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Abstract—The effectiveness of rate adaptation algorithms
is an important determinant of 802.11 wireless network
performance. The diversity of algorithms that has resulted
from efforts to improve rate adaptation has introduced a
new dimension of variability into 802.11 wireless networks,
further complicating the already difficult task of understand-
ing and debugging 802.11 performance. To assist with this
task, in this paper we present and evaluate a methodology for
accurately fingerprinting 802.11 rate adaptation algorithms.
Our approach uses a Support Vector Machine (SVM)-based
classifier that requires only simple passive measurements of
802.11 traffic. We demonstrate that careful conversion of raw
packet traces into input features for SVM is necessary for
achieving high classification accuracy. We tested our classifier
on the four rate adaptation algorithms available in MadWifi,
the most popular open source driver for commodity wireless
cards. The classifier performs with an accuracy of 95%-100%.
We also show that the classifier is robust over a variety of
network conditions if the training data includes a sufficient
sampling of the range of an algorithm’s behavior.

I. INTRODUCTION

802.11 supports multiple data transmission rates at the
physical layer to allow senders to maximize throughput
based on channel conditions. The modulation schemes use
to encode data at lower rates are more robust to channel

In this paper, we describe a method for identifying or
fingerprinting the rate adaptation algorithms used in an
802.11 environment. We envision this capability as being
part of a toolkit for automated performance analysis and
debugging of production networks. The need for automated
analysis and debugging has become increasingly urgent
as 802.11 networks have grown to support large user
populations. Client devices set their own configurations and
connect and disconnect at will. Wireless network adminis-
trators have little control over, and knowledge of, network
configurations, and cannot rely on cooperation from clients
for performance analysis and debugging. Thus, practical
performance analysis and debugging efforts for large-scale
wireless networks such as [4], [5] are typically based
entirely on passive monitoring, which requires no support
or participation from clients. The presence of multiple rate
adaptation algorithms introduces a new dimension of vari-
ability into 802.11 wireless networks. However, to the best
of our knowledge, none of the passive monitoring-based
performance analysis and debugging efforts in the literature

(ionsider the impact of 802.11 rate adaptation algorithms,

espite the fact that the choice of rate adaptation algorithms
can have a major impact on network throughput. The rate

noise that those used for higher rates. If the channel qua"tyadaptation algorithm fingerprinting capability will provide

is good,i.e, the signal-to-noise ratio (SNR) is high, then

additional information to passive monitoring systems to

higher data rates will maximize throughput because the bit- facilitate wireless network performance analysis

error rate (BER) will be low. If the channel is noisy, lower
data rates will maximize throughput because the high BER
at higher data rates will lead to increased loss and MAC-

layer backoffs, resulting in poor throughput.

Designing algorithms that allow wireless senders to con-
verge to the optimal rate for prevailing channel conditions
in a timely fashion is challenging due to the difficulty of
determining the cause of packet loss [1], limitations of the
PHY/MAC interface in commaodity wireless cards [2], and

We begin by investigating the details of the four open
source rate adaptation algorithms from the popular MadWifi
driver that constitute the test cases for our study. Manual ex-
amination of implementations shows that the algorithms can
result in many possible rate change permutations depending
on the timing and pattern of packet transmissions and losses.
The large space of permutations precludes a fingerprinting
approach based on explicitly enumerating all possible cases
of an algorithm’s behavior and suggests the need for a

the assumption that a higher transmission rate always resu“ﬁearning-based approach for algorithm classification.

in higher loss for a given RF environment not always being

We develop a rate adaptation classifier using Support

true [3]. Many attempts have been made to address thlS'Vector Machines, a state-of-the-art machine learning tech-

challenge, resulting in a large number of rate adaptation
algorithms, with different algorithms performing best under

different network conditions.

nigue, using carefully selected input features from passive
packet traces. We then conduct extensive experiments in a
laboratory environment to identify combinations of features
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necessary for achieving high classification accuracy. We unknown identity (but known to be one of tho€ealgo-
also demonstrate that a classifier generated in one set ofithms) can be represented by its instances{x; i”j,:‘ll.
network conditions can identify algorithms in a different set Our goal is to infer the class labeg 1 ...Ynim in the test

of network conditions as long as the training data includes run. Note by definitionyn+1 = ... = Yn+m. However, for

a sufficiently broad sampling of an algorithm’s behavior.

Il. RELATED WORK

Given the potentially large impact rate adaptation al-
gorithms can have on 802.11 network throughput, it is

not surprising that many research efforts over the past
decade have focused on these algorithms. Rate adaptatio
algorithms fall into two categories, those that use physical

layer information such as signal-to-noise ratio (SNR) [6]—

[9], and those that use frame level information such as

packet loss and throughput [3], [10], [11]. Specialized

rate adaptation algorithms have also been developed for

vehicular wireless network®.g.,[12], [13].

A number of projects such as [3], [8], [14] have fo-
cused on characterizing the performance of rate adaptatio
algorithms, analyzing whether particular algorithm design
choices results in optimal throughput in a particular type
of RF environment. Our work is complementary to these

projects because it can be used to identify the algorithms

deployed, and the knowledge of algorithm performance

characteristics garnered from these other projects can b
used to determine whether the rate adaptation algorithm is

the cause of performance problems.
Several machine learning techniques, including SVMs,

have been used to select optimal modulation and coding
schemes based on physical layer parameters for MIMO

systems €.g, [15]). Such efforts are complementary to our
work because they use SVMs to optimize throughput while
our work uses SVMs for algorithm identification.

Ill. SUPPORTVECTORMACHINES

This section introduces Support Vector Machines: for
more details see [16]. We are interested in predicting

the identity of rate adaptation algorithms based on their
observed characteristics. In statistical machine learning, this

can be cast into a classification problem.

n

n

[S]

computational convenience we adopt a two-stage procedure:
In the first stage, we use a Support Vector Machine (SVM,
discussed below) to predict the instance lalygls ... Ynim
which may be inconsistent (not all the same). In the second
stage, we compute the single consensus label of the test run
by a majority vote of the predicted instance labels. That is,
the consensus label is the one which appear most frequently
N Yni1... Yngm.

To predict the instance labels, we train an SVM which
can be understood as a functid@&® — {1,...,C} that
attempts to map any instanceto its class labely. For
simplicity, we describe the linear, binary-label cdse- 2,
and refer the reader to the literature for the multi-label case.
In this case, it is customary to encode the labels equivalently
as {—1,1} instead of{1,2}. A linear binary-label SVM
estimates a real-valued functidn RY — R with parameters
weRY andb e R;

f(x) =w'x+b,

and predicts the class label according to §idr)). Train-
ing amounts to selecting ahthat performs the best on the
training set{(xi,y;)}/' ;. Performance here is measured by

the so-called hinge loss function

L(f(x),y) = max1-yf(x),0)

which is to be minimized. The hinge loss is a surrogate
(and in fact, a convex upper bound) of the 0-1 loss, which
is one if the prediction sigif (x)) differs from the true label
y, and zero otherwise. The hinge loss is preferred over the
0-1 loss because the former is easier to optimize due to its
convexity.

Given the training set, training an SVM involves finding
the functionf that minimizes the hinge loss on the training
set, plus a regularization term:

f:argrr]gini;L((f(Xi),yi)+7\||fH2- 1)

Each run of a particular algorithm produces a series The first term is the total loss on the training set. The

of feature vectors. We call each such feature vegt@n
instance Each instance is represented by-alimensional
real-valued vectox ¢ RY. The labely € {1,...,C} of an
instancex is the identity of the algorithm underlying this
run, whereC is the number of distinct algorithms. For
example, if a run of algorithm 2 produces 1000 feature
vectors, we would have the following instance-label pairs:
(X1,y1=2),(X2,Y2 = 2),. .-, (X1000, Y1000 = 2).

We have a training set which consists of multiple runs of
all the algorithms under different conditions. The complete
training set can be represented as a collectiomioktance-
label pairs{(x;,yi)}{' ;. A “test run” of an algorithm with

function that minimizes this total loss “does best” on the
training set. Such a function, however, may not be the
one that produces the most accurate predictions on future
test instances. This is because minimizing training set loss
has the danger obverfitting the training data. One way

to prevent overfitting is to regularizé by its norm | f|?,

with the intuition that we prefer a smoother function. The
scalarA balances training set loss and smoothnesd .of
The solution to the optimization problem (1) can be found
efficiently using a quadratic program. The basic idea can be
readily extended to multi-label cases. We use the multi-label
linear SVM software SVNpulticlass[17],



We have used SVM-based methods for our earlier work rate (6 Mbps in 802.11a/gy0is set to 4, and1, c2andc3
on TCP throughput prediction for wireline and wireless are set to 2. Since) is updated indirectly based on credits,
environments in [18], [19]. The use of SVM in this case is and the retry chain is 10 packets lor@noeis rather slow
considerably different because in the earlier work, the input to adapt to changing network conditions.
feature set was small (less than 5 features), fairly obvious AMRR [11], like Onog tries to maximize throughput by
(e.g, path properties such as loss rate and queuing delay),selecting the highest transmission rate that results in loss
and the time scale of interest was on the order of severalrate below a certain threshold. If less than 10% of packets
seconds. However, in this case, the feature set is large andhre lost in the last interval, the curreis increased to the
non-obvious as described in Section V-C, and the time scalenext highest rate, and if greater than 30% of packets are lost,
of interest is on the order of tens of milliseconds. it is decreased to the next lowest rate, otherwise it remains
unchanged. Loss rate is evaluated every 10 packets. If a rate
increase is attempted and it results in a loss, the interval
The development of our classifier is based on the four for attempting the next increase is enlarged exponentially,
802.11 rate adaptation algorithms implemented by the lat- up to a maximum of 50 packets. This is done to prevent
est version (0.9.4) of the popular open-source MadWifi unnecessary losses if the current transmission rate is the
driver [20]. We chose an open source driver so we could highest possible for the target loss raté.andr2 are set
gain insight into algorithm behavior and validate the results to the two rates consecutively below the currehtandr3
of the classifier based on manual algorithm inspection. In is set to the lowest possible raid, c1, c2andc3 are all
this section we summarize the MadWifi rate adaptation set to 1 to make the retry chain shorter and the algorithm
algorithms. Our objective is to highlight the complexities more responsive compared @noe
of an algorithm’s behavior, in particular the fact that an  Sample Ratd3] selectsrO by explicitly computing the
algorithm’s behavior can change dramatically depending on rate most likely to maximize throughput in the prevailing
the prevailing network conditions. The need for a learning- network conditions, unlik®©noeand AMRR which use the
based classifier arises because the large number of packetombination of loss minimization and rate maximization
rate and retransmission patterns that can occur with a givento estimate the best rat®©noe and AMRR assume that
algorithm would be very difficult to enumerate explicitly.  a higher transmission rate will always result in a higher
The MadWifi driver is designed for wireless cards using loss rate in a given environment. However, [3] shows this
Atheros chips, which implement multi-rate retries [21]. The assumption to be incorrect, and shows that loss rate at a
Hardware Abstraction Layer (HAL) exportsratry chain higher transmission rate may be lower depending on the
consisting of 4 ordered pairs ohte/countvalues, r0/cO modulation and encoding of the rates and the amount of
throughr3/c3. The hardware makes) attempts to transmit  noise in the RF environment. Motivated by these obser-
a given packet at rats, cl attempts to transmit a packet vations,Sample Ratexplicitly computes throughput for a
and raterl, and so on. Once the packet is successfully given rate based on the number of successful and failed
transmitted, the remainder of the retry chain is discarded. transmissions and 802.11 parameters such as inter-frame
The rate adaptation algorithms have three tagi}to spacing and ACK transmission timBample Ratehanges
select rater and countc values for the retry chainp) to r0O when another rate begins to yield better throughput.
determine the conditions under which the retry chain values Since a rate other than the next highest or next lowest
are updated, an¢c) to determine how often to check for from the currentrO may yield the best throughput, the
the update condition. In the remainder of this section, we algorithm has to periodically sample all other rates. 10%
outline how the four algorithms perform these tasks. We of transmission time is used for sampling alternate rates.
present the algorithms in increasing order of complexity. Rates for sampling are selected intelligently, with rates more
Onoe[22] tries to maximize throughput by selecting the likely to improve throughput selected more frequentlyis
highest transmission rate that results in loss rate belowchanged if sampling indicates that another rate will result
a certain threshold. It uses a systemooédits to decide in higher throughputrl andr2 are no longer set to the two
whether to change the current rae The credit associated next lowest rates aften0, rather they are set to rates with
with rO is increased by one if less than 10% of packets the next lowest throughputs. Throughput is reevaluated for
in the last interval need retries, amd is increased to the the currentrO and other candidate rates periodically and
next highest rate when the credit exceeds 10. The creditis smoothed using EWMA, with 5% of the weight coming
associated with0 is decreased if more than 10% of packets from the last evaluation interval0 is changed if another
need retriesr0 is decreased to the next lowest rate if the rate’s EWMA throughput is greater.
average number of retries per packet exceeds one. The Minstrel [23] is the most advanced rate adaptation algo-
interval for evaluating loss rate and updating credits is 0.5— rithm implemented by the MadWifi driver. It improves on
1.0 seconds:l andr2 are set to the two rates consecutively two aspects ofSample RateFirst, it setscO, c1, c2and
below the current0, andr3 is set to the lowest possible ¢3 based onr0Q, rl, r2 and r3 such that the retry chain

IV. RATE ADAPTATION ALGORITHMS



Wall

eckgound. 4 GB RAM, Intel 82546EB (e1000) chips, running CentOS
# 5.2. The wireless nodes are installed with R52-350 mini-
Z PCI cards (Atheros 5414 chip). We used default wireless
25 ft interface configurations for our experiments. These were:

Wal (a) no RTS/CTS, andb) no MAC layer fragmentation.
Communication between wireless and wireline nodes is

(((\\\ pairwise, i.e,, during an experiment, each wireless node

Measy

Wall

Background!
Wireless No

sends data to a single, pre-assigned, wireline node and
S oot curng v‘nvﬂirs;::?’zn:;; vice versa. One wireline-wireless pair is designated the

experiments and Monitor measurement pair. Algorithm classification is done for
Hallway el 3 wal Hallway packet traces from the measurement node pair. The other
3t 100Mops Ethernet f' two node pairs generate background traffic. We refer to
f them as background pair one and background pair two.

100 ft The monitor, anAirPcapNxadapter [24] is located next to
the measurement node for all experiments. We use 802.11a
Fig. 1: Laboratory testbed used to generate wireless networkchannel 36 for all our experiments.

traces for rate adaptation algorithm classification. B. Experimental Protocol

The measurement node transferred 8MB files with 5
seconds between transfers. There were three levels of back-
itground traffic: no background traffic, one node pair gen-
erating background traffic, and two node pairs generating
background traffic. The first background node pair transfers
4MB files with an interval of 2 seconds between transfers,
and the second pair transfers 512KB files with 1 second
between transfers. Both background nodesSmaple Rate
the default MadWifi rate adaptation algorithm.

For each background traffic level, 100 files per rate algo-
rithm were transferred for each of the four algorithms. The
file transfers for the different algorithms were interleaved in
sets of 25 to compensate for possible external interference
that could effect the integrity of classification.

V. EXPERIMENTAL SETUP The training set consists of 10% of samples selected
. . _ ) uniformly at random from the first half of the transfers

In this section we describe our experimental testbed, hOWat each background traffic level. The test set consists of
we used it to generate packet trgces, and .h.OW we processeg” samples from the second half of transfers at each
the traces for SVM-based algorithm classification. background traffic level. We constructed 5 different training
A. Experimental Environment sets via random sampling, and tested a_II.of _them using
the second half of the transfers. The classification accuracy
values in Section VI are the averages of the five runs.

completes within 26 ms, a time limit selected to minimize
TCP performance deterioration in case of losses. Second,
was noted that even withample Rate'gitelligent selection,
sampling alternate rates resulted in use of low rates and low
throughput.Minstrel tries to avoid this problem by more
sophisticated sampling rate selection, the complete details
of which can be found in [23]. The throughput is calculated
in a manner similar t&ample Ratdt is reevaluated for the
currentrO and other candidate rates every 100ms. The value
is smoothed using EWMA, with 25% of the weight coming
from the latest 100ms interval, amd is changed if another
rate’s EWMA throughput is greater.

Figure 1 illustrates the experimental testbed that we used
to collect traces for classification. There are four primary
components to the setup: wireline nodes, wireless nodes,C. Feature Selection for Algorithm Classification
one commodity access point (AP), and a monitor node. The We process packet traces for rate adaptation algorithm
wireline and wireless nodes are connected in a dumbbell classification in the following manner. We generate a
topology via the APs and a switch. The AP is a Cisco training/test feature vector for every instance where the
AP1200, running 10S version 12.3(8), with single Rubber transmission rate of thkth and k+1th 802.11 data packet
Duck antenna, and integrated 802.11a module/antenna. Theransmitted by the measurement node is different. The rate
switch is a commodity LinkSys 10/100 16-port Workgroup transition is the center of the packet window over which
Hub. The wireline nodes and switch are connected to the we compute features. The feature values were normalized
AP via 100Mbps Ethernet connections. The maximum data by subtracting the mean of each feature from the respective
rate for 802.11a is 54Mbps. Having 100Mbps wireline links feature values and then dividing by the standard deviation
insures that the wireless, rather than the wireline, part of the before training and testing.
network is the throughput bottleneck. We use two different feature sets, detailed below. The

The wireline and wireless nodes are identically config- difference in the feature sets is that they represent infor-
ured Sun 4200 AMD Opteron 275 (dual Core) nodes, with mation at varying levels of granularity for training and



testing. Feature Set laggregates the information in the before and after a rate transition, the total number of
feature vector window, whil€eature Set 2xposes detailed features per feature vector is-8(2+myp) +1)%.

packet trace information. The results in Section VI will Finally, we constructed aall featuresvector, which is
show that having packet trace information at varying levels the concatenation of feature vectors for all window sizes for
of granularity is essential for accurate classification. both feature sets, and contains 3720 features. In Section VI,

Feature Set 1 The following features are computed for due to space considerations we present classification accu-
a window of sizemy around a rate transition event. Features racy results formll features all window sizes forSet 2 and
(1)—(4) are computed once for the entire window, gBj- 10, 20, 30, 40 and 50 packet window sizes$et 1 because
(12) are computed individually for each of the eight 802.11a these feature sets yielded the most interesting results.
data rates. Each feature in the list below corresponds to
two distinct features, one computed for a window of size )
m, before the rate transition event, and the second for a Ve conducted two sets of experiments one week apart,
window of sizemy after the rate transition event. which we refer to asExperiment land Experiment 2
(1) The number of packets in the window. both using the protocol described in Section V-B. For

(2) The packet reception probability, defined as the number resul;[s plredsente(zjd n _Segt!onSVI-tA, t:;;ugmg anc(jj test ?ets,
of non-retry packets divided by the total number of packets constructed as described In section v-b, were drawn from
in the window the same experiment. For results presented in Section VI-B,
(3) The fraction of packets in the window that are unique, the classifier trained on data froExperiment lwas tested

defined as the number of distinct 802.11 sequence numbersOn data fromExperiment 2and vice versa to investigate the

- portability and robustness of the classifier.
observed divided by the total number of packets. We considered two classification metritgnsfer classi-

VI. RESULTS

(1‘9# oan*}Esmgtg&Cl‘i Seﬁ‘;ﬁye“'f}%bersWh'Ch s defined as ﬁcation qcc_urgcyand sample classification acc_ura.cir he_
total # of packets ' first metric indicates whether the rate adaptation algorithm

(5) The number of packets with each rate in the window. ¢4/ the whole transfer is classified correctly. The classifica-
(6) Th_e number of packets with each rate that are retries intion for the whole transfer is determined by the majority
the window. of the classifications of the individual samples (feature
(7,8,9) The minimum, median, and maximum distance in vectors) in the transfer. We report the fraction of transfers
packets for packets with each rate from the center of the classified correctly and incorrectly for each rate adaptation
window. Distance in packets is calculated in terms of the algorithm. The second metric is defined as the percentage of
number of packets in the trace rather than packet sequenc&amples classified as a particular algorithm for each transfer.
numbers. When a packet of a particular rate does not occurThis is a measure of the confidence we can have in the
in a window, distance is set to a constant high value. classification of a transfer. We used this metric to guard
(10, 11, 12)The minimum, median, and maximum distance against accuracy inflation, because a transfer classification
in packets for a retry packet with each rate from the center is considered correct whether 100% of the samples from
of the window. the transfer are classified correctly or whether 25.1% of

Hence, for any value ofmy, there are a total of 136 the samples are classified correctly and the other 74.9%
features, Z4 for the four featuresl-4) before and after  of the samples are split evenly between the remaining
the center of the window, and«®x 2 for the eight features  three classes. We found theample classification accuracy
(5-12 for each of the eight rates before and after the center closely followed transfer classification accuracyDue to
of the window. space considerations, we only preseatsfer classification

We consider the following different values ok : 100ms, accuracyin this paper.
200ms, 300ms, 400ms, 500ms, 10 packets, 20 packets, 393\
packets, 40 packets, 50 packets, 1-5 802.11 retries around =~ i ) o
a packet transition event. Figure 2 illustrates the algo_rlthm classification accuracy
Feature Set 2 For this set, the following three features o the case where the training and test sets are drawn

corresponding to each packet in a window of sime are from the same experiments. We present results from two
included in the feature vector: different runs of the same experiment, conducted in the

(1) The transmission rate of the packet same laboratory environment but one week apart, because

(2) A binary value indicating whether the packet is a retr wireless network conditions are difficult to replicate due to
(3) The diff)érence in sequegce numbers bztween the pacykeexternal interference effects. Table | presents the distribution

dth tor of the wind ti)f transmission rates for the two experiments, and it can be
and the center o g window. seen that there is a significant difference in the distributions
We use the following values af: 5, 10, 15, 20, 25,

) ’ in many cases.
30, 35, 40, 45 and 50 packets. In this case, since there are

3 features per packet and the window sizaris packets 111 for the packet at the center of the window.

Classification Accuracy
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TABLE I: Distribution of packets across transmission rates for four target algorithms. The first column indicates the algorithm
(algorithms are identified by the first letter in their names), the background traffic level (nobg for no background traffic,
bgl for one background node pair generating traffic, and bg2 for two background node pairs generating traffic), and the
experiment number (1 or 2). The columns labeled with rates indicate the percentage of packets in each experiment transmitted
at that rateRate Changéndicates the percentage of times two consecutive packets were transmitted at differefRaties.
indicates the percentage of packets that were ret@essecutive Retrindicates the percentage of times thelth packet

was a retry given that thkth packet was a retry. This is an estimate of how far down the retry chain the algorithm had to

go in case of a loss. The last three values are measures of the information content of a packet trace. Algorithms that have
higher values are likely to be classified with higher accuracy because they provide SVM with a larger amount of information
over a given time window, enabling SVM to generate a better distinguishing signature. All values are aggregates for all

transfers in a given experiment.

Experiment 6Mbps 9Mbps 12Mbps 18Mbps 24Mbps 36Mbps 48Mbps 54Mbps Rate Change || Retry Consec. Retry
a, nobg, 1 0.3 0.0 0.1 0.7 9.6 78.1 11.1 0.0 31.8 16.5 6.2
a, nobg, 2 0.4 0.1 0.6 1.3 15.3 77.2 5.0 0.0 30.3 15.7 6.2
a, bgl, 1 0.3 0.1 1.3 6.7 37.7 51.2 2.8 0.0 28.6 154 9.8
a, bgl, 2 0.6 0.6 2.8 8.7 35.7 50.0 1.6 0.0 29.1 15.7 10.9
a, bg2, 1 0.3 0.7 1.4 54 31.3 55.4 55 0.0 30.7 16.4 9.2
a, bg2, 2 0.6 0.5 2.4 8.1 48.7 39.4 0.3 0.0 31.6 17.0 11.0
m, nobg, 1 0.0 0.0 0.1 0.2 0.5 92.4 4.0 2.8 7.4 14.2 42.9
m, nobg, 2 0.3 0.0 0.0 0.6 2.8 89.7 3.9 25 10.3 23.0 46.8
m, bgl, 1 0.2 0.1 0.1 0.3 2.8 88.9 5.1 2.6 13.1 24.6 44.9
m, bgl, 2 0.5 0.1 0.2 1.5 15.5 75.9 3.9 2.4 13.4 27.8 47.8
m, bg2, 1 0.4 0.0 0.1 0.5 1.9 89.5 4.9 2.6 10.5 22.7 41.3
m, bg2, 2 0.6 0.1 0.3 1.2 12.6 78.5 4.3 2.4 14.9 30.3 50.8
0, nobg, 1 0.0 0.0 0.0 0.0 4.9 94.8 0.2 0.0 4.1 10.9 32.8
0, nobg, 2 0.2 0.0 0.0 0.5 46.7 52.6 0.0 0.0 5.8 15.1 38.7
o, bgl, 1 0.2 0.0 0.0 0.7 33.0 66.2 0.0 0.0 7.7 18.8 30.4
o, bgl, 2 0.3 0.0 0.1 1.8 81.8 16.0 0.0 0.0 54 17.3 26.8
0, bg2, 1 0.3 0.0 0.0 1.4 56.1 42.1 0.0 0.0 5.8 17.2 26.6
0, bg2, 2 0.3 0.0 0.1 1.9 82.4 15.2 0.0 0.0 51 17.2 26.7
s, nobg, 1 0.2 0.0 0.2 29 415 54.5 0.7 0.1 9.7 8.2 23.9
s, nobg, 2 0.4 0.0 0.5 11.9 61.7 25.2 0.2 0.0 10.7 9.0 25.9
s, bgl, 1 1.1 0.0 29 18.9 49.2 27.4 0.4 0.1 11.6 16.8 25.5
s, bgl, 2 0.8 0.0 4.5 24.7 57.2 12.7 0.1 0.0 11.3 16.3 25.3
s, bg2, 1 1.7 0.0 4.6 17.1 40.3 36.0 0.2 0.1 13.2 17.9 29.7
s, bg2, 2 0.9 0.0 4.7 225 54.6 17.0 0.1 0.0 11.8 16.6 25.8
T 1 Figure 2 shows that for all algorithms excefdnoe
B (2e,2f), the classification accuracy fall featuresis high,
BRY .
§ o s ] ranging from 95% to 100%. Also, for all cases except
2 RS g3 . .
£ o6l e 1 Experiment 1, Ono&e, the accuracy faall featuresis very
E oul G | close to that of the highest accuracy individual feature set
£ = re for that experiment. Both observations support our learning-
oooed] [SSRARSS | . . . . .
02T Bl based approach. Their combination means two things. First,
PR [RARRRH d . . . . .
e SRR classification accuracy is high. Second, feature set and win-
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dow size selection are simplified because the concatenation
of all feature sets and window sizes afi featuresresults

in accuracy equal to that of the most accurate individual
Fig. 3: Stacked histogram showing the fraction of trans- feature set. This occurs even though the most accurate
fers classified correctly and incorrectly for each algorithm, feature set varies by algorithm and experimental run.

training set and test set combination. This figure illustrates  The classification accuracy fabnoeis lower than all

the potential for the portability of the classifier. All results  jiheor algorithms across all feature sets. This is explained
presented are for thall featuresset. The x-axis indicates by considering theRate Changecolumn of Table I. This

the correct algorithm and the training and test sets, column indicates the rate change frequeriay, the per-

a, _2.—1|nd|cates _that AMRR s the cc_)rrect algorithm, the centage of times two consecutive packets in a trace have
training set consisted of data froixperiment zand the test  yigterent transmission rate®noehas the lowest rate change
set consisted of data frofixperiment 1while m, both-2  gequency, 4.1% to 7.7%ample Ratéas the next lowest
indicates that Minstrel is the correct algorithm, the training 40 change frequency, 9.7% to 13.2%, roughly twice that
set consisted of data from botxperiments 1 and,2and 4t Onoe This difference means that over a given packet
the test set consisted of data frdmperiment 2 window, aSample Ratérace will provide SVM with twice

1-410q ‘w
}--yjoq ‘s



as much information to generate a distinguishing signa- term variations and capture longer term throughput, loss
ture compared tdOnoeg resulting in higher classification and rate change behavior, such[8st 1, 50 pkts]
accuracy forSample RateThe fact thatOnoe has by far Practical algorithms change rates at all three time gran-
the lowest rate change frequency is consistent with what ularities, so features computed at varying levels of detalil
we know about the four algorithm®noeis the slowest  at a range of time granularities are necessary to compre-
to change rates because of its use of credits to calculatehensively capture an algorithm’s signature. This is vally
rate change. Also, it has the longest and slowest-to-changefeatures a concatenation of all feature set and window
retry chain with acO value of 4, which further reduces the size combinations, always has the highest classification
frequency of rate change and hence the information contentaccuracy. However, in a given run for an algorithm, rate
of packet traces. All other algorithms change rates at a might change for one particular reason more often than
frequency of roughly 11%-30% due to shorter retry chains for others. If the dominant cause of change is retry chain
and properties such as sampling alternate rates or trying araversal, we expedBet 2, 5 pkisjto be the most accurate
higher rate after every 10 successful packet transmissionsclassifier, as forSample Rate, Experiment [f, however,
at a given rate, yielding traces with a higher information the dominant cause of change is reevaluation of the optimal
content and therefore better classification accuracy. rate, we expecbet 1classifiers to be more accurate thaet
Another observation from Figure 2 is that different win- 2 classifiers, as foMinstrel, Experiment 1Based only on
dow sizes and feature representatio®t( 1 versus Set passive packet traces, it is difficult to identify with certainity
2) have different classification accuracies for the different the cause of rate change from one packet to the next.
algorithms and even for different experiments with the N -
same algorithm. For exampl&et 1has high classification ~ B- Classifier Portability
accuracy for both experiments wilinstrel, while Set 2has We investigate the portability of classifiers by testing
high accuracy only foExperiment ZAFigures 2c,2d). Also,  the classifier trained ofExperiment lon transfers from
for Sample Rate[Set 2, 5 pkisjis the only feature set and Experiment 2and vice versa. We conclude that classifier
window combination that has high accuracy Ebperiment  portability depends on the relative information content in
1 (other tharell featureg, while a number of feature setand the training and test data. If the training data’s information
window combinations have high accuracy fxperiment 2 content is greater than or equal to that of the test data,
To explain why different window sizes and feature rep- the classifier is as accurate for the test data from the
resentations result in different classification accuracy, we other experimental run as it is for test data from its own
have to consider how transmission rate changes betweerexperimental run, otherwise it is less accurate.
two successive packets. One reason for rate change is retry Figure 3 illustrates the classification accuracy when a
chain traversal due to packet loss. The second is samplingclassifier trained on data from one experiment is tested
of other candidate rates, as 8ample Rateand Minstrel. on data from the second experiment. The classification
The third is due to the algorithm deciding that the current accuracy folOnoeis low across all training and test sets due
r0 is suboptimal and picking a newd. Rate change due to low information content of traces, as discussed above.
to the traversal of the retry chain occurs at the finest time The classification accuracy fohMRR and Sample Rate
granularity, from one packet to the next, for the length of is high (70% or higher) in all cases. Table | shows that
the retry chain. Rate change due to sampling occurs at thethis is the case even though the distribution of packets
second finest granularity (10 packets). Rate change due tdoy transmission rate is different for the two experimental
computation of a new optimal0 occurs at the coarsest runs for each algorithm. What is similar about the two runs
granularity (tens of packets, 1 or more seconds). for each algorithm is the information content of the traces
Consider a hypothetical algorithm that changes rates measured in terms of the last three metrics in Table I.
only due to retry chain traversal. Such an algorithm’s  The interesting case in Figure 3 WMinstrel, where
distinguishing signature would be captured most effectively the classifier trained on data froExperiment 1performs
by highly detailed information over a small window, such poorly on test data fronExperiment 2(casem, 1-3 with
as [Set 2, 5 pkts] because all rate changes would occur an accuracy of only 40%, but the classifier trained on
at the granularity of individual packets. Bet 1and a Experiment Zoerforms very well orExperiment 1(casem,
larger window are used, the fine-grained information that 2—1) with an accuracy of 100%. Table | shows that for all
is the algorithm’s signature will be lost. Consider another the three measures reporteet 2has higher information
hypothetical algorithm that only changes rate based on long-content thanSet 1 This means that the classifier trained
term loss and throughput feedback,, when it re-evaluates  on Experiment lcaptures a limited set of the algorithm
the optimal rate, it sets all rates in the retry chain to that one behavior compared to that presenBrperiment Zest data,
optimal value. Such an algorithm’s distinguishing signature resulting in poor classifier accuracy. However, when the
would be captured most effectively by features tfe@tare classifier is constructed with data from boExperiment
computed over longer windows, afld) can filter out short 1 and Experiment 2 its accuracy onExperiment 2tests



increases dramatically, suggesting that enhancing a ported [6] G. Holland, N. H. Vaidya, and P. Bahl, “A Rate-Adaptive MAC
classifier with current data is beneficial.

These results have important implications for the practi-
cal use of our methods. They show that if the training set [7]

has high enough information content, the resulting classifier

is portable, regardless of the difference in the distribution of

packet transmission rates. Classifier portability is a desirable

property in general because it reduces training time in [8l
new environments. Classifier portability is essential for
wireless networks because the RF environment is constantly
changing, and retraining every time is expensive. The results [ J. Kim, S. Kim, S. Choi, and D. Qiao, “CARA: Collision-Aware
in this section also show that the accuracy of a poorly-
performing classifier can be improved by updating it with
training data from the current environment.

VIl. SUMMARY

(10]

In this paper, we describe a new methodology for ac- [11]
curately identifying the 802.11 rate adaptation algorithms

deployed in a target wireless network. Our learning-based

approach obviates the need to explicitly characterize the[12]
full spectrum of each rate adaptation algorithm’s behavior,
a difficult if not impossible task given the large number of
possible rate change permutations. Our approach is practicaj13]

because it is based entirely on passive monitoring of target

networks. We test our methodology under varying network

conditions and show that by using a comprehensive feature

set, a classifier can be highly accurate, correctly identifying [14]
algorithms 95%-100% of the time for three of the four
algorithms implemented by MadWifi, the most popular
open source wireless interface driver. We show that careful [15]
selection of inputs for training the classifier is essential for
high accuracy. We demonstrate the potential for classifier [16]
portability across a range of operating conditions. We
envision rate adaptation algorithm fingerprinting becoming
part of passive monitoring-based suites for wireless network [18]
performance analysis. In future work, we plan to construct
classifiers for a wider variety of wireless interface drivers.

(1]

(2]

(3]
(4]

(5]

REFERENCES

S. Rayanchu, A. Mishra, D. Agrawal, S. Saha, and S. Banerjee,
“Diagnosing Wireless Packet Losses in 802.11: Separating Collision
from Weak Signal,” inThe 27th IEEE Joint Conference of the IEEE
Computer and Communications Societies, INFOC®Moenix, AZ,
USA, April 2008.

M. Vutukuru, H. Balakrishnan, and K. Jamieson, “Cross-layer Wire-
less Bit Rate Adaptation,” ifProceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer CommunicatignBarcelona, Spain, August 2009.

J. Bicket, “Bit-rate Selection in Wireless Networks,” Master’s thesis,
Massachusetts Institute of Technology, February 2005.

Y.-C. Cheng, J. Bellardo, P. BetikA. C. Snoeren, G. M. Voelker,
and S. Savage, “Jigsaw: Solving the Puzzle of Enterprise 802.11
Analysis,” in Proceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Com-
puter CommunicationsPisa, Italy, September 2006.

R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, “Analyzing
the MAC-level Behavior of Wireless Networks in the Wild,” in
Proceedings of the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communi-
cations Pisa, Italy, September 2006.

[17

—

[19]

(20]

(21]

(22]

(23]

(24]

Protocol for Multi-Hop Wireless Networks,” ifProceedings of the
Seventh Annual International Conference on Mobile Computing and
Networking, MOBICOMRome, lItaly, July 2001.

B. Sadeghi, V. Kanodia, A. Sabharwal, and E. W. Knightly, “Op-
portunistic Media Access for Multirate Ad Hoc Networks,” Rro-
ceedings of the Eighth Annual International Conference on Mobile
Computing and Networking, MOBICQOMAtlanta, Georgia, USA,
September 2002.

S. H. Y. Wong, S. Lu, H. Yang, and V. Bharghavan, “Robust Rate
Adaptation for 802.11 Wireless Networks,” iroceedings of the
Seventh Annual International Conference on Mobile Computing and
Networking, MOBICOMLos Angeles, CA, USA, September 2006.

Rate Adaptation for IEEE 802.11 WLANS,” ia5th IEEE Interna-
tional Conference on Computer Communications, Joint Conference
of the IEEE Computer and Communications Societies, INFOCOM
Barcelona, Spain, April 2006.

A. Kamerman and L. Monteban, “WaveLAN-II: A High-Performance
Wireless LAN for the Unlicensed BandBell Labs Technical Jour-
nal, Summer 1997.

M. Lacage, M. H. Manshaei, and T. Turletti, “IEEE 802.11 Rate
Adaptation: A Practical Approach,” iMSWiM ’'04: Proceedings of
the 7th ACM International Symposium on Modeling, Analysis and
Simulation of Wireless and Mobile Syster04.

G. Judd, X. Wang, and P. Steenkiste, “Efficient Channel-aware
Rate Adaptation in Dynamic Environments,” Rroceedings of the
6th International Conference on Mobile Systems, Applications, and
Services, MobiSy8Breckenridge, CO, USA, June 2008.

J. Camp and E. W. Knightly, “Modulation Rate Adaptation in Urban
and Vehicular Environments: Cross-layer Implementation and Exper-
imental Evaluation,” irProceedings of the 14th Annual International
Conference on Mobile Computing and Networking, MOBIG(3én
Francisco, California, USA, September 2008.

C. Yiu and S. Singh, “A Model for Comparing Rate Adaptation Al-
gorithms,” in Proceedings of the Fourth ACM Workshop on Wireless
Network Testbeds, Experimental Evaluation and Characterization,
WINTECH Beijing, China, September 2009.

R. Daniels and R. Heath, “Online Adaptive Modulation and Coding
with Support Vector Machines,” ifProceedings of the IEEE Euro-
pean Wireless Conferenckucca, Italy, April 2010.

B. Scloblkopf and A. J. Smolal.-earning With Kernels Cambridge,
MA: MIT Press, 2002.

“Multi-Class Support Vector Machine.” [Online]. Available: http:
/Isvmlight.joachims.org/svnmulticlass.html

M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A Machine Learning
Approach to TCP Throughput Prediction,” iithe International
Conference on Measurement and Modeling of Computer Systems,
ACM SIGMETRICSSan Diego, CA, USA, June 2007.

M. Mirza, K. Springborn, S. Banerjee, P. Barford, M. Blodgett,
and X. Zhu, “The Challenges of TCP Throughput Prediction for
Wireless Networks,” irln Proceedings of the IEEE Communications
Society Conference on Sensor, Mesh, and Ad Hoc Communications
and Networks, SECON 200Rome, Italy, June 2009.

“The MadWifi Project.” [Online]. Available: http://madwifi-project.
org

“Atheros Wireless LAN 2.4/5-GHz 802.11a/b/g 108 Mbos Turbo
Radio-on-a-Chip  WLAN Networking Products and Technology
Overview.” [Online]. Available: http://www.atheros.com/pt
“Implementation of the Onoe Algorithm.” [On-
line]. Available: http://madwifi- project.org/browser/madwifi/
branches/madwifi-0.9.4/athate/onoe/onoe.c

“Description  of  the Minstrel  Algorithm.”  [Online].
Available: http://madwifi-project.org/browser/madwifi/branches/
madwifi-0.9.4/athrate/minstrel/minstrel.txt

“AirPcap.” [Online]. Available: http://www.cacetech.com/products/
airpcap.html



