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ABSTRACT
TCP throughput predictionis an important capability in wide area
overlay and multi-homed networks where multiple paths may exist
between data sources and receivers. In this paper we describe a new,
lightweight method for TCP throughput prediction that can gener-
ate accurate forecasts for a broad range of file sizes and pathcondi-
tions. Our method is based on Support Vector Regression modeling
that uses a combination of prior file transfers and measurements of
simple path properties. We calibrate and evaluate the capabilities
of our throughput predictor in an extensive set of lab-basedexper-
iments where ground truth can be established for path properties
using highly accurate passive measurements. We report the perfor-
mance for our method in the ideal case of using our passive path
property measurements over a range of test configurations. Our
results show that for bulk transfers in heavy traffic, TCP through-
put is predicted within 10% of the actual value 87% of the time,
representing nearly a 3-fold improvement in accuracy over prior
history-based methods. In the same lab environment, we assess
our method using less accurate active probe measurements ofpath
properties, and show that predictions can be made within 10%of
the actual value nearly 50% of the time over a range of file sizes
and traffic conditions. This result represents approximately a 60%
improvement over history-based methods with a much lower impact
on end-to-end paths. Finally, we implement our predictor ina tool
calledPathPerfand test it in experiments conducted on wide area
paths. The results demonstrate thatPathPerfpredicts TCP through-
put accurately over a variety of paths.

Categories and Subject Descriptors:C.4 [Performance of Sys-
tems]: Measurement Techniques

General Terms: Measurement

Keywords: TCP Throughput Prediction, Active Measurements, Ma-
chine Learning, Support Vector Regression

1. INTRODUCTION
The availability of multiple paths between sources and receivers

enabled by content distribution, multi-homing, and overlay or vir-
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tual networks suggests the need for the ability to select the“best”
path for a particular data transfer. A common starting pointfor this
problem is to define “best” in terms of the throughput that canbe
achieved over a particular path between two end hosts for a given
sized TCP transfer. In this case, the fundamental challengeis to
develop a technique that provides an accurate TCP throughput fore-
cast for arbitrary and possibly highly dynamic end-to-end paths.

There are several difficulties in generating accurate TCP through-
put predictions. Prior work on the problem has largely fallen into
two categories: those that investigateformula-basedapproaches
and those that investigatehistory-basedapproaches. Formula-based
methods, as the name suggests, predict throughput using mathemat-
ical expressions that relate a TCP sender’s behavior to pathand end
host properties such as RTT, packet loss rate, and receive window
size. In this case, different measurement tools can be used to gather
the input data that is then plugged into the formula to generate a pre-
diction. However, well-known network dynamics and limitedin-
strumentation access complicate the basic task of gathering timely
and accurate path information, and the ever evolving set of TCP
implementations means that a corresponding set of formula-based
models must be maintained.

History-based TCP throughput prediction methods are concep-
tually straightforward. They typically use some kind of standard
time series forecasting based on throughput measurements derived
from prior file transfers, gathered either passively (e.g.,by tapping
a link) or actively (e.g.,by periodically sending a file). In recent
work, Heet al. show convincingly that history-based methods are
generally more accurate than formula-based methods. However, the
authors carefully outline the conditions under which history-based
prediction can be effective [11]. Also, history-based approaches
described to date remain relatively inaccurate and potentially heavy
weight processes focused on bulk transfer throughput prediction.

Our goal is to develop an accurate, lightweight tool for predicting
end-to-end TCP throughput for arbitrary file sizes. We investigate
the hypothesis that the accuracy of history-based predictors can be
improved and their impact on a path reduced by augmenting thepre-
dictor with periodic measurements of simple path properties. The
questions addressed in this paper include: 1) Which path proper-
ties or combination of path properties increase the accuracy of TCP
throughput prediction the most? and 2) What is a minimum set of
file sizes required to generate history-based throughput predictors
for arbitrary file sizes? Additional goals for our TCP throughput
prediction tool are: 1) to make it robust to “level shifts” (i.e.,when
path properties change significantly) which Heet al. show to be
a challenge in history-based predictors, and 2) to include aconfi-
dence value with predictions—a metric with little treatment in prior
history-based throughput predictors.



The analytical framework for the study that we report in thispa-
per is based on the use of Support Vector Regression (SVR), a pow-
erful machine learning technique that has shown good empirical
performance in many domains. SVR has several attractive proper-
ties that make it well suited for our study: 1) It can accept multiple
inputs (i.e., multivariate features) and will use all of these to gen-
erate the throughput prediction, which is a requirement forour ap-
proach. 2) SVR does not commit to any particular parametric form,
unlike formula-based approaches. Instead, SVR models are flexible
based on their use of so-called non-linear kernels. This expressive
power is an important reason for the potential for more accurate pre-
dictions than formula-based methods. 3) SVR is computationally
efficient, which makes it attractive for inclusion in a tool that can be
deployed and used in the wide area. For our application, we extend
the basic SVR predictor with a confidence interval estimatorbased
on an assumption that prediction errors are normally distributed,
an assumption that we test in our laboratory experiments. Estima-
tion of confidence intervals is critical for on-line prediction, since
retraining can be triggered if measured throughput falls outside a
confidence interval computed through previous measurements.

We begin by using laboratory-based experiments to investigate
the relationship between TCP throughput and measurements of path
properties including available bandwidth (AB), queuing delays (Q),
and packet loss (L). The lab environment enables us to gather
highly accurate passive measurements of throughput and allpath
properties, and develop and test our SVR-based predictor over a
range of realistic traffic conditions. Our initial experiments fo-
cus on bulk transfers and compare ground truth measurementsof
throughput of target TCP flows (i.e., actual throughput) with pre-
dicted TCP throughput values generated by multiple instances of
our SVR-based tool trained with different combinations of path
properties. We compare the actual and predicted throughputusing
the Relative Prediction Error (E) metric described in [11].Our re-
sults show that throughput predictions can be improved by asmuch
as a factor of 3 when including path properties in the SVR-based
tool versus a history-based predictor. For example, our results show
that the SVR-based predictions are within 10% of actual 87% of
the time for bulk transfers under heavy traffic conditions (90% av-
erage utilization on the bottleneck link). Interestingly,we find that
the path properties that provide the most improvement to theSVR-
based predictor areQ and L respectively, and that includingAB
provides almost no improvement to the predictor.

Toward our goal of developing a robust tool that can be used in
the wide area, we expand the core SVR-based tool in three ways.
First, the initial tests were based entirely on passive traffic measure-
ments, which are unlikely to be widely available in the Internet. To
address this, we tested our SVR-based approach using measure-
ments ofQ andL provided by the BADABING tool [25]. The reduc-
tion in accuracy of active versus passive measurements ofQ and
L resulted in a corresponding reduction in accuracy of SVR-based
throughput predictions for bulk transfers under heavy traffic con-
ditions on the order of about 35%—still a significant improvement
on history-base estimates. It is also important to note thatthrough-
put prediction based on training plus lightweight active measure-
ments results in a dramatically lower network probe load than prior
history-based methods using long-lived TCP transfers and heavy-
weight probe-based estimates of available bandwidth such as de-
scribed in [11]. We quantify this difference in Section 7. Second,
we experimented with training data in order to enable predictions
over a range of file sizes instead of only bulk transfers whichis
the focus of prior work. We found that a training set of only three

file sizes results in accurate throughput predictions for a wide range
of file sizes, which highlights another strength of our SVR-based
approach. Third, Heet al. showed that “level shifts” in path con-
ditions pose difficulties for throughput prediction [11], suggesting
the need for adaptivity. To accomplish this, we augmented the basic
SVR predictor with a confidence interval estimator as a mechanism
for triggering a retraining process. We show in Section 5.2 that our
technique is able to adapt to level shifts quickly and to maintain
high accuracy on paths where level shifts occur.

This combination of capabilities was sufficient for us to develop
an active probe tool for TCP throughput prediction we callPath-
Perf 1 that we deployed and tested in the wide area. Through a se-
ries of experiments over six end-to-end paths in the RON testbed [3]
paths, we found that in the best casePathPerfprovides TCP through-
put estimates within 10% of actual value 100% of the time, and
in the worst case provides estimates within 10% of actual 35%of
the time. We believe that improvements in tools for gathering path
property information will lead to corresponding improvements in
throughput prediction accuracy. We plan to investigate these possi-
bilities in future work.

2. RELATED WORK
Since the seminal work by Jacobson and Karels established the

basic mechanisms for modern TCP implementations [13], it has
been well known that many factors affect TCP throughput. In gen-
eral, these include the TCP implementation, the underlyingnetwork
structure, and the dynamics of the traffic sharing the links on the
path between two hosts. Steps toward understanding TCP behavior
have been taken in a number of studies including [1,2] which devel-
oped stochastic models for TCP based on packet loss characteris-
tics. A series of studies develop increasingly detailed mathematical
expressions for TCP throughput based on modeling the details of
the TCP congestion control algorithm and measurements of path
properties [4,8,10,17,18]. While our predictor also relies on mea-
surement of path properties, the SVR-based approach is completely
distinguished from prior formula-based models.

A large number of empirical studies of TCP file transfer and
throughput behavior have provided valuable insight into TCP per-
formance. Paxson conducted one of the most comprehensive stud-
ies of TCP behavior [19,20]. While that work exposed a plethora of
issues, it provided some of the first empirical data on the character-
istics of packet delay, queuing, and loss within TCP file transfers.
Barford and Crovella’s application of critical path analysis to TCP
file transfers provides an even more detailed perspective onhow
delay, queuing, and loss relate to TCP performance [6]. In [5], Bal-
akrishnanet al. studied throughput from the perspective of a large
web server and showed how it varied depending on end-host and
time of day characteristics. Finally, detailed studies of throughput
variability over time and correlations between throughputand flow
size can be found in [31,32], respectively. These studies inform our
work in terms of the basic characteristics of throughput that must
be considered when building our predictor.

Past studies of history-based methods for TCP throughput pre-
diction are based on the use of standard time series forecasting
methods. Vazhkudiaet al. compare several different simple fore-
casting methods to estimate TCP throughput for transfers oflarge
files and find similar performance across predictors [30]. A well-
known system for throughput prediction is the Network Weather
Service [28]. That system makes bulk transfer forecasts by attempt-

1PathPerf is openly available at
http://wail.cs.wisc.edu/waildownload.py



ing to correlate measurements of prior large TCP file transfers with
periodic small (64KB) TCP file transfers (referred to as “bandwidth
probes”). The DualPats system for TCP throughput prediction is
described in [16]. That system makes throughput estimates based
on an exponentially weighted moving average of larger size band-
width probes (1.2MB total). Similar to our work, Luet al. found
that prediction errors generally followed a normal distribution. As
mentioned earlier, Heet al. extensively studied history-based pre-
dictors using three different time series forecasts [11]. Our SVR-
based method includes information from prior transfers fortraining,
but otherwise only requires measurements from lightweightprobes
and is generalized for all files sizes, not just bulk transfers.

Many techniques have been developed to measure path prop-
erties (see CAIDA’s excellent summary page for examples [9]).
Prior work on path property measurement directs our selection of
lightweight probe tools to collect data for our predictor. Recent
studies have focused on measuring available bandwidth on a path.
AB is defined informally as the minimum unused capacity on an
end-to-end path, which is a conceptually appealing property with
respect to throughput prediction. A number of studies have de-
scribed techniques for measuring AB including [14, 26, 27].We
investigate the ability of AB measurement as well as other path
properties to enhance TCP throughput predictions.

Finally, machine learning techniques have not been widely ap-
plied to network measurement. One notable exception is in network
intrusion detection (e.g.,[12]). The only other application of Sup-
port Vector Regression that we know of is to the problem of using
IP address structure to predict round trip time latency [7].

3. A MULTIVARIATE MACHINE
LEARNING TOOL

The main hypothesis of this work is that history-based TCP through-
put prediction can be improved by incorporating measurements of
end-to-end path properties. The task of throughput prediction can
be formulated as a regression problem,i.e., predicting a real-valued
number based on multiple real-valued input features. Each file
transfer is represented by a feature vectorx ∈ R

d of dimensiond.
Each dimension is an observed feature,e.g., the file size, proximal
measurements of path properties such as queuing delay, loss, avail-
able bandwidth, etc. Givenx, we want to predict the throughput
y∈ R. This is achieved by training a regression functionf : R

d 7→
R, and applyingf to x. The function f is trained using training
data,i.e., historical file transfers with known features and the cor-
responding measured throughput.

The analytical framework that we apply to this problem isSup-
port Vector Regression (SVR), a state-of-the-art machine learning
tool for multivariate regression. SVR is the regression version of
the popular Support Vector Machines [29]. It has a solid theoretical
foundation, and is favored in practice for its good empirical perfor-
mance. We briefly describe SVR below, and refer readers to [21,23]
for details, and to [15] as an example of an SVR software package.

To understand SVR we start from a linear regression function
f (x) = β⊤x+β0. Assume we have a training set ofn file transfers
{(x1,y1), . . . ,(xn,yn)}. Training involves estimating thed-dimensional
weight vectorβ and offsetβ0 so that f (xi) is close to the truthyi
for all training examplesi = 1. . .n. There are many ways to mea-
sure “closeness”. The traditional measure used in SVR is theε-
insensitive loss, defined as

L( f (x),y) =

{

0 if | f (x)−y| ≤ ε
| f (x)−y|− ε otherwise.

(1)

This loss function measures the absolute error between prediction
and truth, but with a tolerance ofε. The valueε is application-
dependent in general, and in our experiments we set it to zero. Other
loss functions (e.g., the squared loss) are possible too, and often
give similar performance. They are not explored in this paper.

It might seem that the appropriate way to estimate the parameters
β ,β0 is to minimize the overall loss on the training set∑n

i=1L( f (xi),yi).
However ifd is large compared to the number of training examples
n, one can often fit the training data perfectly. This is dangerous,
because the truthy in training data actually contain random fluctua-
tions, andf is partly fitting the noise. Suchf will generalize poorly,
i.e. causing bad predictions on future test data. This phenomenon
is known asoverfitting. To prevent overfitting, one can reduce the
degree of freedom inf by selecting a subset of features, thus re-
ducingd. An implicit but more convenient alternative is to require
f to besmooth2, defined as having a small parameter norm‖β‖2.
Combining loss and smoothness, we estimate the parametersβ ,β0
by solving the following optimization problem

min
β ,β0

C
n

∑
i=1

L( f (xi),yi)+‖β‖2
, (2)

whereC is a weight parameter to balance the two terms. The value
of C is usually selected by a procedure called cross-validation, where
the training set is randomly split into two parts, then regression
functions with differentC are trained on one part and their per-
formance measured on the other part, and finally one selects the
C value with the best performance. In our experiments we used
C = 3.162 using cross-validation. The optimization problem can be
solved using a quadratic program.

Nonetheless, a linear functionf (x) is fairly restrictive and may
not be able to describe the true functiony. A standard mathemati-
cal trick is to augment the feature vectorx with non-linear bases de-
rived fromx. For example, ifx = (x1,x2)

⊤, one can augment it with
φ(x) = (x1,x2

1,x1x2,x2,x2
2). The linear regressor in the augmented

feature spacef (x) = β⊤φ(x)+β0 then produces anon-linearfit in
the original feature space. Noteβ has more dimensions than before.
The more dimensionsφ(x) has, the more expressivef becomes.

In the extreme (and often beneficial) caseφ (x) can even have in-
finite dimensions. It seems computationally impossible to estimate
the corresponding infinite-dimensional parameterβ . However, if
we convert theprimal optimization problem (2) into itsdual form,
one can show that the number of dual parameters is actuallyn in-
stead of the dimension ofφ(x). Furthermore, the dual problem
never uses the augmented featureφ(x) explicitly. It only uses the
inner product between pairs of augmented featuresφ(x)⊤φ(x′) ≡
K(x,x′). The functionK is known as thekernel, and can be com-
puted from the original feature vectorsx,x′. For instance, the Ra-
dial Basis Function (RBF) kernelK(x,x′) = exp

(

−γ‖x−x′‖2
)

im-
plicitly corresponds to an infinite dimensional feature space. In our
experiments we used a RBF kernel withγ = 0.3162, again selected
by cross-validation. The dual problem can still be efficiently solved
using a quadratic program.

SVR therefore works as follows: For training, one collects a
training set{(x1,y1), . . . ,(xn,yn)}, and specifies a kernelK. SVR
solves the dual optimization problem, which equivalently finds the
potentially very high-dimensional parameterβ andβ0 in the aug-
mented feature space defined byK. This produces a potentially

2If β are the coefficients of a polynomial function, the function
will tend to be smooth (changes slowly) if‖β‖2 is small, or noisy
if ‖β‖2 is large.



highly non-linear prediction functionf (x). The functionf (x) can
then be applied to arbitrary test casesx, and produces a prediction.
In our case, test cases are the file size for which a predictionis to be
made and current path properties based on active measurements.

4. EXPERIMENTAL ENVIRONMENT AND
METHODOLOGY

This section describes the laboratory environment and experi-
mental procedure that we used to evaluate our throughput predictor.

4.1 Experimental Environment
The laboratory testbed used in our experiments is shown in Fig-

ure 1. It consisted of commodity end hosts connected to a dumbbell-
like topology of Cisco GSR 12000 routers. Both measurement and
background traffic was generated and received by the end hosts.
Traffic flowed from the sending hosts on separate paths via Giga-
bit Ethernet to separate Cisco GSRs (hop B in the figure) whereit
was forwarded on OC12 (622 Mb/s) links. This configuration was
created in order to accommodate a precision passive measurement
system, as we describe below. Traffic from the OC12 links was then
multiplexed onto a single OC3 (155 Mb/s) link (hop C in the figure)
which formed the bottleneck where congestion took place. Weused
an AdTech SX-14 hardware-based propagation delay emulatoron
the OC3 link to add 25 milliseconds delay in each direction for all
experiments, and configured the bottleneck queue to hold approx-
imately 50 milliseconds of packets. Packets exited the OC3 link
via another Cisco GSR 12000 (hop D in the figure) and passed to
receiving hosts via Gigabit Ethernet.

The measurement hosts and traffic generation hosts were identi-
cally configured workstations running FreeBSD 5.4. The worksta-
tions had 2 GHz Intel Pentium 4 processors with 2 GB of RAM and
Intel Pro/1000 network cards. They were also dual-homed, sothat
all management traffic was on a separate network than depicted in
Figure 1. We disabled the TCP throughput history caching feature
in FreeBSD 5.4, controlled by the variable net.inet.tcp.inflight.enable,
to allow TCP throughput to be determined by current path proper-
ties rather than throughput history.

A key aspect of our testbed was the measurement system used to
establish the true path properties for our evaluation. Optical split-
ters were attached to both the ingress and egress links at hopC
and Endace DAG 3.5 and 3.8 passive monitoring cards were used
to capture traces ofall packets entering and leaving the bottleneck
node. By comparing packet headers, we were able to identify which
packets were lost at the congested output queue during experiments,
and accurately measure available bandwidth on the congested link.
Furthermore, the fact that the measurements of packets entering and
leaving hop C were synchronized at a very fine granularity (i.e., a
single microsecond) enabled us to precisely measure queuing de-
lays through the congested router.

4.2 Experimental Protocol
We generated background traffic by running the Harpoon IP traf-

fic generator [24] between up to four pairs of traffic generation hosts
as illustrated in Figure 1. Harpoon produced open-loop self-similar
traffic using a heavy-tailed file size distribution, mimicking a mix of
application traffic such as web and peer-to-peer applications com-
mon in today’s Internet. Harpoon was configured to produce aver-
age offered loads ranging from approximately 60% to 105% on the
bottleneck link (the OC3 between hops C and D).

Measurement traffic in the testbed consisted of file transfers, and
active measurements of queuing delay, packet loss, and available

bandwidth. For the measurement traffic hosts, we set the TCP re-
ceive window size to 128 KB. In receive window limited transfers,
file transfer throughput was approximately 21 Mb/s. That is,if the
available bandwidth on the bottleneck link was 21 Mb/s or more,
the flow was receive window (rwnd) limited, otherwise it was con-
gestion window (cwnd) limited. We experimented with bothrwnd-
andcwnd-limited scenarios.

For active measurements of available bandwidth and queuing/loss,
we used the YAZ [26] and BADABING [25] tools, respectively. YAZ

estimates end-to-end available bandwidth using a relatively low-
overhead, iterative method similar to PATHLOAD [14]. Since the
probe process is iterative, the time taken to produce an estimate can
vary from a few seconds to tens of seconds.

BADABING reports two characteristics ofloss episodes, namely
the frequencyof loss episodes, andmean durationof loss episodes,
using a lightweight probe process. We used a probe probability
parameterp of 0.3. Other parameters were set according to [25]. In
the rest of the paper, we refer to both loss characteristics combined
as loss orL. BADABING requires the sender and receiver to be
time-synchronized. To accommodate our wide area experiments,
the BADABING receiver was modified to reflect probes back to the
sender, where they were timestamped and logged as on the original
receiver. Thus, the sender clock was used for all probe timestamps.

We used BADABING to measure loss characteristics because it
is the most accurate loss characteristics measurement toolcurrently
available; if accurateloss ratemeasurement tools become available
in the future, loss rate may replace frequency and duration as the
loss characteristic we use for our prediction mechanism.

The measurement collection protocol consisted of the following:

1. Run BADABING for 30 seconds.

2. Run YAZ to obtain an estimate of the available bandwidth.

3. Transfer a file.

In the remainder of the paper, we refer to the above series of steps
as a singleexperiment, and to a number of consecutive experiments
as aseries. Experiments in the wide area omit the available band-
width measurement. Individual experiments in a series are sepa-
rated by a 30 second period. Series of experiments differ from each
other in that either the background traffic is different between series,
or the distribution of file sizes transferred is different, or the exper-
iments are conducted over different physical paths. Each series of
experiments is divided into two mutually exclusive training and test
sets for the SVR. The SVR mechanism does not require that the sets
of experiments that form the training and test set be consecutive or
contiguous in time. In contrast, history-based predictionmethods
generally require consecutive historical information since they rely
on standard timeseries-based forecasting models. In our evaluation
we use contiguous portions for training and test sets,i.e. the be-
ginning part of a series becomes the training set and the restthe
test set. The number of experiments in training and test setsmay
be the same or different. Notions of separate training and test data
sets are not required for history-based methods; rather, predictions
are made over the continuous notion of distant and recent history. In
our evaluation of history-based methods, we use the final prediction
of the training set as the starting point for the test set.

From each series of experiments, we gather three different sets
of measurements. The first set,Oracular Passive Measurements
(OPM), are AB, Q, and L measurements during a file transfer that
we obtain from packet traces. We refer to these measurementsas
oracularbecause they give us essentially perfect information about
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network conditions. In practice, this information would not be
available when making a prediction for an arbitrary path. Weuse
this information to establish the best possible accuracy ofour pre-
diction mechanism. The second set,Active Measurements (AM),
are the measurements from our active measurement tools. Note
that, unlike theOPM, theAM provide AB, Q, and L values before
the actual transfer. The third set,Practical Passive Measurements
(PPM), are trace-based measurements of AB, Q and L taken at the
same time asAM are taken. Their purpose is to show the best possi-
ble accuracy of our prediction mechanism with measurementsthat
can be obtained in practice, or to show how much better the accu-
racy would be if the active measurements had perfect accuracy. All
measurements are aggregates for conditions on the path: they are
not specific to any single TCP flow on the path.

For experiments in the wide area, we created a tool,PathPerf.
This tool, designed to run between a pair of end hosts, initiates TCP
file transfers and path property measurements (using our modified
version of BADABING ), and produces throughput estimates using
our SVR-based method. It can be configured to generate arbitrary
file size transfers for both training and testing and initiates retrain-
ing when level shifts are identified as described in Section 7.

4.3 Evaluating Prediction Accuracy
We denote the actual throughput byRand the predicted through-

put byR̂. We use the metricrelative prediction error Eintroduced
in [11] to evaluate the accuracy of an individual throughputpredic-
tion. Relative prediction erroris defined as

E =
R̂−R

min(R̂,R)

In what follows, we use the distribution of the absolute value of E
to compare different prediction methods.

5. BUILDING A ROBUST PREDICTOR
This section describes how we developed, calibrated, and eval-

uated our prediction mechanism through an extensive set of tests
conducted in our lab test-bed.

5.1 Calibration and Evaluation in the High
Traffic Scenario

The first step in developing our SVR-based throughput predic-
tor is to find the combination of training features which leadto the
most accurate predictions over a wide variety of path conditions.
We trained the predictor using a feature vector for each testthat
contained different combination of our set of target path measure-
ments (AB, Q, L) and the measured throughput. Although we re-
fer to bothloss frequencyand loss durationtogether as L or loss

for expositional ease, these measures are two different features in
the feature vector. The trained SVR model is then used to predict
throughput for a feature vector containing the corresponding sets
of network measurements, and we compare the prediction accuracy
for the different combinations.

We also compare the accuracy of SVR to the exponentially weighted
moving average (EWMA) History-Based Predictor (HB) described
in [11], R̂i+1 = αRi +(1−α)R̂i , with anα value of 0.3.

We do not report detailed results from tests with low utiliza-
tion on the bottleneck link,i.e., receive window bound flows, be-
cause in the low utilization scenarios there is very little variance in
throughput of flows. Our SVR-based predictor generated 100%ac-
curate forecasts for these tests. However, any reasonable prediction
method can forecast throughput quite accurately in this scenario.
For example, the formula-based predictor used in [11], which is
based on [18], performs poorly in high utilization scenarios, but is
accurate in low utilization scenarios.

For most of the results reported, we generated an average of 140
Mb/s of background traffic to create high utilization on our OC3
(155 Mb/s) bottleneck link. We used one set of 100 experiments for
training and another set of 100 experiments for testing. An 8MB
file was transferred in each experiment. In our initial experiments
we use an 8 MB file because it is large enough to make slow-start
an insignificant factor in throughput for our receive windowsize
of 128 KB; in later sections we consider smaller file sizes where
slow-start has a bigger impact on overall throughput.

Figures 2a to 2l show scatter plots comparing the actual and pre-
dicted throughput using different prediction methods as discussed
below. A point on the diagonal represents perfect prediction accu-
racy; the farther a point is from the diagonal, the greater the predic-
tion error.

5.1.1 Using Path Measurements from an Oracle
Figure 2a shows the prediction accuracy scatter plot for theHB

method. Figures 2b to 2h show the prediction error with SVR using
Oracular Passive Measurements (OPM)for different combinations
of path measurements in the feature vector. For example,SVR-
OPM-Queuemeans that only queuing delay measurements were
used to train and test, whileSVR-OPM-AB-Queuemeans that both
available bandwidth and queuing delay measurements were used to
train and test.

Table 1 shows relative prediction errors for HB forecastingand
for SVM-OPM-based predictions. Values in the table indicate the
fraction of predictions for a given method within a given accuracy
level. For example, the first two columns of the first row in Table 1
mean that 32% of HB predictions have relative prediction errors
of 10% or smaller while 79% ofSVR-OPM-ABpredictions have
relative prediction errors of 10% or smaller. We present scatter plots
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(b) SVR-OPM-AB
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(c) SVR-OPM-Loss
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(d) SVR-OPM-Queue
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(e) SVR-OPM-AB-Loss
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(f) SVR-OPM-AB-Queue
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(g) SVR-OPM-Loss-Queue
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(h) SVR-OPM-AB-Loss-Queue
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(i) SVR-PPM-Loss-Queue
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(j) SVR-PPM-AB-Loss-Queue
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(k) SVR-AM-Loss-Queue
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(l) SVR-AM-AB-Loss-Queue

2: Comparison of Prediction Accuracy of HB, SVR-OPM, SVR-PPM, and SVR-AM in High Background Traffic Conditions.



in addition to tabular data to provide insight into how different path
properties contribute to throughput prediction in the SVR method.

From Figure 2a, we can see that the predictions for the HB pre-
dictor are rather diffusely scattered around the diagonal,and that
predictions in low-throughput conditions tend to have large rela-
tive error. Figures 2b, 2c, and 2d show the behavior of the SVR
predictor using a single measure of path properties in the feature
vector—AB, L, and Q respectively. The AB and Q graphs have a
similar overall trend: predictions are accurate (i.e., points are close
to the diagonal) for high actual throughput values, but far from the
diagonal, almost in a horizontal line, for lower values of actual
throughput. The L graph has the opposite trend: points are close
to the diagonal for lower values of actual throughput, and form a
horizontal line for higher values of actual throughput.

The explanation for these trends lies in the fact that file trans-
fers with low actual throughput experience loss, while file transfers
with high actual throughput do not experience any loss. Whenloss
occurs, the values of AB and Q for the path are nearly constant.
AB is almost zero, and Q is the maximum possible value (which
depends on the amount of buffering available at the bottleneck link
in the path). In this case, throughput depends on the value ofL.
Hence, L appears to be a good predictor when there is loss on the
path, and AB and Q, being constants in this case, have no predictive
power, resulting in horizontal lines,i.e., a single value of predicted
throughput. On the other hand, when there is no loss, L is a con-
stant with value zero, so L has no predictive power, while AB and
Q are able to predict throughput quite accurately.

Figures 2e to 2h show improvements on the prediction accuracy
obtained by using more than one path property in the SVR feature
vector. We can see that when L is combined with either AB or Q, the
horizontal lines on the graphs are replaced by points much closer to
the diagonal, so combining L with AB or Q allows the SVR method
to predict accurately in both lossy and lossless network conditions.

Measurements of AB and Q appear to serve the same function,
namely, helping to predict throughput in lossless conditions. This
observation begs the question: do we really need both AB and Q,
or can we use just one of the two and still achieve the same predic-
tion accuracy? To answer this question, we compared AB-Lossand
Loss-Queue predictions with each other and with AB-Loss-Queue
predictions (i.e., Figures 2e, 2g, and 2h). The general trend in all
three cases, as seen from the scatter plots, is the same: the horizon-
tal line of points is reduced or eliminated, suggesting thatpredic-
tion from non-constant-value measurements is occurring for both
lossy and lossless network conditions. If we compare the AB-Loss
and Loss-Queue graphs more closely, we observe two things. First,
in the lossless prediction case, the points are closer to thediago-
nal in the Loss-Queue case than in the AB-Loss case. Second, in
the Loss-Queue case, the transition in the prediction from the loss-
less to the lossy case is smooth,i.e., there is no horizontal line of
points, while in the AB-Loss case there is still a horizontalline of
points in the actual throughput range of 11–14 Mb/s. This sug-
gests that Q is a more accurate predictor than AB in the lossless
case. The relative prediction error data of Table 1 supportsthis:
SVR with a feature vector containing Loss-Queue information pre-
dicts throughput within 10% of actual for 87% of transfers, while a
feature vector containing AB-Loss measurements predicts with the
same accuracy level for 78% of transfers. Finally, there is no dif-
ference in accuracy (either qualitatively or quantitatively) between
Loss-Queue and AB-Loss-Queue.

The above discussion suggests that AB measurements are not re-
quired for highly accurate throughput prediction, and thata combi-

1: Relative accuracy of history-based (HB) throughput prediction
and SVR-based predictors using different types of oracularpassive
path measurements (SVR-OPM) in the feature vector. Table values
indicate the fraction of predictions within a given accuracy level.

Relative HB AB L Q AB-L AB-Q L-Q AB-L-Q
Error

10% 0.32 0.79 0.54 0.87 0.78 0.87 0.86 0.86
20% 0.67 0.87 0.86 0.87 0.87 0.87 0.90 0.90
30% 0.80 0.87 0.92 0.87 0.91 0.87 0.90 0.90
40% 0.87 0.87 0.94 0.87 0.92 0.87 0.93 0.93
50% 0.88 0.88 0.95 0.89 0.97 0.89 0.96 0.96
60% 0.88 0.88 0.97 0.92 0.97 0.92 0.97 0.97
70% 0.89 0.89 0.97 0.94 0.97 0.94 0.98 0.98
80% 0.92 0.91 0.98 0.95 0.98 0.95 0.99 0.99
90% 0.92 0.92 0.98 0.96 0.98 0.96 0.99 0.99

2: Relative accuracy of history-based (HB) throughput prediction
and SVR-based predictors using trace-based passive path measure-
ments (PPM) or active path measurements (AM). Table values in-
dicate the fraction of predictions within a given accuracy level.

Relative HB PPM AM
Error AB-L-Q L-Q AB-L-Q L-Q

10% 0.32 0.49 0.53 0.49 0.51
20% 0.67 0.77 0.81 0.78 0.76
30% 0.80 0.86 0.86 0.86 0.86
40% 0.87 0.86 0.89 0.86 0.86
50% 0.88 0.88 0.89 0.86 0.87
60% 0.88 0.90 0.89 0.88 0.87
70% 0.89 0.90 0.91 0.88 0.88
80% 0.92 0.91 0.94 0.90 0.90
90% 0.92 0.92 0.95 0.92 0.92

nation of L and Q is sufficient (given our framework). This obser-
vation is not only surprising, but rather good news. Prior work has
shown that accurate measurements of AB require at least moder-
ate amounts of probe traffic [22,26], and some formula-basedTCP
throughput estimation schemes take as a given that AB measure-
ments are necessary for accurate throughput prediction [11]. In
contrast, measurements of L and Q can be very lightweight probe
processes [25]. We discuss measurement overhead further inSec-
tion 7.

5.1.2 Using Practical Passive and Active Path Mea-
surements

So far, we have considered the prediction accuracy of SVR based
on onlyOracular Passive Measurements (OPM). This gives us the
baseline for the best-case accuracy with SVR, and also provides in-
sight into how SVR uses different path properties for prediction.
Table 1 and the graphs in Figure 5.1 shows that HB predicts 32%of
transfers within 10% of actual whileSVR-OPM-Loss-Queuepre-
dicts 87%, an almost 3-fold improvement. In practice, however,
perfect measurements of path properties are not available,so in
what follows we assess SVR using measurements that are more like
those available in the wide area.

We compare HB with SVR-PPM and SVR-AM. Due to space
limitations, we present onlyLoss-Queueand AB-Loss-Queuere-
sults for SVR. We choose these because we expectAB-Loss-Queue
to have the highest accuracy as it has the most information about
path properties, andLoss-Queuebecause it is very lightweight and
has accuracy equal toAB-Loss-Queuefor SVR-OPM.

Figures 2i and 2j show predicted and actual throughput forSVR-
PPM and Figures 2k and 2l show predicted and actual throughput



for SVR-AM. Table 2 presents relative prediction error data for HB,
SVR-PPMand SVR-AM. We wish to examine three issues: first,
whether our finding thatLoss-Queuehas the same prediction accu-
racy asAB-Loss-Queuefrom theSVR-OPMcase holds for theSVR-
PPM andSVR-AMcase; second, whetherSVR-PPMandSVR-AM
have the same accuracy; and third, howSVR-AMaccuracy com-
pares with HB prediction accuracy.

All the scatter plots from Figures 2i to 2l are qualitativelyvery
similar; this is encouraging because it suggests two things. First,
Loss-Queuehas similar prediction accuracy asAB-Loss-Queue, i.e.,
the observation fromSVR-OPMstill holds, so we can achieve good
prediction accuracy without having to measure AB. The relative
prediction error data in Table 2 supports this graphical observation:
AB-Loss-Queuehas only slightly better accuracy thanLoss-Queue
for both SVR-PPMand SVR-AM. Second,SVR-AMhas accuracy
similar to SVR-PPM, i.e., using active measurement tools to esti-
mate path properties yields predictions almost as accurateas hav-
ing ground-truth measurements. The data in Table 2 further sub-
stantiates this observation. Similar accuracy betweenSVR-PPM
predictions andSVR-AMpredictions is important because in real
wide-area Internet paths instrumentation is generally notavailable
for providing accurate passive measurements.

Finally, we compare HB withSVR-AM. Although Figures 2a,
2k and 2l are qualitatively similar,SVR-AMhas a tighter cluster
of points around the diagonal for high actual throughput than HB.
Thus,SVR-AMappears to have higher accuracy than HB. As Ta-
ble 2 shows,SVR-AM-Loss-Queuepredicts throughput within 10%
of actual accuracy 49% of the time, while HB does so only 32% of
the time. Hence, for high traffic scenarios,SVR-AM-Loss-Queue,
the practically deployable lightweight version of the SVR-based
prediction mechanism, significantly outperforms HB prediction.

5.1.3 The Nature of Prediction Error
Lu et al. [16] observed in their study that throughput prediction

errors were approximately normal in distribution. As the authors
noted, normality would justify standard computations of confidence
intervals. We examined the distribution of errors in our experiments
and also found evidence suggestive of normality.

Figure 3 shows two normal quantile-quantile (Q-Q) plots forSVR-
OPM-Loss-Queue(Figure 3a) andSVR-AM-Loss-Queue(Figure 3b).
Samples that are consistent with a normal distribution formapprox-
imately a straight line in the graph, particularly toward the center.
In Figures 3a and 3b, we see that the throughput prediction sam-
ples in each case form approximately straight lines. These observa-
tions are consistent with normality in the distribution of prediction
errors. Error distributions from other experiments were also con-
sistent with the normal distribution, but are not shown due to space
limitations. We further discuss the issues of retraining and of de-
tecting estimation problems in Section 7.

5.2 Evaluation of Prediction Accuracy with
Level-shift Background Traffic

In the previous section, we considered SVR and HB prediction
accuracy under variable but stationary background traffic.In this
section, we consider the case where there is a shift in average load
of background traffic.

We configure our traffic generation process to cycle between 120
Mb/s and 160 Mb/s average offered loads. With 120 Mb/s traffic,
there is virtually no loss along the path and the throughput is bound
by the receive window size. With 160 Mb/s traffic, the OC3 bot-
tleneck is saturated and endemic loss ensues. The procedureis to
run 120 Mb/s background traffic for 75 minutes, followed by 160
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(a) Q-Q Plot SVR-OPM-Loss-Queue.
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(b) Q-Q Plot for SVR-AM-Loss-
Queue.

3: Normal Q-Q Plots for Prediction Errors with (a) oracular mea-
surements and (b) active measurements ofLoss-Queue.

Mb/s of traffic for 2 hours 15 min, repeating this cycle several times.
We follow the measurement protocol in Section 4.2 for collecting
AB, L, Q, and throughput measurements. We first train our SVR
predictor in the 120 Mb/s environment, and test it in the 160 Mb/s
environment. The column labeledOPM-L-Q TrainLowTestHighin
Table 3 shows the results. Clearly, the prediction accuracyis very
poor: all predictions are off by a factor of two or more. Next,we
train the predictor on one whole cycle of 120 Mb/s and 160 Mb/s,
and test it on a series of cycles. The last two columns of Table3,
OPM-Loss-QueueandAM-Loss-Queue, and Figure 4a show the re-
sults from these experiments. The x-axis in Figure 4a is timerepre-
sented by the number of file transfers that have completed, and the
y-axis is throughput. In this case, bothSVR-OPMandSVR-AMpre-
dict throughput with high accuracy.SVR-OPMpredicts throughput
within 10% of actual 62% of the time, andSVR-AM52% of the
time. For comparison, the first column of Table 3 and Figure 4b
present results for the history-based predictor. HB accuracy is sig-
nificantly lower than SVR accuracy, only about half as much as
SVR-OPM. Figure 4b explains why. After every level-shift in the
background traffic, the HB predictor takes time to re-adapt.In con-
trast, no adaptation time is required for the SVR predictor if it has
already been trained on the range of expected traffic conditions.

One issue regarding shifts in average traffic volume is how many
samples from a new, previously unseen traffic level are needed to
adequately train the predictor. To examine this issue, we train our
predictor on two new kinds of average traffic loads: a step con-
stituting 75 minutes of 120 Mb/s traffic followed by 10 minutes
of 160 Mb/s traffic resulting in 5 experiments at the higher traffic
level, and a step constituting of 75 minutes of 120 Mb/s traffic fol-
lowed by 20 minutes of 160 Mb/s traffic resulting in 10 experiments
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4: Prediction Accuracy in Fluctuating Background Traffic

at the higher traffic level. We call these conditionsSVR-AM-L-Q-
5 and SVR-AM-L-Q-10respectively. The prediction accuracy of
these schemes is presented in Table 4. As can be seen in the table,
these training schemes yield most of the accuracy ofSVR-AM-L-
Q, which trains at the 160 Mb/s level for approximately 40 experi-
ments. These results demonstrate that fairly small training sets from
new traffic levels are needed for accurate prediction. A comparison
of time series plots from these experiments (not shown due tospace
constraints) provides further insight into how predictionaccuracy
improves with larger training sets. BothSVR-AM-L-Q-5andSVR-
AM-L-Q-10have periods where the predicted throughput is virtu-
ally constant even though the actual throughput is not. Suchperiods
are shorter forSVR-AM-L-Q-10compared toSVR-AM-L-Q-5. SVR-
AM-L-Q (Figure 4a) has no such periods. The reason for this effect
is that predictors incorporating fewer samples may not include a
broad enough range of possible network conditions. However, the
SVR prediction mechanism can still yield high accuracy using a
small set of training samples if the samples are representative of the
range of network conditions along a path.

5.3 Evaluation of Prediction Accuracy for Dif-
ferent File Sizes

We have so far considered only 8 MB file transfers in step 3 of
the experimental protocol of Section 4.2. For a TCP receive win-
dow of 128 KB, the majority of the lifetime of an 8 MB transfer is
spent in TCP’s congestion avoidance phase. However, our goal is
an accurate predictor for a range of file sizes, not just bulk transfers.
Predicting throughput for small files is complicated by TCP’s slow
start phase in which throughput changes rapidly with increasing file
size due to the doubling of the window every round-trip time,and
because packet loss during the transfer of a small file can have a
large relative impact on throughput. We hypothesize that using dif-

3: Relative accuracy of history-based (HB) and SVR-based
throughput predictors using oracular path measurements (OPM)
and active measurements (AM) when predictors are subjected to
shifts in average background traffic volume.

Relative HB OPM-L-Q OPM-Loss-Queue AM-Loss-Queue
Error TrainLowTestHigh

10% 0.29 0.00 0.62 0.52
20% 0.40 0.00 0.72 0.61
30% 0.52 0.00 0.81 0.69
40% 0.55 0.00 0.84 0.73
50% 0.62 0.00 0.88 0.77
60% 0.64 0.00 0.90 0.78
70% 0.66 0.00 0.91 0.80
80% 0.71 0.00 0.92 0.83
90% 0.74 0.00 0.92 0.84

4: Comparison of relative accuracy of SVR-based throughputpre-
diction using active measurements (AM) and different numbers of
training samples. 40 training samples are used inAM-Loss-Queue,
5 samples forAM-L-Q-5, and 10 samples forAM-L-Q-10. Back-
ground traffic consists of shifts in average traffic volume between
120 Mb/s and 160 Mb/s.

Relative AM-Loss-Queue AM-L-Q-5 AM-L-Q-10
Error

10% 0.52 0.44 0.45
20% 0.61 0.49 0.53
30% 0.69 0.51 0.55
40% 0.73 0.55 0.59
50% 0.77 0.58 0.62
60% 0.78 0.60 0.65
70% 0.80 0.62 0.67
80% 0.83 0.65 0.73
90% 0.84 0.67 0.73

ferent file sizes to train the SVR predictor will lead to accurate fore-
casts for a broad range of file sizes - something not treated inprior
HB prediction studies.

We conducted experiments using background traffic at an aver-
age offered load of 135 Mb/s and using a series of 9 training sets
consisting of between 1 and 9 unique file sizes. The file sizes for
the training sets are between 32 KB and 8 MB. The first training
set consists of a single file size of 8 MB, the second training set
consists of two file sizes of 32 KB and 8 MB, and the third training
set adds a file size of 512 KB. Subsequent training sets samplethe
range between 32 KB and 8 MB such that the fraction of a transfer
lifetime spent in slow start covers a wider range.

Test sets for our experiments consist of 100 file sizes between 2
KB and 8 MB – a much more diverse set than the training set. The
test file sizes are drawn from a biased random number generator in
such a way that the resulting file transfers exhibit a wide range of
behavior,i.e., files that are fully transferred during slow start, and
transfers consisting of a varying proportion of time spent in slow
start versus congestion avoidance. We use a wider range of small
files in the test set to allow us to see how our predictor performs
for unseen and difficult to predict file sizes. We do not use a wider
range for large file sizes because we expect the throughput tobe
almost constant (i.e., window or congestion limited) once slow start
becomes an insignificant fraction of the transfer time.

Tables 5 and 6 present prediction accuracy for training setscon-
sisting of 1, 2, 3, 6, or 8 distinct file sizes forSVR-OPMandSVR-
AM. Graphs in Figure 5 presentSVR-AMresults for one, two, and
three file sizes in the training set. We do not include graphs for re-
maining training sets due to space limitations: they are similar to



5: Relative accuracy ofSVR-based predictor using oracular passive
measurements (OPM) and training sets consisting of 1, 2, 3, 6, or 8
distinct file sizes.

Relative No. of distinct file sizes in training
Error 1 2 3 6 8

10% 0.06 0.24 0.49 0.35 0.34
20% 0.16 0.40 0.57 0.48 0.51
30% 0.18 0.52 0.64 0.54 0.54
40% 0.19 0.61 0.66 0.59 0.61
50% 0.22 0.64 0.67 0.65 0.66
60% 0.24 0.67 0.68 0.66 0.67
70% 0.24 0.69 0.68 0.67 0.67
80% 0.29 0.71 0.69 0.68 0.68
90% 0.30 0.72 0.70 0.68 0.68

6: Relative accuracy ofSVR-based predictor using active measure-
ments (AM) and training sets consisting of 1, 2, 3, 6, or 8 distinct
file sizes.

Relative No. of distinct file sizes in training
Error 1 2 3 6 8

10% 0.10 0.29 0.40 0.29 0.29
20% 0.15 0.41 0.51 0.47 0.47
30% 0.16 0.53 0.59 0.52 0.55
40% 0.19 0.58 0.64 0.57 0.61
50% 0.23 0.64 0.65 0.62 0.64
60% 0.23 0.66 0.66 0.64 0.65
70% 0.26 0.70 0.67 0.64 0.66
80% 0.28 0.70 0.68 0.64 0.67
90% 0.31 0.71 0.69 0.65 0.68

7: Details of RON Paths used for wide-area experiments

Path Number Node Locations Path RTT (ms)

Path 1 Amsterdam-Utah 144
Path 2 Utah-Maryland 54
Path 3 Maryland-Utah 54
Path 4 Maryland-New York 10
Path 5 New Mexico-Ithaca 86
Path 6 New Mexico-New York 83

8: Wide Area Results for 512KB Transfers

Relative Path 1 Path 2 Path 3 Path 4 Path 5 Path 6
Error

10% 0.43 0.96 0.35 0.55 1.00 0.92
20% 0.76 1.00 0.73 0.90 1.00 0.96
30% 0.86 1.00 0.98 0.98 1.00 0.98
40% 0.94 1.00 1.00 1.00 1.00 1.00
50% 0.94 1.00 1.00 1.00 1.00 1.00
60% 0.94 1.00 1.00 1.00 1.00 1.00
70% 0.96 1.00 1.00 1.00 1.00 1.00
80% 0.96 1.00 1.00 1.00 1.00 1.00
90% 0.96 1.00 1.00 1.00 1.00 1.00

9: Wide Area Results for 2MB Transfers

Relative Path1 Path2 Path3 Path4 Path5 Path6
Error

10% 0.48 0.98 0.92 0.52 0.96 0.98
20% 0.77 1.00 0.98 0.75 0.98 1.00
30% 0.92 1.00 0.98 0.94 0.98 1.00
40% 0.98 1.00 1.00 1.00 1.00 1.00
50% 0.98 1.00 1.00 1.00 1.00 1.00
60% 0.98 1.00 1.00 1.00 1.00 1.00
70% 0.98 1.00 1.00 1.00 1.00 1.00
80% 0.98 1.00 1.00 1.00 1.00 1.00
90% 1.00 1.00 1.00 1.00 1.00 1.00

those for two and three file sizes in the training set. The firstobser-
vation is that for the single file size in training, the prediction error
is very high. This inaccuracy is expected because the predictor has
been given no information about the relationship between size and
throughput for small files. The second observation is that for more
than one file size, prediction becomes dramatically more accurate,
i.e., the predictor is able to successfully extrapolate from a handful
of sizes in training to a large number of sizes in testing. Thethird
observation is that relative error is low for large file sizes(corre-
sponding to high actual throughput) while it is higher for small files
(low actual throughput). This is consistent with our expectation that
it would be more difficult to accurately predict throughput for small
files. The fourth observation is that for small file sizes (i.e., small
actual throughput), the error is always that of over-prediction. The
smallest file in the training set is 32KB while the smallest file in
the test set is 2KB. This difference is the cause of over-prediction
errors: the relationship between file size and throughput iscompli-
cated for small files, and without a broader training set, theSVR
mechanism is unable to provide accurate prediction.

An important final observation is that prediction accuracy reaches
a maximum at three file sizes in the training set, and there is no clear
trend for four to nine file sizes in the training set. A featureof our
training set is that the number of transfers is always constant at one
hundred, so for the single training size, there are one hundred 8
MB transfers, and for the two training sizes, there are fifty 32 KB
transfers and fifty 8 MB transfers. We believe that accuracy is max-
imum at three training sizes in our experiments because there is a
trade-off between capturing a diversity of file sizes and thenumber
of samples for a single file size—this was alluded to in our discus-
sion of the number of samples needed for good prediction accuracy
in Section 5.2. In other words, we believe that we would not see
maximum accuracy occurring at three file sizes and would instead
see an increase in accuracy with increasing number of file sizes in
the training set if we kept the number of samples of a single file size
constant in the training set and allowed the size of the training set
to increase from 100 to 200, 300, etc., as we increase the number
of file sizes in the training set. A thorough characterization of the
trade-off between diversity of file sizes and number of samples of
each file size is future work.

6. WIDE AREA TEST RESULTS
To further evaluate our SVR throughput prediction method we

created a prototype tool calledPathPerf that can generate mea-
surements and make forecasts on wide area paths. We usedPath-
Perf to conduct experiments over a small set of paths in the RON
testbed [3].

The RON nodes used in our experiments have a range of CPU
and memory configurations, but all ran FreeBSD 4.7 and had lim-
ited additional experimental load during the time of our tests. We
conducted our tests over the set of paths described in Table 7. These
include five trans-continental paths and one trans-Atlantic path. While
this path set is modest in size, it has relative diversity in path charac-
teristics and round-trip times that range between 10ms and 144ms.

Since we have shown that AB measurement does not improve
throughput prediction accuracy, we eliminate it in the experimental
protocol described in Section 4.2. We conduct experiments for
two target file sizes: 512 KB and 2MB. The training and test sets
consist of 50 transfers of a particular file size. The experiments
were conducted between October 20, 2006 and October 31, 2006.

Tables 8 and 9 show the results of the tests. The prediction ac-
curacy is high on all paths for both file sizes: in many cases SVR
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(a) SVR-AMwith file size of 8 MB in
training set.

 0

 5

 10

 15

 20

 0  5  10  15  20

P
re

di
ct

ed
 T

hr
ou

gh
pu

t (
M

b/
s)

Actual Throughput (Mb/s)

(b) SVR-AMwith file sizes of 32 KB and
8 MB in training set.
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(c) SVR-AMwith file sizes of 32 KB,
512 KB, and 8 MB in training set.

5: Scatter plots for theSVR-based predictor using 1, 2, or 3 distinct file sizes in the training set. All results shown use active measurements
to train the predictor. Testing is done using a range of 100 file sizes from 2 KB to 8 MB.

prediction accuracy is within 10% of actual greater than 90%of the
time. In most cases, the prediction accuracy for 512KB and 2MB
transfers is similar. The one exception is Path 3, where accuracy
is within 10% of original only 35% of the time for 512KB trans-
fers, but is much higher at 92% of the time for 2MB transfers. We
found that on this particular path the coefficient of variation for the
actual throughput of 512KB files is twice that of 2MB files, making
prediction for 512KB files more difficult and suggesting thatpath
conditions were more dynamic during this test.

Our measurement data showed that many wide area paths were
lightly loaded during our tests and exhibited very little variation in
throughput between different file transfers. We are in the process
of extending our wide area experiment set considerably in the hope
that we will encounter more variability on these paths, which will
enable us to further refinePathPerf ’scapability. Finally, we also
evaluated the HB predictor’s performance in these experiments and
found it’s forecasts to be approximately the same as SVR. We ex-
pect that, as we find paths with more dynamic conditions, our SVR
predictor will distinguish itself as our lab experiments demonstrate.

7. DISCUSSION
This section addresses two key issues related to runningPathPerf

in operational settings.
Network Load Introduced by PathPerf. Traffic introduced by
active measurement tools is of concern because excessive traffic
can skew the network property being measured. Furthermore,net-
work operators and engineers generally wish to minimize anyim-
pact measurement traffic may have on customer traffic.

For history-based TCP throughput estimation methods, the spe-
cific amount of traffic introduced depends on the measurementpro-
tocol. For example, two approaches may be taken. The first method
is to periodically transfer fixed-size files; the second is toallow a
TCP connection to transfer data for a fixed time period. The lat-
ter approach was taken in the history-based evaluation of Heet
al. [11]. To estimate the overhead of a history-based predictorus-
ing fixed-duration transfers, assume that(1) the TCP connection is
not rwnd-limited, (2) that the fixed duration of data transfer is 50
seconds (as in [11]),(3) throughput measurements are initiated ev-
ery 5 minutes, and(4) throughput closely matches available band-
width. For this example, assume that the average available band-
width for the duration of the experiment is approximately 50Mb/s.
Thus, over a 30 minute period, nearly 2 GB in measurement traffic
is produced, resulting in an average bandwidth of about 8.3 Mb/s.

In the case ofPathPerf, measurement overhead in the training pe-
riod consists of file transfers and queuing/loss probe measurements.
In the testing phase, overhead consists solely of loss measurements.
Assume that we have a 15 minute training period followed by a 15
minute testing period. Assume that file sizes of 32 KB, 512 KB,
and 8 MB are transferred during the training period, using 10sam-
ples of each file, and that each file transfer is preceeded by a 30
second BADABING measurement. With a probe probability of 0.3,
BADABING traffic for each measurement is about 1.5 MB. For test-
ing, only BADABING measurements must be ongoing. Assume that
a 30 second BADABING measurement is initiated every three min-
utes. Thus, over the 15 minute training period about 130 MB of
measurement traffic is produced, resulting in an average bandwidth
of about 1.2 Mb/s for the first 15 minutes. For the testing period,
a total of 7.5 MB of measurement traffic is produced, resulting in
a rate of about 66 Kb/s. Overall,PathPerfproduces 633 Kb/s on
average over the 30 minute measurement period, dramatically dif-
ferent from a standard history-based measurement approach. Even
if more conservative assumptions are made on the history-based
approach, the differences in overhead are significant. Again, the
reason for the dramatic savings is that once the SVR predictor has
been trained, only lightweight measurements are required for accu-
rate predictions.
Detecting Problems in Estimation. An important capability for
throughput estimation in live deployments is to detect whenthere
are significant estimation errors. Such errors could be indicative
of a change in network routing, causing an abrupt change in delay,
loss, and throughput. It could also signal a pathological network
condition, such as an ongoing denial-of-service attack leading to
endemic network loss along a path. On the other hand, it may sim-
ply be a measurement outlier with no network-based cause.

As discussed in Section 5.1.3, normality allows us to use stan-
dard statistical machinery to compute confidence intervals(i.e., us-
ing measured variance of prediction error). We show that prediction
errors are consistent with a normal distribution and further propose
using confidence intervals as a mechanism for triggering retraining
of the SVR in the following way. Assume that we have trained the
SVR predictor overn measurement periods (i.e., we haven through-
put samples andn samples ofL andQ). Assume that we then col-
lect k additional throughput samples, making predictions for each
sample and recording the error. We therefore havek error samples
between what was predicted and what was subsequently measured.
Given a confidence level,e.g., 95%, we can calculate confidence
intervals on the sample error distribution. We can then, with low



frequency, collect additional throughput samples to test whether the
prediction error exceeds the interval bounds. (Note that these addi-
tional samples may be application traffic for which predictions are
used.) If so, we may decide that retraining the SVR predictoris
appropriate. A danger in triggering an immediate retraining is that
such a policy may be too sensitive to outliers regardless of the confi-
dence interval chosen. More generally, we can consider a threshold
m of consecutive prediction errors that exceed the computed confi-
dence interval bounds as a trigger for retraining.

8. SUMMARY AND FUTURE WORK
In this paper we address the problem of how to generate accurate

TCP throughput predictions for arbitrary paths in the Internet. Our
approach uses a powerful machine learning tool - Support Vector
Regression - which provides an efficient mechanism for generating
a predictor using multiple inputs. We investigate measurements of
path properties including queuing delay, packet loss, and available
bandwidth that can be used along with prior throughput measure-
ments as the feature set for our predictor. Through an extensive se-
ries of lab-based experiments we find that our SVR predictor makes
highly accurate forecasts using measurements of queuing and loss,
and that available bandwidth measurement does not improve pre-
dictions. In heavy traffic conditions, the SVR forecasts arenearly
3 times more accurate than prior HB predictors. We make a se-
ries of extensions to the SVR predictor to make it operationally
viable. Further lab experiments show that these extensionsenable
the predictor to work well for a wide range of file sizes, to be robust
to measurements from active probe tools, and to adapt to changing
path conditions. We created a tool calledPathPerfwhich enables us
to test our SVR predictor in the Internet. In initial tests inthe RON
testbed, we show thatPathPerfgenerates highly accurate through-
put predictions.PathPerfalso generates far less probe traffic com-
pared to a HB predictor configured as suggested in prior work.

In future work, we intend to continue to refinePathPerfby inves-
tigating how to better tune the training set, and possibly experiment
with other machine learning tools. We are continuing to expand
the tests run in the wide area so that we can evaluatePathPerf ’s
capability under a broader range of path conditions.
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