Assignments

· Read for Wednesday: 4.4-4.6

· Today 11:58 PM CodeLab #2

· Questions?

· Fri 9/24 CodeLab #3

· Should be able to do some; will cover next week:

· Infer class declaration from sample programs and CodeWarrior

· Declaring constants

· Standard input

· Distinction between “expression” and “statement” 

· Questions?

· Fri 10/1 Assignment 1

Review: 2.1

· Library, float: which is reference and which is primitive?

· Library is reference and float is primitive

· I want to use the method pump(lbs) to pump 10 pounds into the tire object t1.  What are the three steps I need to take to accomplish this?

· Tire t1;

· t1 = new Tire();

· t1.pump(10);

· Suppose that objects of the Tire class start out flat.  If I had declared t2 at the same time as t1, and then set it to t1 before I pumped t1, how many pounds would t2 have at the end of the code block?

· t2 would have 10 pounds, because it shares its data object with t1.

· Consider this code block: int i1, i2; i1 = 1; i2 = i1; i1 = 2;  What is the value of i2 at the end?

· i2 still has the value 1 because i1 and i2 have their own copies of the data.

Review: 2.2
· How would I add a block comment at the top of our Tire program that says, “This block of code demonstrates sharing of reference data”?

· /* This block of code demonstrates sharing of 
 * reference data*/

· How would I comment our second code block with a single line saying, “Primitives are independent”?

· // Primitives are independent

· Suppose Tire’s fully qualified name is cs302.moravan.Tire.  What line could we add to the top of our program file to avoid typing in this whole phrase every time we needed to reference the Tire class?

· import cs302.moravan.*;

· Right now we just have a couple of code blocks.  How would we put them in a class called “RefVsPrim”?

· class RefVsPrim {
}

· Something’s wrong with things as they stand.  What are we missing?

· The main method.

· How would we add this?

· public static void main(String[] args) {
}

Review: 2.3

· Suppose we wanted to run our program in a real IDE.  What name should we use to save this file?

· RefVsPrim.java

· What’s the next step that we need to do before we can actually run our program?

· Compilation

· What’s the name of the file containing our compiled code?

· RefVsPrim.class

· What’s the special word we use for compiled Java code?

· Bytecode

· What’s an example of an error that would prevent compilation?

· Leaving off a semicolon, misspelling a key word…

· What kind of errors can we still get?

· Runtime errors (detected by interpreter)

· Example: JFrame jf = null; jf.setVisible(true);

2.4 Simple Java Standard Classes
· String

· Explicit use of new optional; draw mem diagram

· Substring

· First argument

· Beginning position

· Count from 0

· Is displayed

· Second argument

· End position

· Is not displayed

· Creates new string

· Original string left intact

· Generates error if given illogical arguments

· Examples

· “together”

· 0-2= “to”

· 2-5= “get”

· 5-8= “her”

· “michelle”: 3-7= “hell”

· Length

· Return # of characters in a String

· Examples

· IndexOf

· Locate index position of substring within another string

· Returns position of first char of substring

· Returns -1 if substring not found

· Case-sensitive

· Returns first occurrence if multiple exists

· Date

· Time instance

· Millisecond precision

· Automatically set to time created (from OS)

· toString method converts to human-readable: Sat Apr 20 15:05:18 PDT 2002

· internally represented as time since epoch (Jan 1, 1970 00:00:00 GMT)

· Use GregorianCalendar for real dates

· SimpleDateFormat

· Change display format of Date

· Pass formatiting string when create instance of SimpleDateFormat

· Formatting string case-sensitive

SimpleDateFormat simpleDF;

simpleDF = new SimpleDateFormat(“…”);

System.out.println(simpleDF.format(new Date()));

· JoptionPane for input

· showInputDialog method

· Access input by assigning return result to String variable

· Returns null if cancel clicked

· Returns empty string if nothing entered & OK clicked

2.5 Sample Development
· Get into the habit of developing according to the software life cycle stages (even though not strictly necessary for small programs)

· Map out overall plan

· ID classes necessary

· ID implementation steps to follow

· Outline program logic

· Write design document

· Consider design alternative

· Better depends on metric

· Always developing for users

Review: 3.1-3.5

· Declare and initialize a byte and a short

· byte b = 0;

· short s = 1;

· How do I add these and the constant 2 into and integer?

· int i = b + s + 2;

· Don’t have to do casting because of implicit promotion

· How would I create a long with a value 34 times that of i?

· long l = 34 * i;

· How do I divide l by the float 5.67?

· l / 5.67f;

· What happens if we assign this expression to l?

· Error: we’d have to cast the float to a long.

· How could we fix this?

· l = (long) (l / 5.67f);

· What’s  are two types we could assign it to, without casting?

· double and float

· What do we get if we execute i = i + 1 – 2 * 3 / 4 % 5?

· i

· What if we did i = (i+ 1) – (2 * (3 / 4 % 5) );

· i + 1

· What if we did d = -9 / 2 + 15 * 3 - -8?

· d = 48

· How can we fix this so that we get our fraction?

· d = -9d / 2 + 15 * 3 - -8;

· How can we declare a constant that represents the gravitational constant G from physics, which has the value 6.67 * 10^-11;

· final double G = 6.67e-11;

· Using the gravity equation F = G*m1*m2/ r^2, write a program that uses JOptionPane to get the inputs m1, m2, and r from the user.  Then display the resulting F in the format “F = x” to the standard output window.

/*


Sample Program: Calculating the force of attraction between masses.

*/

import javax.swing.*;

class Gravity {


public static void main( String[] args ) {



final double G = 6.67e-11;



double m1, m2, r, force;



String temp;



temp = JOptionPane.showInputDialog(null, "Enter the first mass:");



m1 = Double.parseDouble(temp);



temp = JOptionPane.showInputDialog(null, "Enter the second mass:");



m2 = Double.parseDouble(temp);



temp = JOptionPane.showInputDialog(null, "Enter the radius between the masses:");



r = Double.parseDouble(temp);



force = G * m1 * m2 / (r * r);



System.out.println("The resultant force is: " + force);


}

}
3.6 Standard Input
· System.in

· Object used to perform standard input

· Instance of InputStream class

· Can only read one byte at a time

· InputStreamReader

· Read a single character at a time

· BufferedReader

· Read a single line (multiple characters) at a time

· readLine method

· Reads until the enter key is pressed

· Can erase characters with the backspace key before pressing Enter

· Exceptions

· Pass on to system by throwing in the method dependent on BufferedReader

· Instance of IOException class

· Will cause compiler error if don’t specify how to handle

· Example: modify Gravity class to use standard input

· Add impor java.io.*;

· Use BufferedReader, InputStreamReader, System.in, and readLine

3.7 The Math Class
· java.lang package

· Provides mathematical functions

· Class methods

· Class constants

· Example, modify Gravity program using pow

3.8 The GregorianCalendar Class
· java.util.GregorianCalendar

· Month counts from 0

· java.util.Calendar

· GregorianCalendar superclass

· Mnemonic constants

· GregorianCalendar.getTime()

· Full date and time info

· Return value like Date, and can be used as one

· SimpleDateFormat

· Convert numerical week and month info to words

· Only accepts Date objects

· Example:

/*

 * Sample Program:

 * Using the GregorianCalendar

 */

 import java.util.*;

 import java.text.*;

 class GregCalEg {

 
public static void main(String[] args) {



GregorianCalendar cal;



SimpleDateFormat sdf;



cal = new GregorianCalendar(2004, Calendar.SEPTEMBER, 20);



sdf = new SimpleDateFormat("EEEE");



System.out.println("Day of Week: " + sdf.format(cal.getTime()));

 
}

 }
Wednesday 9-22

· Must have finished CodeLab #2

· Finish Chapter 3 if not already

· Begin Chapter 4

PAGE  
12
CS 302 Lecture 6 0917


