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ABSTRACT

TCP throughput predictiofis an important capability in wide area
overlay and multi-homed networks where multiple paths maste
between data sources and receivers. In this paper we desangw,
lightweight method for TCP throughput prediction that camer-

ate accurate forecasts for a broad range of file sizes and:pati-
tions. Our method is based on Support Vector Regressionlingde
that uses a combination of prior file transfers and measurenod
simple path properties. We calibrate and evaluate the déjesh

of our throughput predictor in an extensive set of lab-basqzbr-
iments where ground truth can be established for path piieper
using highly accurate passive measurements. We reporetfierp
mance for our method in the ideal case of using our passive pat
property measurements over a range of test configurations. O
results show that for bulk transfers in heavy traffic, TCPtigh-
put is predicted within 10% of the actual value 87% of the time
representing nearly a 3-fold improvement in accuracy overp
history-based methods. In the same lab environment, wesssse
our method using less accurate active probe measuremepigiof
properties, and show that predictions can be made within 0%
the actual value nearly 50% of the time over a range of filessize
and traffic conditions. This result represents approxitpateé0%
improvement over history-based methods with a much lowpairh

on end-to-end paths. Finally, we implement our predicta tool
called PathPerfand test it in experiments conducted on wide area
paths. The results demonstrate tRathPerfpredicts TCP through-
put accurately over a variety of paths.

Categories and Subject Descriptors:C.4 [Performance of Sys-
tems]. Measurement Techniques

General Terms: Measurement

Keywords: TCP Throughput Prediction, Active Measurements, Ma-
chine Learning, Support Vector Regression

1. INTRODUCTION

The availability of multiple paths between sources andivecs
enabled by content distribution, multi-homing, and ovweda vir-
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tual networks suggests the need for the ability to selecthbst”
path for a particular data transfer. A common starting pfainthis
problem is to define “best” in terms of the throughput that ban
achieved over a particular path between two end hosts foremgi
sized TCP transfer. In this case, the fundamental challénge
develop a technique that provides an accurate TCP throuineu
cast for arbitrary and possibly highly dynamic end-to-eathp.

There are several difficulties in generating accurate T@Rithh-
put predictions. Prior work on the problem has largely faliieto
two categories: those that investigdtemula-basedapproaches
and those that investigaéstory-basedpproaches. Formula-based
methods, as the name suggests, predict throughput usitgmat-
ical expressions that relate a TCP sender’s behavior togratiend
host properties such as RTT, packet loss rate, and recenaowi
size. In this case, different measurement tools can be osgatter
the input data that is then plugged into the formula to gerexare-
diction. However, well-known network dynamics and limitied
strumentation access complicate the basic task of gathémely
and accurate path information, and the ever evolving setGP T
implementations means that a corresponding set of forinased
models must be maintained.

History-based TCP throughput prediction methods are gwnce
tually straightforward. They typically use some kind ofrstard
time series forecasting based on throughput measuremerivsd
from prior file transfers, gathered either passivayg(,by tapping
a link) or actively €.g.,by periodically sending a file). In recent
work, Heet al. show convincingly that history-based methods are
generally more accurate than formula-based methods. Hoyibe
authors carefully outline the conditions under which higtbased
prediction can be effective [11]. Also, history-based aaghes
described to date remain relatively inaccurate and patiéntieavy
weight processes focused on bulk transfer throughput gliedi

Our goal is to develop an accurate, lightweight tool for pradg
end-to-end TCP throughput for arbitrary file sizes. We itigate
the hypothesis that the accuracy of history-based pradican be
improved and their impact on a path reduced by augmentingrthe
dictor with periodic measurements of simple path propertiehe
guestions addressed in this paper include: 1) Which patphepro
ties or combination of path properties increase the acglwitCP
throughput prediction the most? and 2) What is a minimum &et o
file sizes required to generate history-based throughmdigtors
for arbitrary file sizes? Additional goals for our TCP thrbpgt
prediction tool are: 1) to make it robust to “level shiftsg(, when
path properties change significantly) which Eteal. show to be
a challenge in history-based predictors, and 2) to includerdi-
dence value with predictions—a metric with little treatrhierprior
history-based throughput predictors.



The analytical framework for the study that we report in {has
per is based on the use of Support Vector Regression (SVRya p
erful machine learning technique that has shown good eoapiri
performance in many domains. SVR has several attractiveepro
ties that make it well suited for our study: 1) It can accepttipie
inputs {.e., multivariate features) and will use all of these to gen-
erate the throughput prediction, which is a requiremenbforap-
proach. 2) SVR does not commit to any particular parametrinf
unlike formula-based approaches. Instead, SVR modelsxiblé
based on their use of so-called non-linear kernels. Thisessjve
power is an important reason for the potential for more aateypre-
dictions than formula-based methods. 3) SVR is computalipn
efficient, which makes it attractive for inclusion in a toleét can be
deployed and used in the wide area. For our application, wenex
the basic SVR predictor with a confidence interval estimhssed
on an assumption that prediction errors are normally tisted,
an assumption that we test in our laboratory experimentsmgs
tion of confidence intervals is critical for on-line predist, since
retraining can be triggered if measured throughput faliside a
confidence interval computed through previous measurement

We begin by using laboratory-based experiments to invagig
the relationship between TCP throughput and measuremiguasio
properties including available bandwidthE), queuing delaysQ),
and packet lossL). The lab environment enables us to gather
highly accurate passive measurements of throughput anshtl
properties, and develop and test our SVR-based predictr av
range of realistic traffic conditions. Our initial experims fo-
cus on bulk transfers and compare ground truth measureroénts
throughput of target TCP flows.€., actual throughput) with pre-
dicted TCP throughput values generated by multiple ingsrof
our SVR-based tool trained with different combinations atip
properties. We compare the actual and predicted througiging
the Relative Prediction Error (E) metric described in [1QLr re-
sults show that throughput predictions can be improved byiash
as a factor of 3 when including path properties in the SVRetlas
tool versus a history-based predictor. For example, owfteeshow
that the SVR-based predictions are within 10% of actual 87% o
the time for bulk transfers under heavy traffic condition@%®av-
erage utilization on the bottleneck link). Interestinghe find that
the path properties that provide the most improvement t&GWiR-
based predictor ar® and L respectively, and that includingB
provides almost no improvement to the predictor.

Toward our goal of developing a robust tool that can be used in

the wide area, we expand the core SVR-based tool in three.ways

First, the initial tests were based entirely on passivéitrafeasure-
ments, which are unlikely to be widely available in the In&sr To
address this, we tested our SVR-based approach using reeasur
ments ofQ andL provided by the BDABING tool [25]. The reduc-
tion in accuracy of active versus passive measuremeng arfid
L resulted in a corresponding reduction in accuracy of SV&eta
throughput predictions for bulk transfers under heavyfitrafon-
ditions on the order of about 35%—still a significant impnment
on history-base estimates. It is also important to notettiraugh-
put prediction based on training plus lightweight activeaswae-
ments results in a dramatically lower network probe load thrdor
history-based methods using long-lived TCP transfers aadyr
weight probe-based estimates of available bandwidth sadlea
scribed in [11]. We quantify this difference in Section 7.cSed,
we experimented with training data in order to enable ptemiis
over a range of file sizes instead of only bulk transfers wich
the focus of prior work. We found that a training set of onlyeth

file sizes results in accurate throughput predictions foicewange
of file sizes, which highlights another strength of our SVéséd
approach. Third, Het al. showed that “level shifts” in path con-
ditions pose difficulties for throughput prediction [11jiggesting
the need for adaptivity. To accomplish this, we augmentedb#sic
SVR predictor with a confidence interval estimator as a meisha
for triggering a retraining process. We show in Section ba our
technique is able to adapt to level shifts quickly and to rream
high accuracy on paths where level shifts occur.

This combination of capabilities was sufficient for us to elep
an active probe tool for TCP throughput prediction we &ath-
Perf! that we deployed and tested in the wide area. Through a se-
ries of experiments over six end-to-end paths in the RON¢eki3]
paths, we found that in the best c&sghPerfprovides TCP through-
put estimates within 10% of actual value 100% of the time, and
in the worst case provides estimates within 10% of actual 85%
the time. We believe that improvements in tools for gathepath
property information will lead to corresponding improvertein
throughput prediction accuracy. We plan to investigatsetmssi-
bilities in future work.

2. RELATED WORK

Since the seminal work by Jacobson and Karels establiskeed th
basic mechanisms for modern TCP implementations [13], st ha
been well known that many factors affect TCP throughput.dn-g
eral, these include the TCP implementation, the underlgetgiork
structure, and the dynamics of the traffic sharing the linkgtee
path between two hosts. Steps toward understanding TCRibeha
have been taken in a number of studies including [1, 2] whatetd
oped stochastic models for TCP based on packet loss chasacte
tics. A series of studies develop increasingly detailechemiatical
expressions for TCP throughput based on modeling the detail
the TCP congestion control algorithm and measurements tbf pa
properties [4,8,10, 17, 18]. While our predictor also relbm mea-
surement of path properties, the SVR-based approach isletetyp
distinguished from prior formula-based models.

A large number of empirical studies of TCP file transfer and
throughput behavior have provided valuable insight intdTger-
formance. Paxson conducted one of the most comprehensite st
ies of TCP behavior [19,20]. While that work exposed a pleital
issues, it provided some of the first empirical data on theazhar-
istics of packet delay, queuing, and loss within TCP file gfars.
Barford and Crovella’s application of critical path anasy® TCP
file transfers provides an even more detailed perspectiveomn
delay, queuing, and loss relate to TCP performance [6]. ]irB&l-
akrishnaret al. studied throughput from the perspective of a large
web server and showed how it varied depending on end-host and
time of day characteristics. Finally, detailed studieshwbtighput
variability over time and correlations between throughgnd flow
size can be found in [31, 32], respectively. These studiesrimour
work in terms of the basic characteristics of throughput thast
be considered when building our predictor.

Past studies of history-based methods for TCP throughpit pr
diction are based on the use of standard time series fomegast
methods. Vazhkudiat al. compare several different simple fore-
casting methods to estimate TCP throughput for transfetargé
files and find similar performance across predictors [30]. &llw
known system for throughput prediction is the Network Weath
Service [28]. That system makes bulk transfer forecaststbyngt-

IpathPerf is openly
http://wail.cs.wisc.edu/waildownload.py

available at



ing to correlate measurements of prior large TCP file transféth
periodic small (64KB) TCP file transfers (referred to as “thardth
probes”). The DualPats system for TCP throughput predidso
described in [16]. That system makes throughput estimassc
on an exponentially weighted moving average of larger saedb
width probes (1.2MB total). Similar to our work, Let al. found
that prediction errors generally followed a normal disitibn. As
mentioned earlier, Het al. extensively studied history-based pre-
dictors using three different time series forecasts [11ijir VR-
based method includes information from prior transfersr&ining,
but otherwise only requires measurements from lightweigblbes
and is generalized for all files sizes, not just bulk trarsfer

This loss function measures the absolute error betweencticed
and truth, but with a tolerance @f The valuee is application-
dependentin general, and in our experiments we set it to Bdteer
loss functions €.g, the squared loss) are possible too, and often
give similar performance. They are not explored in this pape

It might seem that the appropriate way to estimate the pasame
B, Bo is to minimize the overall loss on the training $&% ; L(f (xi), ).
However ifd is large compared to the number of training examples
n, one can often fit the training data perfectly. This is daogsy
because the truthin training data actually contain random fluctua-
tions, andf is partly fitting the noise. Suchwill generalize poorly,
i.e. causing bad predictions on future test data. This phenomeno

Many techniques have been developed to measure path propds known asoverfitting To prevent overfitting, one can reduce the

erties (see CAIDAs excellent summary page for example}. [9]
Prior work on path property measurement directs our seleaif
lightweight probe tools to collect data for our predictored@nt
studies have focused on measuring available bandwidth atha p
AB is defined informally as the minimum unused capacity on an
end-to-end path, which is a conceptually appealing prgpeith
respect to throughput prediction. A number of studies haxe d
scribed techniques for measuring AB including [14, 26, 2We
investigate the ability of AB measurement as well as otheh pa
properties to enhance TCP throughput predictions.

Finally, machine learning techniques have not been widply a
plied to network measurement. One notable exception istimar&
intrusion detectiond.g.,[12]). The only other application of Sup-
port Vector Regression that we know of is to the problem ofigisi
IP address structure to predict round trip time latency [7].

3. AMULTIVARIATE MACHINE
LEARNING TOOL

The main hypothesis of this work is that history-based TG&ugh-
put prediction can be improved by incorporating measureéseh
end-to-end path properties. The task of throughput predictan
be formulated as a regression problém, predicting a real-valued
number based on multiple real-valued input features. Edeh fi
transfer is represented by a feature veatar RY of dimensiond.
Each dimension is an observed featweg, the file size, proximal
measurements of path properties such as queuing delayai@sk
able bandwidth, etc. Giver, we want to predict the throughput
y € R. This is achieved by training a regression functionR? —

R, and applyingf to x. The functionf is trained using training
data,i.e., historical file transfers with known features and the cor-
responding measured throughput.

The analytical framework that we apply to this problenSigp-
port Vector Regression (SVR) state-of-the-art machine learning
tool for multivariate regression. SVR is the regressiorsiar of
the popular Support Vector Machines [29]. It has a solid tetcal
foundation, and is favored in practice for its good emplrmfor-
mance. We briefly describe SVR below, and refer readers 1281
for details, and to [15] as an example of an SVR software pgeka

To understand SVR we start from a linear regression function

f(x) = BT x+ Bo. Assume we have a training setrofile transfers
{(X1,¥1),---,(Xn,yn)}. Training involves estimating threddimensional
weight vector and offsetfy so thatf(x;) is close to the trutly;

for all training examples = 1...n. There are many ways to mea-
sure “closeness”. The traditional measure used in SVR isthe
insensitive loss, defined as

0 it1f00 -yl <e

L(f(x).y) = { |f(x)—y|—&  otherwise. @

degree of freedom irf by selecting a subset of features, thus re-
ducingd. An implicit but more convenient alternative is to require
f to besmootR, defined as having a small parameter ndji|2.
Combining loss and smoothness, we estimate the paranf:igss
by solving the following optimization problem

EE?;F”“““*”WW’ @

whereC is a weight parameter to balance the two terms. The value
of Cis usually selected by a procedure called cross-validatibere

the training set is randomly split into two parts, then regien
functions with differentC are trained on one part and their per-
formance measured on the other part, and finally one seleets t
C value with the best performance. In our experiments we used
C = 3.162 using cross-validation. The optimization problem can b
solved using a quadratic program.

Nonetheless, a linear functioi(x) is fairly restrictive and may
not be able to describe the true functipanA standard mathemati-
cal trick is to augment the feature veciowith non-linear bases de-
rived fromx. For example, ik = (x1,%2) T, one can augment it with
@(X) = (X1,X2,X1X2, X2, X3). Thelinear regressor in the augmented
feature spacé(x) = BT @(x) 4 Bo then produces aon-linearfit in
the original feature space. NgBehas more dimensions than before.
The more dimensiong(x) has, the more expressifebecomes.

In the extreme (and often beneficial) cage) can even have in-
finite dimensions. It seems computationally impossiblestineate
the corresponding infinite-dimensional paramederHowever, if
we convert theprimal optimization problem (2) into itdual form,
one can show that the number of dual parameters is actatly
stead of the dimension ap(x). Furthermore, the dual problem
never uses the augmented featg(®) explicitly. It only uses the
inner product between pairs of augmented featq@es " o(X') =
K(x,x"). The functionK is known as thékernel and can be com-
puted from the original feature vectaxsx’. For instance, the Ra-
dial Basis Function (RBF) kern&l(x,x) = exp(—y||x — X'[|?) im-
plicitly corresponds to an infinite dimensional featurecgpdn our
experiments we used a RBF kernel wjth= 0.3162, again selected
by cross-validation. The dual problem can still be effidigablved
using a quadratic program.

SVR therefore works as follows: For training, one collects a
training set{(x1,y1),-..,(Xn,¥n) }, and specifies a kern&. SVR
solves the dual optimization problem, which equivalenthy§ the
potentially very high-dimensional paramefgrand 3y in the aug-
mented feature space defined Ky This produces a potentially

2If B are the coefficients of a polynomial function, the function
will tend to be smooth (changes slowly)|jB||2 is small, or noisy
if ||B||2is large.



highly non-linear prediction functiori(x). The functionf(x) can
then be applied to arbitrary test casesnd produces a prediction.
In our case, test cases are the file size for which a prediigtionbe
made and current path properties based on active measusmen

4. EXPERIMENTAL ENVIRONMENT AND
METHODOLOGY

This section describes the laboratory environment andréexpe
mental procedure that we used to evaluate our throughpdicpoe

4.1 Experimental Environment

The laboratory testbed used in our experiments is showngn Fi
ure 1. It consisted of commodity end hosts connected to a Hatlb
like topology of Cisco GSR 12000 routers. Both measuremedt a
background traffic was generated and received by the end.host
Traffic flowed from the sending hosts on separate paths via-Gig
bit Ethernet to separate Cisco GSRs (hop B in the figure) wibhere
was forwarded on OC12 (622 Mb/s) links. This configuratiorswa
created in order to accommodate a precision passive measuare
system, as we describe below. Traffic from the OC12 links Wwas t
multiplexed onto a single OC3 (155 Mb/s) link (hop C in the figlu
which formed the bottleneck where congestion took placeuséel
an AdTech SX-14 hardware-based propagation delay emuwdator
the OC3 link to add 25 milliseconds delay in each directianafib
experiments, and configured the bottleneck queue to holtbapp
imately 50 milliseconds of packets. Packets exited the Q@3 |

bandwidth. For the measurement traffic hosts, we set the ECP r
ceive window size to 128 KB. In receive window limited traeis,
file transfer throughput was approximately 21 Mb/s. Thaifithe
available bandwidth on the bottleneck link was 21 Mb/s or enor
the flow was receive windownd) limited, otherwise it was con-
gestion window ¢wnd) limited. We experimented with bottvnd-
andcwndlimited scenarios.

For active measurements of available bandwidth and quéogsy
we used the Xz [26] and BADABING [25] tools, respectively. Xz
estimates end-to-end available bandwidth using a relgtiosv-
overhead, iterative method similar tamLOAD [14]. Since the
probe process is iterative, the time taken to produce amatgican
vary from a few seconds to tens of seconds.

BADABING reports two characteristics @iss episodesnamely
thefrequencyof loss episodes, andean duratiorof loss episodes,
using a lightweight probe process. We used a probe probabili
parametep of 0.3. Other parameters were set according to [25]. In
the rest of the paper, we refer to both loss characteristiocsmed
as loss or.. BADABING requires the sender and receiver to be
time-synchronized. To accommodate our wide area expetsnen
the BADABING receiver was modified to reflect probes back to the
sender, where they were timestamped and logged as on theabrig
receiver. Thus, the sender clock was used for all probe tangss.

We used BDABING to measure loss characteristics because it
is the most accurate loss characteristics measuremerttehtly
available; if accuratéoss ratemeasurement tools become available
in the future, loss rate may replace frequency and duratothe

via another Cisco GSR 12000 (hop D in the figure) and passed toloss characteristic we use for our prediction mechanism.

receiving hosts via Gigabit Ethernet.

The measurement hosts and traffic generation hosts wert-iden
cally configured workstations running FreeBSD 5.4. The wstak
tions had 2 GHz Intel Pentium 4 processors with 2 GB of RAM and
Intel Pro/1000 network cards. They were also dual-homethato
all management traffic was on a separate network than ddgicte
Figure 1. We disabled the TCP throughput history cachingufea
in FreeBSD 5.4, controlled by the variable net.inet.tdfight.enable,
to allow TCP throughput to be determined by current path @rop
ties rather than throughput history.

The measurement collection protocol consisted of theviaiig:
1. Run BADABING for 30 seconds.

2. Run YAz to obtain an estimate of the available bandwidth.
3. Transfer afile.

In the remainder of the paper, we refer to the above seridep$s
as a singlexperimentand to a number of consecutive experiments
as aseries Experiments in the wide area omit the available band-

A key aspect of our testbed was the measurement system used tavidth measurement. Individual experiments in a series epas

establish the true path properties for our evaluation. c@psplit-
ters were attached to both the ingress and egress links aChop

rated by a 30 second period. Series of experiments diffen &ach
other in that either the background traffic is different bextw series,

and Endace DAG 3.5 and 3.8 passive monitoring cards were usedor the distribution of file sizes transferred is differenttle exper-

to capture traces dll packets entering and leaving the bottleneck
node. By comparing packet headers, we were able to identifgtw
packets were lost at the congested output queue duringimeres,
and accurately measure available bandwidth on the cortijiske
Furthermore, the fact that the measurements of packetsrenénd
leaving hop C were synchronized at a very fine granularigy, @
single microsecond) enabled us to precisely measure que&igin
lays through the congested router.

4.2 Experimental Protocol

We generated background traffic by running the Harpoon P tra
fic generator [24] between up to four pairs of traffic generakiosts
as illustrated in Figure 1. Harpoon produced open-loopsaiflar
traffic using a heavy-tailed file size distribution, mimiegia mix of
application traffic such as web and peer-to-peer applicatamm-
mon in today’s Internet. Harpoon was configured to produeg-av
age offered loads ranging from approximately 60% to 105%hen t
bottleneck link (the OC3 between hops C and D).

Measurement traffic in the testbed consisted of file transéerd
active measurements of queuing delay, packet loss, anthlaleai

iments are conducted over different physical paths. Eadbassef
experiments is divided into two mutually exclusive traimend test
sets for the SVR. The SVR mechanism does not require thaétee s
of experiments that form the training and test set be corisecor
contiguous in time. In contrast, history-based predictizethods
generally require consecutive historical informatiorcsithey rely
on standard timeseries-based forecasting models. In alwation
we use contiguous portions for training and test sie¢s,the be-
ginning part of a series becomes the training set and thethrest
test set. The number of experiments in training and testreats
be the same or different. Notions of separate training asidd@ta
sets are not required for history-based methods; rathedjgiions
are made over the continuous notion of distant and recetatritisn
our evaluation of history-based methods, we use the findigien
of the training set as the starting point for the test set.

From each series of experiments, we gather three diffestat s
of measurements. The first s€@yacular Passive Measurements
(OPM), are AB, Q, and L measurements during a file transfer that
we obtain from packet traces. We refer to these measurerasnts
oracularbecause they give us essentially perfect information about
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network conditions. In practice, this information wouldtrime
available when making a prediction for an arbitrary path. We
this information to establish the best possible accuracyuofpre-
diction mechanism. The second sAttive Measurements (AM)

for expositional ease, these measures are two differenirésin
the feature vector. The trained SVR model is then used toqired
throughput for a feature vector containing the correspuondiets
of network measurements, and we compare the predictionamcu

are the measurements from our active measurement toolse Not for the different combinations.

that, unlike theOPM, the AM provide AB, Q, and L values before
the actual transfer. The third sétractical Passive Measurements

We also compare the accuracy of SVR to the exponentiallyhwedy
moving average (EWMA) History-Based Predictor (HB) ddsed

(PPM), are trace-based measurements of AB, Q and L taken at thein [11], IiHl =aR +(1- or)li’i, with ana value of 0.3.

same time a&\M are taken. Their purpose is to show the best possi-
ble accuracy of our prediction mechanism with measurentaats
can be obtained in practice, or to show how much better the-acc
racy would be if the active measurements had perfect acgubdic
measurements are aggregates for conditions on the pathatbe
not specific to any single TCP flow on the path.

For experiments in the wide area, we created a tBathPerf
This tool, designed to run between a pair of end hosts, ta&i&aCP
file transfers and path property measurements (using ouifiexd
version of BADABING), and produces throughput estimates using
our SVR-based method. It can be configured to generate ampitr
file size transfers for both training and testing and iné$atetrain-
ing when level shifts are identified as described in Section 7

4.3 Evaluating Prediction Accuracy

We denote the actual throughput Byand the predicted through-
put byR We use the metricelative prediction error Eintroduced
in [11] to evaluate the accuracy of an individual throughetdic-
tion. Relative prediction errois defined as

~ R-R
~ min(RR)

In what follows, we use the distribution of the absolute eafi E
to compare different prediction methods.

5. BUILDING A ROBUST PREDICTOR

This section describes how we developed, calibrated, aad ev
uated our prediction mechanism through an extensive setsts t
conducted in our lab test-bed.

5.1 Calibration and Evaluation in the High
Traffic Scenario

The first step in developing our SVR-based throughput predic
tor is to find the combination of training features which leadhe
most accurate predictions over a wide variety of path caomst
We trained the predictor using a feature vector for eachttest
contained different combination of our set of target pattasuee-
ments (AB, Q, L) and the measured throughput. Although we re-
fer to bothloss frequencyndloss durationtogether as L or loss

We do not report detailed results from tests with low utiliza
tion on the bottleneck linki.e., receive window bound flows, be-
cause in the low utilization scenarios there is very litdgiance in
throughput of flows. Our SVR-based predictor generated 186%
curate forecasts for these tests. However, any reasonaaEpon
method can forecast throughput quite accurately in thisate.
For example, the formula-based predictor used in [11], twléc
based on [18], performs poorly in high utilization scensyibut is
accurate in low utilization scenarios.

For most of the results reported, we generated an averagiof 1
Mb/s of background traffic to create high utilization on ouC®
(155 Mb/s) bottleneck link. We used one set of 100 experimfnt
training and another set of 100 experiments for testing. AfMB3
file was transferred in each experiment. In our initial ekpents
we use an 8 MB file because it is large enough to make slow-start
an insignificant factor in throughput for our receive windsize
of 128 KB; in later sections we consider smaller file sizes nehe
slow-start has a bigger impact on overall throughput.

Figures 2a to 2| show scatter plots comparing the actual esxd p
dicted throughput using different prediction methods asused
below. A point on the diagonal represents perfect prediciiocu-
racy; the farther a point is from the diagonal, the greateptiedic-
tion error.

5.1.1 Using Path Measurements from an Oracle

Figure 2a shows the prediction accuracy scatter plot foHBe
method. Figures 2b to 2h show the prediction error with SViRgis
Oracular Passive Measurements (OP1d) different combinations
of path measurements in the feature vector. For exangWR-
OPM-Queuemeans that only queuing delay measurements were
used to train and test, whiBVR-OPM-AB-Queumeans that both
available bandwidth and queuing delay measurements wecktas
train and test.

Table 1 shows relative prediction errors for HB forecastngl
for SVM-OPMbased predictions. Values in the table indicate the
fraction of predictions for a given method within a given a@xcy
level. For example, the first two columns of the first row in [Eab
mean that 32% of HB predictions have relative predictiomorsrr
of 10% or smaller while 79% o8VR-OPM-ABpredictions have
relative prediction errors of 10% or smaller. We presenttscalots
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in addition to tabular data to provide insight into how diéfat path
properties contribute to throughput prediction in the SV&tmod.

From Figure 2a, we can see that the predictions for the HB pre-

dictor are rather diffusely scattered around the diagcamad, that
predictions in low-throughput conditions tend to have ¢argla-
tive error. Figures 2b, 2c, and 2d show the behavior of the SVR
predictor using a single measure of path properties in thaife
vector—AB, L, and Q respectively. The AB and Q graphs have a
similar overall trend: predictions are accurdate.(points are close

to the diagonal) for high actual throughput values, but fanfthe
diagonal, almost in a horizontal line, for lower values ofuat
throughput. The L graph has the opposite trend: points agecl
to the diagonal for lower values of actual throughput, aminfa
horizontal line for higher values of actual throughput.

The explanation for these trends lies in the fact that filesra
fers with low actual throughput experience loss, while fitmsfers
with high actual throughput do not experience any loss. Woss
occurs, the values of AB and Q for the path are nearly constant
AB is almost zero, and Q is the maximum possible value (which
depends on the amount of buffering available at the bottletiek
in the path). In this case, throughput depends on the valde of
Hence, L appears to be a good predictor when there is losseon th
path, and AB and Q, being constants in this case, have nogtikexdi
power, resulting in horizontal linege., a single value of predicted
throughput. On the other hand, when there is no loss, L is a con
stant with value zero, so L has no predictive power, while Al a
Q are able to predict throughput quite accurately.

Figures 2e to 2h show improvements on the prediction acgurac
obtained by using more than one path property in the SVR ffleatu
vector. We can see that when L is combined with either AB oh®, t
horizontal lines on the graphs are replaced by points mwagecto
the diagonal, so combining L with AB or Q allows the SVR method
to predict accurately in both lossy and lossless networklitiams.

1: Relative accuracy of history-basddR) throughput prediction
and SVR-based predictors using different types of oraqdasive
path measurementSYR-OPM in the feature vector. Table values
indicate the fraction of predictions within a given accyréavel.

Relatve || HB | AB L Q ABL ABQ L[Q ABLQ
e | ™
10% || 032 ] 0.9 054 08/ 078 08/ 086 0.86
20% || 0.67 | 0.87 0.86 087 087 087 0.90 0.90
30% || 0.80 | 0.87 092 087 091 087 0.90 0.90
40% || 0.87 | 087 094 087 092 087 0.93 0.93
50% || 0.88 | 0.88 095 089 097 089 0.96 0.96
60% || 0.88 | 0.88 097 092 097 092 0.97 0.97
70% || 0.89 | 0.89 097 094 097 094 0.8 0.98
80% || 0.92| 091 098 095 098 095 0.99 0.99
90% || 0.92| 092 098 096 098 096 0.99 0.99

2: Relative accuracy of history-basedB) throughput prediction
and SVR-based predictors using trace-based passive pagunee
ments PPM) or active path measurementsM). Table values in-
dicate the fraction of predictions within a given accuramyell.

Relative HB PPM AM
‘ Error H ‘ AB-L-Q L-Q | AB-L-Q L-Q
10% || 0.32 049 053 049 051
20% || 0.67 0.77 081 0.78 0.76
30% || 0.80 0.86 0.86 0.86 0.86
40% || 0.87 0.86 0.89 0.86 0.86
50% || 0.88 0.88 0.89 0.86 0.87
60% || 0.88 0.90 0.89 0.88 0.87
70% || 0.89 0.90 0.91 0.88 0.88
80% || 0.92 091 0.94 0.90 0.90
90% || 0.92 0.92 0.95 0.92 0.92

nation of L and Q is sufficient (given our framework). This ebs

Measurements of AB and Q appear to serve the same function,Vation is not only surprising, but rather good news. Priorkatas

namely, helping to predict throughput in lossless condgioThis
observation begs the question: do we really need both AB and Q
or can we use just one of the two and still achieve the samegpred
tion accuracy? To answer this question, we compared AB-ands
Loss-Queue predictions with each other and with AB-Los&gu
predictions ie., Figures 2e, 2g, and 2h). The general trend in all
three cases, as seen from the scatter plots, is the sameartherh
tal line of points is reduced or eliminated, suggesting pratic-
tion from non-constant-value measurements is occurrindp@h
lossy and lossless network conditions. If we compare theLABs
and Loss-Queue graphs more closely, we observe two thigs, F
in the lossless prediction case, the points are closer talitigo-
nal in the Loss-Queue case than in the AB-Loss case. Seaond, i
the Loss-Queue case, the transition in the prediction floeridss-
less to the lossy case is smooaile,, there is no horizontal line of
points, while in the AB-Loss case there is still a horizoritaé of
points in the actual throughput range of 11-14 Mb/s. This sug
gests that Q is a more accurate predictor than AB in the lsssle
case. The relative prediction error data of Table 1 suppbits
SVR with a feature vector containing Loss-Queue informafice-
dicts throughput within 10% of actual for 87% of transfersile a
feature vector containing AB-Loss measurements prediittsthe
same accuracy level for 78% of transfers. Finally, thereoislif
ference in accuracy (either qualitatively or quantitdtiydetween
Loss-Queue and AB-Loss-Queue.

The above discussion suggests that AB measurements ae not r
quired for highly accurate throughput prediction, and thabmbi-

shown that accurate measurements of AB require at leastrmode
ate amounts of probe traffic [22, 26], and some formula-baszel
throughput estimation schemes take as a given that AB measur
ments are necessary for accurate throughput prediction [l
contrast, measurements of L and Q can be very lightweighiepro
processes [25]. We discuss measurement overhead furtiSecin
tion 7.

5.1.2 Using Practical Passive and Active Path Mea-
surements

So far, we have considered the prediction accuracy of SVBdas
on only Oracular Passive Measurements (OPMMis gives us the
baseline for the best-case accuracy with SVR, and alsogeevn-
sight into how SVR uses different path properties for prioiic
Table 1 and the graphs in Figure 5.1 shows that HB predicts@2%
transfers within 10% of actual whil8VR-OPM-Loss-Queygre-
dicts 87%, an almost 3-fold improvement. In practice, hasvev
perfect measurements of path properties are not availablén
what follows we assess SVR using measurements that are iere |
those available in the wide area.

We compare HB with SVR-PPM and SVR-AM. Due to space
limitations, we present onlj.oss-Queuend AB-Loss-Queuee-
sults for SVR. We choose these because we expBdtoss-Queue
to have the highest accuracy as it has the most informationtab
path properties, andoss-Queuéecause it is very lightweight and
has accuracy equal #B-Loss-Queutor SVR-OPM

Figures 2i and 2j show predicted and actual throughpuSidR-
PPM and Figures 2k and 2| show predicted and actual throughput



for SVR-AM Table 2 presents relative prediction error data for HB,
SVR-PPMand SVR-AM We wish to examine three issues: first,
whether our finding thatoss-Queudas the same prediction accu-
racy asAB-Loss-Queufrom theSVR-OPMase holds for th8VR-
PPM and SVR-AMcase; second, wheth&VR-PPMand SVR-AM
have the same accuracy; and third, hBWR-AMaccuracy com-
pares with HB prediction accuracy.

All the scatter plots from Figures 2i to 2| are qualitativelgry
similar; this is encouraging because it suggests two thiffsst,
Loss-Queudas similar prediction accuracy AB-Loss-Queueé.e.,
the observation from$VR-OPMstill holds, so we can achieve good
prediction accuracy without having to measure AB. The neat
prediction error data in Table 2 supports this graphicakolation:
AB-Loss-Queuéas only slightly better accuracy thinss-Queue
for both SVR-PPMand SVR-AM Second,SVR-AMhas accuracy
similar to SVR-PPM i.e., using active measurement tools to esti-
mate path properties yields predictions almost as accasatev-
ing ground-truth measurements. The data in Table 2 furthler s
stantiates this observation. Similar accuracy betw8¥R-PPM
predictions andSVR-AMpredictions is important because in real
wide-area Internet paths instrumentation is generallyanatlable
for providing accurate passive measurements.

Finally, we compare HB wittSVR-AM Although Figures 2a,
2k and 2| are qualitatively similaiSVR-AMhas a tighter cluster
of points around the diagonal for high actual throughpuhthia.
Thus, SVR-AMappears to have higher accuracy than HB. As Ta-
ble 2 showsSVR-AM-Loss-Queywedicts throughput within 10%
of actual accuracy 49% of the time, while HB does so only 32% of
the time. Hence, for high traffic scenari®yR-AM-Loss-Queye
the practically deployable lightweight version of the SYRsed
prediction mechanism, significantly outperforms HB prédit.

5.1.3 The Nature of Prediction Error

Lu et al. [16] observed in their study that throughput prediction
errors were approximately normal in distribution. As theéhaus
noted, normality would justify standard computations affidence
intervals. We examined the distribution of errors in ouremipents
and also found evidence suggestive of normality.

Figure 3 shows two normal quantile-quantile (Q-Q) plotsSviR-
OPM-Loss-Queu@Figure 3a) anéVR-AM-Loss-QueyEigure 3b).
Samples that are consistent with a normal distribution fapprox-
imately a straight line in the graph, particularly toware tenter.
In Figures 3a and 3b, we see that the throughput prediction sa
ples in each case form approximately straight lines. Thbsemwa-
tions are consistent with normality in the distribution oégiction
errors. Error distributions from other experiments weisoalon-
sistent with the normal distribution, but are not shown duspace
limitations. We further discuss the issues of retrainind ahde-
tecting estimation problems in Section 7.

5.2 Evaluation of Prediction Accuracy with
Level-shift Background Traffic

In the previous section, we considered SVR and HB prediction
accuracy under variable but stationary background trafficthis
section, we consider the case where there is a shift in agdoag
of background traffic.

We configure our traffic generation process to cycle betw@én 1
Mb/s and 160 Mb/s average offered loads. With 120 Mb/s traffic
there is virtually no loss along the path and the throughpbbund
by the receive window size. With 160 Mb/s traffic, the OC3 bot-
tleneck is saturated and endemic loss ensues. The prodsdore
run 120 Mb/s background traffic for 75 minutes, followed by 16

Sample Quantiles
0

Theoretical Quantiles

(a) Q-Q Plot SVR-OPM-Loss-Queue.

Sample Quantiles

Theoretical Quantiles

(b) Q-Q Plot for SVR-AM-Loss-
Queue.

3: Normal Q-Q Plots for Prediction Errors with (a) oraculagan
surements and (b) active measurementsask-Queue

Mb/s of traffic for 2 hours 15 min, repeating this cycle seVtnaes.
We follow the measurement protocol in Section 4.2 for caifer
AB, L, Q, and throughput measurements. We first train our SVR
predictor in the 120 Mb/s environment, and test it in the 169/$vi
environment. The column label€PM-L-Q TrainLowTestHigln
Table 3 shows the results. Clearly, the prediction accuisnegry
poor: all predictions are off by a factor of two or more. Next
train the predictor on one whole cycle of 120 Mb/s and 160 Mb/s
and test it on a series of cycles. The last two columns of Table
OPM-Loss-QueuandAM-Loss-Queueand Figure 4a show the re-
sults from these experiments. The x-axis in Figure 4a is tipee-
sented by the number of file transfers that have completetthen
y-axis is throughput. In this case, b&WR-OPMandSVR-AMpre-
dict throughput with high accuracVR-OPMpredicts throughput
within 10% of actual 62% of the time, arBVR-AM52% of the
time. For comparison, the first column of Table 3 and Figure 4b
present results for the history-based predictor. HB acsuisasig-
nificantly lower than SVR accuracy, only about half as much as
SVR-OPM Figure 4b explains why. After every level-shift in the
background traffic, the HB predictor takes time to re-adapton-
trast, no adaptation time is required for the SVR predidtdrhias
already been trained on the range of expected traffic comgiti

One issue regarding shifts in average traffic volume is howyma
samples from a new, previously unseen traffic level are rbéale
adequately train the predictor. To examine this issue, aia tur
predictor on two new kinds of average traffic loads: a step con
stituting 75 minutes of 120 Mb/s traffic followed by 10 minsite
of 160 Mb/s traffic resulting in 5 experiments at the highaific
level, and a step constituting of 75 minutes of 120 Mb/s wdtil-
lowed by 20 minutes of 160 Mb/s traffic resulting in 10 expesirts



"Actual Throughput
SVR-AM-Loss-Queue

roughput (Mbls)

Th

60 80 100 120
File Transfer Timeline

(a) Level Shift: SVR-AM-Loss-Queue

0 20 20 140

"Actual Throughput
tie

roughput (bis)

Thr

60 80 100
File Transfer Timeline

(b) Level Shift: HB

a0

4: Prediction Accuracy in Fluctuating Background Traffic

at the higher traffic level. We call these conditid®¥R-AM-L-Q-

5 and SVR-AM-L-Q-10respectively. The prediction accuracy of
these schemes is presented in Table 4. As can be seen inline tab
these training schemes yield most of the accuracgdWR-AM-L-

Q, which trains at the 160 Mb/s level for approximately 40 ekpe
ments. These results demonstrate that fairly small trgiséts from
new traffic levels are needed for accurate prediction. A amiBspn

of time series plots from these experiments (not shown dapdoe
constraints) provides further insight into how predict@accuracy
improves with larger training sets. Bo8VR-AM-L-Q-5andSVR-
AM-L-Q-10have periods where the predicted throughput is virtu-
ally constant even though the actual throughput is not. adiods

are shorter foBVR-AM-L-Q-1@ompared t&VR-AM-L-Q-5SVR-
AM-L-Q (Figure 4a) has no such periods. The reason for this effect
is that predictors incorporating fewer samples may notuitela
broad enough range of possible network conditions. Howeher
SVR prediction mechanism can still yield high accuracy gsin
small set of training samples if the samples are representtthe
range of network conditions along a path.

5.3 Evaluation of Prediction Accuracy for Dif-
ferent File Sizes

We have so far considered only 8 MB file transfers in step 3 of
the experimental protocol of Section 4.2. For a TCP receive w
dow of 128 KB, the majority of the lifetime of an 8 MB transfer i
spent in TCP’s congestion avoidance phase. However, olrigoa
an accurate predictor for a range of file sizes, not just bralksfers.
Predicting throughput for small files is complicated by TE8ow
start phase in which throughput changes rapidly with irgiregfile
size due to the doubling of the window every round-trip tiraed
because packet loss during the transfer of a small file caa hav
large relative impact on throughput. We hypothesize thiatgugif-

3. Relative accuracy of history-basetiR) and SVR-based
throughput predictors using oracular path measuremedEsVi
and active measurementd&N]) when predictors are subjected to
shifts in average background traffic volume.

Relative HB OPM-L-Q | OPM-Loss-Queue  AM-Loss-Queue
‘ Error H ‘ TrainLowTestHigh
10% || 0.29 0.00 0.62 0.52
20% || 0.40 0.00 0.72 0.61
30% || 0.52 0.00 0.81 0.69
40% || 0.55 0.00 0.84 0.73
50% || 0.62 0.00 0.88 0.77
60% || 0.64 0.00 0.90 0.78
70% || 0.66 0.00 0.91 0.80
80% || 0.71 0.00 0.92 0.83
90% || 0.74 0.00 0.92 0.84

4: Comparison of relative accuracy of SVR-based throughpet
diction using active measuremenfs\) and different numbers of
training samples. 40 training samples are usefiNfiLoss-Queue
5 samples foAM-L-Q-5 and 10 samples fohM-L-Q-1Q Back-
ground traffic consists of shifts in average traffic volumeénsen
120 Mb/s and 160 Mb/s.

Relative || AM-Loss-Queue AM-L-Q-5 AM-L-Q-10
‘ Error H
10% 0.52 0.44 0.45
20% 0.61 0.49 0.53
30% 0.69 0.51 0.55
40% 0.73 0.55 0.59
50% 0.77 0.58 0.62
60% 0.78 0.60 0.65
70% 0.80 0.62 0.67
80% 0.83 0.65 0.73
90% 0.84 0.67 0.73

ferent file sizes to train the SVR predictor will lead to aaterfore-
casts for a broad range of file sizes - something not treatpddn
HB prediction studies.

We conducted experiments using background traffic at an aver
age offered load of 135 Mb/s and using a series of 9 trainitg se
consisting of between 1 and 9 unique file sizes. The file siaes f
the training sets are between 32 KB and 8 MB. The first training
set consists of a single file size of 8 MB, the second trainigtg s
consists of two file sizes of 32 KB and 8 MB, and the third tragni
set adds a file size of 512 KB. Subsequent training sets saimple
range between 32 KB and 8 MB such that the fraction of a transfe
lifetime spent in slow start covers a wider range.

Test sets for our experiments consist of 100 file sizes bet&ee
KB and 8 MB — a much more diverse set than the training set. The
test file sizes are drawn from a biased random number genémato
such a way that the resulting file transfers exhibit a widejeaof
behavior,i.e., files that are fully transferred during slow start, and
transfers consisting of a varying proportion of time spenslow
start versus congestion avoidance. We use a wider rangealf sm
files in the test set to allow us to see how our predictor perfor
for unseen and difficult to predict file sizes. We do not use dewi
range for large file sizes because we expect the throughpos to
almost constani.g., window or congestion limited) once slow start
becomes an insignificant fraction of the transfer time.

Tables 5 and 6 present prediction accuracy for trainingais
sisting of 1, 2, 3, 6, or 8 distinct file sizes f8BVR-OPMandSVR-
AM. Graphs in Figure 5 preseB8\VVR-AMresults for one, two, and
three file sizes in the training set. We do not include graphsd-
maining training sets due to space limitations: they ardlaino



5: Relative accuracy @VRbased predictor using oracular passive

measurementOPM) and training sets consisting of 1, 2, 3, 6, or 8
distinct file sizes.

Relative No. of distinct file sizes in training
‘ Error H 1 2 3 6 8
10% [[ 0.06 0.24 049 035 03
20% || 0.16 0.40 057 048 05
30% || 0.18 0.52 0.64 054 05
40% || 0.19 0.61 0.66 059 0.6
50% || 0.22 0.64 0.67 0.65 0.6
60% || 0.24 0.67 0.68 0.66 0.6
70% || 0.24 0.69 0.68 0.67 06
80% || 0.29 0.71 0.69 0.68 0.6
90% || 0.30 0.72 0.70 0.68 0.6

6: Relative accuracy @VRbased predictor using active measure-
ments AM) and training sets consisting of 1, 2, 3, 6, or 8 distinct

file sizes.

No. of distinct file sizes in training

Relative
1 2 3 6 8

Error

10% || 0.10 0.29 040 0.29 0.2
20% || 0.15 0.41 051 047 0.4
30% || 0.16 0.53 059 052 0.5§
40% || 0.19 0.58 0.64 057 0.6]
50% || 0.23 0.64 0.65 0.62 0.64
60% (| 0.23 0.66 0.66 0.64 0.6%
70% || 0.26 0.70 0.67 0.64 0.64
80% || 0.28 0.70 0.68 0.64 0.6
90% || 0.31 0.71 0.69 0.65 0.64

7. Details of RON Paths used for wide-area experiments

[ Path Number [ Node Locations [[ PathRTT (ms) |
Path 1 Amsterdam-Utah 144
Path 2 Utah-Maryland 54
Path 3 Maryland-Utah 54
Path 4 Maryland-New York 10
Path 5 New Mexico-Ithaca 86
Path 6 New Mexico-New York 83

8: Wide Area Results for 512KB Transfers

Relative | Pathl Path2 Path3 Path4 Path5 Path 6
‘ Error ‘
10% 0.43 0.96 0.35 0.55 1.00 0.92
20% 0.76 1.00 0.73 0.90 1.00 0.96
30% 0.86 1.00 0.98 0.98 1.00 0.98
40% 0.94 1.00 1.00 1.00 1.00 1.00
50% 0.94 1.00 1.00 1.00 1.00 1.0p
60% 0.94 1.00 1.00 1.00 1.00 1.0p
70% 0.96 1.00 1.00 1.00 1.00 1.00
80% 0.96 1.00 1.00 1.00 1.00 1.00
90% 0.96 1.00 1.00 1.00 1.00 1.00
9: Wide Area Results for 2MB Transfers
Relative || Pathl Path2 Path3 Path4 Path5 Path6
Error
10% 0.48 0.98 0.92 0.52 0.96 0.98
20% 0.77 1.00 0.98 0.75 0.98 1.00
30% 0.92 1.00 0.98 0.94 0.98 1.0p
40% 0.98 1.00 1.00 1.00 1.00 1.0p
50% 0.98 1.00 1.00 1.00 1.00 1.00
60% 0.98 1.00 1.00 1.00 1.00 1.00
70% 0.98 1.00 1.00 1.00 1.00 1.00
80% 0.98 1.00 1.00 1.00 1.00 1.0p
90% 1.00 1.00 1.00 1.00 1.00 1.0p

those for two and three file sizes in the training set. The dioser-
vation is that for the single file size in training, the preitin error
is very high. This inaccuracy is expected because the pgozdias
been given no information about the relationship betweesa and
throughput for small files. The second observation is thatrfore
than one file size, prediction becomes dramatically morerate,
i.e, the predictor is able to successfully extrapolate fromradha
of sizes in training to a large number of sizes in testing. el
observation is that relative error is low for large file siZesrre-
sponding to high actual throughput) while it is higher foradifiles
(low actual throughput). This is consistent with our expéion that
it would be more difficult to accurately predict throughpoit §mall
files. The fourth observation is that for small file sizes.(small
actual throughput), the error is always that of over-préalic The
smallest file in the training set is 32KB while the smallest fi
the test set is 2KB. This difference is the cause of overiptied
errors: the relationship between file size and throughpcoispli-
cated for small files, and without a broader training set, W&
mechanism is unable to provide accurate prediction.

Animportant final observation is that prediction accuramches
a maximum at three file sizes in the training set, and there tdaar
trend for four to nine file sizes in the training set. A featafeur
training set is that the number of transfers is always consteone
hundred, so for the single training size, there are one hath8r
MB transfers, and for the two training sizes, there are fiykB
transfers and fifty 8 MB transfers. We believe that accuracyax-
imum at three training sizes in our experiments because tkex
trade-off between capturing a diversity of file sizes andrtheaber
of samples for a single file size—this was alluded to in ouculs
sion of the number of samples needed for good predictionracgu
in Section 5.2. In other words, we believe that we would nat se
maximum accuracy occurring at three file sizes and wouldatst
see an increase in accuracy with increasing number of fies siz
the training set if we kept the number of samples of a singlesfite
constant in the training set and allowed the size of theitrgiset
to increase from 100 to 200, 300, etc., as we increase the eumb
of file sizes in the training set. A thorough characterizai the
trade-off between diversity of file sizes and number of s@%off
each file size is future work.

6. WIDE AREA TEST RESULTS

To further evaluate our SVR throughput prediction method we
created a prototype tool calld@athPerfthat can generate mea-
surements and make forecasts on wide area paths. WePasied
Perfto conduct experiments over a small set of paths in the RON
testbed [3].

The RON nodes used in our experiments have a range of CPU
and memory configurations, but all ran FreeBSD 4.7 and had lim
ited additional experimental load during the time of outsesVe
conducted our tests over the set of paths described in Tablecse
include five trans-continental paths and one trans-Attgydth. While
this path setis modest in size, it has relative diversityathgharac-
teristics and round-trip times that range between 10ms 4dchs.

Since we have shown that AB measurement does not improve
throughput prediction accuracy, we eliminate it in the ekpental
protocol described in Section 4.2. We conduct experiments f
two target file sizes: 512 KB and 2MB. The training and tess set
consist of 50 transfers of a particular file size. The experita
were conducted between October 20, 2006 and October 31, 2006

Tables 8 and 9 show the results of the tests. The prediction ac
curacy is high on all paths for both file sizes: in many caseR SV
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5: Scatter plots for th&VRbased predictor using 1, 2, or 3 distinct file sizes in thiming set. All results shown use active measurements

to train the predictor. Testing is done using a range of 1@Gsfites from 2 KB to 8 MB.

prediction accuracy is within 10% of actual greater than @%e
time. In most cases, the prediction accuracy for 512KB an®2M
transfers is similar. The one exception is Path 3, whereracgu
is within 10% of original only 35% of the time for 512KB trans-
fers, but is much higher at 92% of the time for 2MB transferg W
found that on this particular path the coefficient of vadatfor the
actual throughput of 512KB files is twice that of 2MB files, nrak
prediction for 512KB files more difficult and suggesting tpath
conditions were more dynamic during this test.

In the case oPathPerf measurement overhead in the training pe-
riod consists of file transfers and queuing/loss probe nreasents.
In the testing phase, overhead consists solely of loss measuts.
Assume that we have a 15 minute training period followed b$ a 1
minute testing period. Assume that file sizes of 32 KB, 512 KB,
and 8 MB are transferred during the training period, usingd®-
ples of each file, and that each file transfer is preceeded Wy a 3
second BDABING measurement. With a probe probability of 0.3,
BADABING traffic for each measurement is about 1.5 MB. For test-

Our measurement data showed that many wide area paths weréng, only BADABING measurements must be ongoing. Assume that

lightly loaded during our tests and exhibited very littlgiagion in
throughput between different file transfers. We are in thecess
of extending our wide area experiment set considerablyartipe
that we will encounter more variability on these paths, Wwhigll
enable us to further refinBathPerf’'scapability. Finally, we also
evaluated the HB predictor’s performance in these expertisnend
found it's forecasts to be approximately the same as SVR.¥/e e
pect that, as we find paths with more dynamic conditions, MR S
predictor will distinguish itself as our lab experimentsrdmstrate.

7. DISCUSSION

This section addresses two key issues related to ruriatigPerf
in operational settings.

Network Load Introduced by PathPerf. Traffic introduced by
active measurement tools is of concern because excesatfie tr
can skew the network property being measured. Furthermete,
work operators and engineers generally wish to minimizeiamy
pact measurement traffic may have on customer traffic.

For history-based TCP throughput estimation methods, ke s
cific amount of traffic introduced depends on the measureprent
tocol. For example, two approaches may be taken. The firstodet
is to periodically transfer fixed-size files; the second isitow a
TCP connection to transfer data for a fixed time period. The la
ter approach was taken in the history-based evaluation oétHe
al. [11]. To estimate the overhead of a history-based predicter
ing fixed-duration transfers, assume tfitthe TCP connection is
not rwnd-limited, (2) that the fixed duration of data transfer is 50
seconds (as in [11])3) throughput measurements are initiated ev-
ery 5 minutes, and4) throughput closely matches available band-
width. For this example, assume that the average availabid-b
width for the duration of the experiment is approximatelyNsy/s.
Thus, over a 30 minute period, nearly 2 GB in measuremeritcraf
is produced, resulting in an average bandwidth of about &BM

a 30 second BDABING measurement is initiated every three min-
utes. Thus, over the 15 minute training period about 130 MB of
measurement traffic is produced, resulting in an averagevadth

of about 1.2 Mb/s for the first 15 minutes. For the testing qukri
a total of 7.5 MB of measurement traffic is produced, resgltin

a rate of about 66 Kb/s. OveralathPerfproduces 633 Kb/s on
average over the 30 minute measurement period, dramgtdi&ll
ferent from a standard history-based measurement appré&aein

if more conservative assumptions are made on the hist@geba
approach, the differences in overhead are significant. rfAgae
reason for the dramatic savings is that once the SVR predict®
been trained, only lightweight measurements are requineddcu-
rate predictions.

Detecting Problems in Estimation. An important capability for
throughput estimation in live deployments is to detect witere
are significant estimation errors. Such errors could becatuie
of a change in network routing, causing an abrupt changelayde
loss, and throughput. It could also signal a pathologicalvagk
condition, such as an ongoing denial-of-service attacHifeato
endemic network loss along a path. On the other hand, it rmay si
ply be a measurement outlier with no network-based cause.

As discussed in Section 5.1.3, normality allows us to use-sta
dard statistical machinery to compute confidence interfvas us-
ing measured variance of prediction error). We show thatiptien
errors are consistent with a normal distribution and furgirepose
using confidence intervals as a mechanism for triggeringirehg
of the SVR in the following way. Assume that we have trainesl th
SVR predictor oven measurement periodisd., we haven through-
put samples and samples oL andQ). Assume that we then col-
lect k additional throughput samples, making predictions fotheac
sample and recording the error. We therefore Hageror samples
between what was predicted and what was subsequently reeasur
Given a confidence levek.g, 95%, we can calculate confidence
intervals on the sample error distribution. We can thenh atv



frequency, collect additional throughput samples to tdsttiver the
prediction error exceeds the interval bounds. (Note thegetaddi-

tio

used.) If so, we may decide that retraining the SVR prediistor

nal samples may be application traffic for which prediot are

appropriate. A danger in triggering an immediate retrajri;that

Ssu

ch a policy may be too sensitive to outliers regardledseofonfi-

dence interval chosen. More generally, we can consideesttiotd

m

of consecutive prediction errors that exceed the computad-c

dence interval bounds as a trigger for retraining.

8.

SUMMARY AND FUTURE WORK

In this paper we address the problem of how to generate aecura

TCP throughput predictions for arbitrary paths in the In&r Our

approach uses a powerful machine learning tool - Supportovec

Regression - which provides an efficient mechanism for geimey
a predictor using multiple inputs. We investigate measrmsiof
path properties including queuing delay, packet loss, aadable

bandwidth that can be used along with prior throughput nmeasu

ments as the feature set for our predictor. Through an exters-
ries of lab-based experiments we find that our SVR predictikes
highly accurate forecasts using measurements of queuih{pas,

and that available bandwidth measurement does not impna+e p

dictions. In heavy traffic conditions, the SVR forecasts raearly

3 times more accurate than prior HB predictors. We make a se-
ries of extensions to the SVR predictor to make it operatlgna

viable. Further lab experiments show that these extenginable
the predictor to work well for a wide range of file sizes, to beust

to measurements from active probe tools, and to adapt tayaian
path conditions. We created a tool callathPerfwhich enables us

to

testbed, we show th&athPerfgenerates highly accurate through-
put predictions PathPerfalso generates far less probe traffic com-

test our SVR predictor in the Internet. In initial testgtie RON

pared to a HB predictor configured as suggested in prior work.

tig

with other machine learning tools. We are continuing to expa

In future work, we intend to continue to refifathPerfby inves-
ating how to better tune the training set, and possibpeexment

the tests run in the wide area so that we can evalBatbPerf’s
capability under a broader range of path conditions.
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