by simulating with existing hard-
ware and DNN Framework, which promises a strong linear scaling
of DNN training throughput.

1. INTRODUCTION
Modern neural networks are deeper and thus demand more com-

putational power. Table 1 lists recent DNNs and their correspond-
ing training time on a single machine.

Network Layers Training Time Machine Config
AlexNet[3] 2012 9 5-6 days 2x GTX 580
ZFNet[4] 2013 8 12 days GTX 580

VGGNet[5] 2014 19 2-3 weeks 4x Titan Black
RESNET[6] 2015 up to 269 2-3 weeks 8x GPUs

Figure 1: Recent DNNs and their sizes in layers, their reported
training time and the machines they are trained on.

The ever increasing training time makes it no longer feasible
to run large scale DNN training on a single machine. Parame-
ter Server[7] enables distributed machine learning and recent deep
machine learning frameworks such as TensorFlow and MXNET
pushed deep learning to cluster and even datacenter levels.

One prevailing strategy of distributing DNN training popular DNN
tasks such as image classification is data parallelism, where differ-
ent samples in the training data are distributed among all workers,
and each worker maintains a view of the state of DNN training.
The unit of work queued to a worker is called a batch, and a batch
consists of multiple samples. A batch generally undergoes forward,
backward pass and parameter synchronization. Forward and back-
ward passe performs inference and calculates gradients for neural
network weight updates. Parameter synchronization generally hap-
pens at the end of each batch, where the different views of workers
on the state of DNN training are synchronized. In this phase, work-
ers send out the local gradients for aggregation at an abstraction
known as a parameter server. The parameter server then aggregates
and stores the updated weights that are used in subsequent batches.

The organization of parameter servers can be central or sharded by
keys.

2. NETWORK AS THE BOTTLENECK: A
CASE FOR INA

We performed a system-level profiling study of the training pro-
cess. We observe low CPU, memory and disk utilization, and con-
stant near peak utilization for GPU and physical network. This
hints that the bottleneck of distributed DNN training lies in GPU
and physical network.

We now show the motivation and necessity for enabling In-network
Aggregation for large scale distributed deep learning, by pointing
out the bottleneck of distributed DNN training - the network, with
3 observations1.
I. Deeper Neural Networks Shifts Training Bottleneck to Phys-
ical Network. Deeper neural networks contains more weights that
need to be synchronized in a batch (Figure 2a) and potentially
longer processing time for a fixed batch. On the other hand, given
a fixed GPU, deeper neural networks result in a smaller maximum
batch size which reduces the total workload per batch (Figure 2b).
The reduction in batch size outplays the effect of longer process-
ing time per fixed batch on the actual batch time, resulting in a
shorter batch time with deeper neural networks, using maximum
possible batch (Figure 2c). These results indicate the network needs
to transmit more data within shorter amount of time, increasing the
communication over computation ratio (Figure 2d). Consequently
for any fixed hardware, increasing the depth of the network (in-
evitable) shifts bottleneck from GPU to network.
II. Network is a Bottleneck Today. We compare performance
of distributed training of RESNET-269 with MXNET on varying
number of machines with the performance of launching same num-
ber of training processes locally on a machine with 16 GPUs, and
according to results reported in Figure 3, we observed (1) dras-
tically decreasing GPU activity and increasing batch time (up to
2x) as more workers participate in training regardless of parameter
server setups and (2) increasing gap (up to 100%) between batch
time of training distributively over the network and on the same
machine, which is the overhead due to network2. These results
show that with today’s hardware and neural network models, the
network is already a bottleneck. Combining this with Observation
I, we know for any fixed reasonable current hardware and neural
network configuration, network is a bottleneck.
III. Network to Continue Bottleneck Distributed DNN Train-
ing. We now project into the future by observing the trend of GPU

1While our observations are made in the context of MXNET and
RESNET, they are generally applicable to other frameworks and
neural network architectures.
2The surge from 8-16 workers in Figure 3b is due to the exhaustion
of TCP processing capacity on the single machine.



(a) Size of communication and
network time per batch increases
as depth of neural network grows.

(b) Maximum batch size de-
creases as depth of neural network
depth grows.

(c) Batch time with maximum
batch size decreases as network
depth grows.

(d) Bytes of network data per flop
of computation increases as the
depth of neural network depth.

Figure 2: Effect of neural network depth on communication size
per batch, batch size, batch time and communication per unit of
computation (Bytes per Flop). Observations made on two GPUS:
NVIDIA K520 and NVIDIA K80.

(a) With central parameter server,
batch time increases as more
workers are added in while GPU
active time decreases. Workload:
RESNET-269.

(b) With sharded parameter
server, a better scalability is
achieved, but the network over-
head is not eliminated. Workload:
RESNET-269.

Figure 3: Network bottlenecks DNN training in both central and
sharded parameter setups. The gap between blue line (distributed
training across network) and gray line (training with processes
within one machine) shows the overhead due to network.

and physical network development (Figure 4) and show the obser-
vation we made holds true. On GPU side, both its computation
power and memory capacity grew hand in hand. This implies Ob-
servation I continues to be true tomorrow, as the batch time, i.e.,
the frequency of parameter synchronization will not drastically in-
crease. On the other hand, the adoption of faster 40GbE in data-
center (began in 2013) which is projected to be less than 30% by
the end of 2016, is slow when compared to GPU development. The
discrepancy between GPU and network development is only going

(a) GPU growth trend[8]. (b) Datacenter network adop-
tion[9].

Figure 4: GPU growth outpaces the growth of network bandwidth.

Figure 5: Simulated speedup of INA when compared to a central
parameter server baseline: INA provides a near-optimal scaling.

to make the network bottleneck problem worse. Combining this
with Observation I and II, we can strengthen our conclusion: for
any hardware today or in the future, with existing or future deep
neural networks, the physical network is a bottleneck in distributed
DNN training.

3. IN-NETWORK AGGREGATION
INA is proved to be effective for long in many fields such as large

sensor networks[10], graph processing and key value store[11], big
data processing[12], as well as high performance computing[13].
Thus it is promising to re-examine it in the context of distributed
DNN training. One form of INA for DNN is to leverage pro-
grammable network devices[14] such as switches: as update streams
from different workers arrive, instead of simply forwarding them
to the parameter server, the device can perform immediate aggre-
gation of the streams from different ports in parallel and only the
single aggregated copy of the stream is sent to the parameter server.
INA targets directly at the network bottleneck by cutting total data
movement by a factor of up to 2, reducing parameter server band-
width requirement by a factor of number of workers. INA can also
be deployed in many levels: by organizing INA-enabled devices
into a reduction tree, as shown in FireCaffe[15], INA can provide
further benefit of cross-device parallel parameter reduction.

Figure 5 provides a simulated effect of INA with N-Way stream
aggregation within a rack of machines connected to a network de-
vice (switch), by launching 1 worker running RESNET-269, and
varying the number of sharded parameter servers over the network,
as only one copy of the stream is sent to the network and each
parameter server can process one stream at a time. INA provides
strong linear scaling when compared to the baseline of a central
parameter server.
Conclusion. It is promising to apply INA in the context of dis-
tributed DNN training for network bottleneck elimination and lin-
ear performance scaling.
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