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Abstract

Two recent techniques -- patching[1,2] and hierarchical multicast stream merging (HMSM)[3] for multicast delivery of streaming media can both provide immediate service to each client request and reduce server bandwidth. This paper propose two analytical models to estimate the client balking probability in case that clients leave the system without receiving service when no idle streams are available, and the client mean waiting time in case that clients wait for a stream to become available. Using these two models, we can evaluate and compare the performance of the different VOD delivery protocols.

1. Introduction

Recently, several multicast techniques have been proposed for reducing server and network bandwidth for video-on-demand. Among them Patching and Hierarchical Multicast Stream Merging (HMSM) are of particular interest because of their simple implementations. Since not much work has been done to evaluate the performance of these protocols, it will be very interesting and challenging to develop a model to measure their performance. A recent paper by Eager et al [3] compares these multicast protocols using very simple formulas for the average server bandwidth used to deliver stored media files on-demand, as a function of client arrival rate. Using these simple bandwidth formulas, we can compute the average duration of the media streams using Little’s Result. 

Given the average duration of the media streams and a fixed amount of server I/O bandwidth equal to C streams, two different models are constructed to estimate the client balking probability and the average client waiting time as a function of client arrival rate. A simple machine-repair model is used to model the system in the case that the arriving clients leave without receiving service whenever the server doesn’t have enough bandwidth to provide immediate service, and a customized M/G/c queue is used to model the system in the case that clients wait for a stream to become available. Clients requesting same kind of files will coalesce while waiting in the queue. Several experiment results are given to compare the performance of patching and HMSM protocols.

The remainder of this paper is organized as follows. We briefly describe the patching and HMSM in Section 2. The proposed analytical models and AMVA equations are given in Section 3. In Section 4, we introduce several experiments we did and the results are given. Finally, in Section 5, we give our conclusion and present some future work. Since section 3, to simplify models and performance experiments, for patching and HMSM, we just discuss specific cases of them: optimized patching and HMSM (2, 1), here HMSM (2, 1) means HMSM in the situation where client receive bandwidth is twice the file play rate.

2. VOD Delivery Policies

2.1 Patching

The patching policy operates as follows. In response to a given client request, the server delivers the requested file in a single multicast stream. A client that submits a new request for the same file sufficiently soon after this stream has started begins listening to the multicast, buffering the data received. Each such client is also provided a new unicast stream (i.e., a “patch” stream) that delivers the data that was delivered in the multicast stream prior to the new client’s request. Both the multicast stream and the patch stream deliver data at the file play rate so that each client can play the file in real time. Thus, the required client receive bandwidth is twice the file play rate. The patch stream terminates when it reaches the point that the client joined the full-file multicast stream.

2.2  HMSM

The hierarchical multicast stream merging (HMSM) has the following key elements: (1) each data transmission stream is multicast so that any client can listen to the stream; (2) clients accumulate data faster than the file play rate (either by receiving multiple streams sending the same file or by receiving an accelerated stream), thereby catching up to the clients starting receiving the same file earlier; (3) clients are merged into larger and larger groups; (4) once the two streams are merged, the clients listen to the same stream(s) to receive the remainder of the file. This technique is highly effective in reducing the server bandwidth when the client receive bandwidth is two or more times of the file play rate, which means the client can listen and receive data of that file from earlier client stream and its own stream. However, in case the client's receive bandwidth is less than twice the play rate of the file, HMSM can still be applied to reduce server bandwidth, this technique called bandwidth skimming [4] used here is to encode file play rate just slightly less than the client receive bandwidth, the unused receive bandwidth is used to perform HMSM; namely to skim the early stream issued before the request of client, which then leads to the stream merging.
2.3  Required Server Bandwidth

The Eager et al's paper [2] considers and compares the performance of patching and of the HMSM, it is shown that HMSM requires lower server bandwidth than optimized patching, thus outperforms patching. 
The required server bandwidth for optimized patching is: 
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, Ni denotes the average number of the client requests that arrive within the duration of full-file multicast stream Ti, Ni = client arrival rate * Ti. 
The upper bound of required server bandwidth of HMSM with Poisson arrival and receive bandwidth twice of the file play rate, the server bandwidth is well approximated by
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. The server bandwidth grows only logarithmically as client arrival rate increases.
3. Analytical Models

Now given the average duration of the media streams and a fixed number of server bandwidth equal to C streams, we can construct models to estimate the client balking probability and mean waiting time as a function of client arrival rate. We can calculate and compare the client balking probability and average client waiting time of patching and HMSM by plugging their average duration to the model respectively.

3.1  Client Balking Probability

3.1.1 Model description

The model for estimating client balking probability is a simple machine repair model, consisting an FCFS center and a think node. 

[image: image61.wmf]FCFS center
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The customers in the system are the media streams with total number of C. The customers in the FCFS center represent idle streams, and the service time is the time to make an idle stream become active to serve a client request, thus equal to 1/
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, where 
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 is the average arrival rate of requests in streaming media service system. The service time of the think node is equal to the average duration of media streams.

In this model, we only consider files with same file length T, i.e., our model is a single-class model. If we consider multiple-classes customers, the customer number of each class would not remain constant, although the total number of all classes' customers is fixed to C. Thus we would not be able to model and evaluate each class as closed-type. In other words, modeling and evaluating each class would be difficult. So we stick to the single-class closed model.

There can be different kinds of client requests in the system. By "different kinds of client requests" we mean clients requesting different files with different 
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. We assume there are N kinds of client requests, each with arrival rate 
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Since clients leave without receiving service when there is no idle stream available, the effective arrival rate for the system is not the actual client arrival rate. Assume the balking probability is Pb, and the actual client arrival rate is 
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, then the effective arrival rate is 
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*(1-Pb). 

3.1.2 AMVA Equations

The input and output parameters of this model is listed in the following tables.

Model Input: 

	Symbol
	Definition

	N
	Kinds of files to be requested

	(n
	Arrival rate of client requests for file n (1<= n <= N)

	Tn
	Duration of the full-file multicast stream delivering file n

	C
	Number of customers (streams) in the model


Model output:

	Symbol
	Definition

	UFCFS
	Utilization of FCFS center

	Pb
	Balking probability (=1 - UFCFS )
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	Required server bandwidth (required number of streams) for delivery of file n
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	Average duration of streams delivering file n
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	Average service time of think node

	
[image: image13.wmf]FCFS

S


	Average service time of FCFS center

	
[image: image14.wmf]think

R


	Average residence time at think node

	
[image: image15.wmf]FCFS

R


	Average residence time at FCFS center
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	System throughput of this model
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	Average queue length at FCFS center


The formulas from Eager et al's paper are used to calculate the required server bandwidth as a function of request arrival rate. As stated above, this arrival rate should be the effective arrival rate, i.e., 
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*(1-Pb). So the required server bandwidth for optimized patching and HMSM are:
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   (optimized patching)      (B1)


[image: image20.wmf]]

1

62

.

1

/

)

1

ln[(

62

.

1

+

-

»

n

n

b

n

T

P

SB

l

 (HMSM (2, 1) with Poisson arrivals) (B1`)

respectively.

Using Little's Result, we could get the average duration of streams delivering file n:
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The average service time of the FCFS center is the interarrival time of client requests, as explained above:
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and the average service time of the think node is the general average duration of all streams:
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We apply Schweitzer approximation in estimating the average residence time of FCFS center:
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Here, QFCFS is the total queue length seen by the arriving customer, which includes both the number of customers in the waiting queue and in service.

The average residence time of the think node is equal to its average service time:
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Using Little's Result again, we could get the throughput of the system and the queue length of the FCFS center:
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Finally, the balking probability is equal to:
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Here, 1-UFCFS represents probability that there is no customer (stream) in the FCFS center, which means there are no idle streams in the streaming media service system. When no idle stream exists, the arriving request will be "balked".

We could get the balking probability by iterating through equations (B1)-(B9) and converge on Pb and QFCFS.

3.2  Client Mean Waiting Time

3.2.1 Model description

The waiting time can be evaluated by constructing appropriate model. Such model is an M/G/c queue with Poisson client request arrivals, C servers (streams), and the service time of each service center (stream) generally distributed. However, the requests for the same file can coalesce together while waiting for service, or merge together while being in the process of service by streams.

[image: image62.wmf]
The number of servers (streams) in this model is C. Those C servers share a waiting queue. Thus the C servers with common waiting queue can be denoted as a “service system”. Since in waiting queue, the same kind of requests (requests for the same file) shall coalesce with each other, the number of client requests in the waiting queue shall be less than or equal to the total kinds of requests. The client requests of the same kind all request the same file. 

In this model each kind of client requests (requests for a specific file) is defined as a class. This model is an open model. We can use AMVA equations and iterative techniques to calculate the waiting time, which will be shown below.

3.2.2 AMVA Equations

The input and output parameters of this model is listed in the following tables.

Model Input:

	Symbol
	Definition

	N
	Number of classes

	C
	Number of servers (streams)
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	Arrival rate of customers of class n
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	Duration of the full-file multicast for file i


Intermediate parameters:
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	Average service time at server c for all classes customers (same for all servers)
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	Average utilization at server c for all classes customers (same for all servers)
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	Visit count (routing probability) for class n customer to server c


Model Output:
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	Required server bandwidth (required number of streams) for delivery of file n
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	Average service time for class n customers at server c (same for all servers), the same as the average service time for such customers
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	The probability for class n customer to coalesce when it arrives
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	Throughput of class n customer
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	Average utilization for class n customer at server c
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	Average queue length for class n customers (including customers in waiting queue and in service)
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	The average residence time for the class n customers who don’t coalesce
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	The average residence time for the class n customers who coalesce
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	Average waiting time of class n customer


Again, we can get the required server bandwidth from the Eager et al's paper. But in this model, the arrival rate should discount the coalescing customers. Suppose the coalescing probability is pn, then the required server bandwidths for the patching and HMSM are:
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(HMSM (2, 1) with Poisson arrivals)  (W1`)

Similarly, we can use Little's Result to get the average duration of streams delivering file n, which is the average service time for class n customers at a server:
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Since this is an open class model, the system throughput is equal to the arrival rate:
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The average utilization of class n customer at server c is given by:
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Here 1/C is the visit count (routine probability) for class n customer to server c.

We can observe that since all same kind requests coalesce in the waiting queue, the queue length in the waiting queue for class n will not exceed 1, and is actually equal to pn. So the queue length of the system is the sum of the waiting queue length and the number of customers in service:
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The customers of a certain class can be divided into two types, the ones that don't coalesce with other customers and the ones that coalesce. The mean residence time for the non-coalesce customers are given as follow:
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The first term in the equation is the service time of the arriving customer itself. The second and third terms are the waiting time of the new-arrived customer. If we know the average service time for customers of all classes, denoted as Sc (c denoting server c); then the departure rate of customers from the “service system” is C / Sc, since those C servers in that “service system” share a waiting queue and each customer can be served just by any single server. If the arriving class n customer does not coalesce with others in waiting queue, then in the view of that new-arrived customer (denoted as Y customer), all customer before it in the waiting queue will depart the "service system" in a duration of (number of customers seen by arriving customer) *(Sc/C), denoted as duration 1, which is the third term in the above equation. Right after all the previous customers all depart that Y customer is at the head of waiting queue, when it encounters either of two probable cases: all servers busy in service or one of them not busy. In the former case, that Y customer shall wait for the appearance of the latter case (then Y directly served), with the waiting duration of Sc / C (when service time is exponentially distributed), denoted as duration 2 (which is the second term in the equation W6). The probability of the former case can be (Uc)C, with Uc as the average utilization of a single server by customers of all classes. Then we can calculate the residence time of that Y customer (we show how to calculate the Sc and Uc below), by adding the duration 1, duration 2 weighed by its probability, and the service time of that customer together. 
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Using Little's Results, we could represent the queue length in another way:
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and we can derive the following equation from it:
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By initialize pn and iterate through equations W1-W9, we could get converged pn. After that, we could use the following equations to get average client waiting time:


[image: image56.wmf]n

n

coalesce

non

n

coalesce

n

S

S

R

R

+

-

»

-

)

|

(

2

1

|

               (W10)


[image: image57.wmf]coalesce

non

n

n

coalesce

n

n

n

R

p

R

p

R

-

-

+

=

|

)

1

(

|

             (W11)


[image: image58.wmf]n

n

n

S

R

W

-

=

                (W12)

For calculating pn, there is another way (instead of W9 equation) that we would like to mention here:
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Here, 
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4. Validation and Results

When we implement our models, we used Zipf(θ) function [6] to get the arrival rates of requests to different files. A random variable is said to have a Zipf(θ) distribution if its probability mass function is given by P{X = k} = C / (k1-θ), k = 1, a, … Here we consider the client request for a certain file as a random variable. Then Zipf(θ) function can be used to calculate the possibility (frequency) of requesting a certain file ranking k. If the total arrival rate of client request for all files is (, then the arrival rate of requests for file ranking k is (Pk. 

For all the figures we used below, there are corresponding big original graphs we appended at the end. 

4.1 Validation

We use the simulation results in Eager et al[5] paper to validate our models. 
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We can see the curve from our model qualitatively agree with the simulation results.
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We can see that our results agree quite well with the simulation results. 

Both results show that HMSM (2, 1) provides a better performance than optimized patching by achieving lower balking probability and lower waiting time.

4.2 Experiments

4.2.1 C*

C* is the sum of the average server bandwidths required for immediate delivery of each file. We find that when server bandwidth is C*, the waiting time approaches 0 (see Figure 4). But when server bandwidth is C*, the balking probability does not approach 0 (see Figure 5 and 6). When we increase the server bandwidth to 1.5 C*, 2.0 C*, 2.5 C*, we find the balking probability approaches 0.

4.2.2 Multi-Group Files

Now we would like to use our models to explore some interesting insights to the streaming media service system. One thing we are curious to know is that if there are different types of file requests (with different file lengths) for the service system, how the file lengths and popularity will affect the balking probability and waiting time. Thus we proposed following sets of data:

total λ = 125/min, 
p: probability for choosing this group

	
	Daytime
	Evening

	Group1: 10 files, θ=0.2, T=30min

(CNN News)
	P=0.6
	P=0.4

	Group2: 20 files, θ=0.3, T=60min

(Badger Herald News)
	P=0.25
	P=0.1

	Group3: 25 files, θ=0.1, T=100min

(TNT Cable)
	P=0.1
	P=0.2

	Group4: 30 files, θ=0.25, T=120min

(Starz Cable Movie)
	P=0.05
	P=0.3


These data show that shorter files (news) are much more popular during the daytime and longer files (movies) are hotter during the night. Theoretically speaking, these two cases both have their advantages and disadvantages. More requests for long duration files may put more burdens on the service system and increase the need for server bandwidth. But it also increases the probability for merging streams, which may help to reduce the required server bandwidth. 

From the following experiment results, we can see that in practice, less demands for long files will give better performance.
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4.2.2 Changing parameters

We also tested how the client balking probability and client mean waiting time will vary while the input parameter, namely, T and θ vary.

· Changing θ
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Those graphs show that, when ( is changed, the higher the ( is, the higher balking probability or waiting time will be. But the difference between results from different ( is very small.

· Change T
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From the above results, we can see that changing the file length T has a more apparent influence to the performance than changing θ. 

5. Conclusions

We have constructed two models -- Client Balking Probability Model and Mean Client Waiting Time Model to evaluate and compare the performance of patching and HMSM multicast techniques. Experiments show that HMSM has a significant better performance than patching does. Future work include refinement of these models and more experiments to explore how well different multicast techniques work.
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Figure 1. Client Balking Frequency from Simulation
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Figure 2. Client Balking Frequency from Analytical Model
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Figure 3. Mean Client Waiting Time from Simulation
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Figure 4. Mean Client Waiting Time from Analytical Model
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Figure 10.Client Waiting Time vs Server Bandwidth (HMSM(2,1), multi-group files)
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Figure 9. Client Waiting Time vs Server Bandwidth �(Optimal patching, multi-group files)
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Figure 8. Balking Probability vs Server Bandwidth �(HMSM(2,1), multi-group files)
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Figure 7. Balking Probability vs Server Bandwidth �(Optimal patching, multi-group files)
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Figure 12. Client Balking Frequency (HMSM)
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Figure 11.Client Balking Frequency (Patching)
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Figure 14. Mean Client Waiting Time (HMSM)
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Figure 13. Mean Client Waiting Time (Patching)
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Mean Client Waiting Time (Patching)
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