Token Coherence for Transactional Memory

Jayaram Bobba Michelle Moravan Umair Saeed

University of Wisconsin, Madison

Abstract

Concurrent programming holds the key to fully utilizing thaulti-core chips provided
by CMPs. However, traditional concurrent programming teghes based on locking mech-
anisms are hard to code and error-prone. Transactionakdnoging is an attempt to sim-
plify concurrent programming where transactions are thenroancurrent construct. Hard-
ware Transactional Memory systems provide hardware stpmoexecuting transactions and
take help from modified versions of standard cache coherpratecols for doing so. This
report presents a token coherence protocol for the transattmemory system, TTM [6].

It also presents some comparisons between standard locaseyl systems and transactional
memory systems. It has been observed that the performan@nefctional memory systems
is workload-dependent. However, transactional progrargrappears to be much easier than
programming with locks.

Keywords: Transactional Memory, Token Coherence, TTM, CoherenowPols, Concurrent

Programming

1 Introduction

Traditionally, the onus for striving for greater computerformance has been on computer archi-
tects. Continual advances in computer technology dictayeldloore’s Law have allowed archi-

tects to come up with newer and more innovative ways to irsereamputer performance. This

has led software programmers to enjoy these benefits withaihg to worry too much about
performance issues. Until now, no matter how fast procesget, software consistently found
new ways to eat up the extra speed. Increase the speed ofrtheana ten times, and software
usually finds ten times as much to do [1]. This has allowed rolastses of applications to enjoy
free and regular performance gains.

With processor speeds leveling off due to severe limitationposed by packing more and
more transistors in a given area, the traditional laid bgmkr@ach of software developers will
have to change. Processors are going to continue to becomeamdmore powerful, however the
current trends suggest that these improvements are na gooome from increase in processor
speed. Rather, these improvements are going to result fsimg multiple processors in parallel.
This impacts the existing software programming models inganay. In order to benefit from
this increase in performance, software would have to ddpamt its traditional single-thread
execution flow, and would have to center around concurregramming.

There are several limitations to concurrent programmingkwhave led to a slow adoption
of this model. The most severe of these is that concurregirpmming is hard. In the traditional
software programming model, the programmer has to worryiedors within a single flow of
execution. The addition of multiple threads introducesidates, deadlocks and starvation issues
which are not straightforward to detect, and even more diffio debug. To overcome these new
issues means the programmers have to fundamentally altethiey think about programming.

There are several existing approaches which allow the progrers to write correct concur-
rent programs. One of the most common of these is to use lackarders to protect critical
sections within the program from multiple threads exeautmparallel. These require a signif-
icant overhead on part of the programmer. Transactionarproming is a way to reduce this
overhead for the programmers, by dividing the program iet@gal transactions which can ex-
ecute concurrently. Transactional memory models that@tp@nsactions can be implemented
either in hardware or software. In this report, we confineaitention to hardware approaches to

transactional memory.

Transactional memory models typically use cache coherpnu®cols to detect conflicts
among transactions. Conflict detection is used to mainsaiafion among transactions. Atomic-
ity is ensured by logically making all the changes visiblemte to the rest of the system. In this
report, we will study the performance of some of the cachepatice protocols on a transactional
memory system, TTM [6]. We also come up with a new cache calterprotocol based on token
coherence. In addition, we also implement some simple acimnal programs and study the
performance on these systems.

The rest of the report is organized as follows: In section @ give an overview of concur-
rent programming with transactions. Section 3 discussasskctional Memory, and its various
implementations. It also discusses the implementationvtieachose for our project. Section 5
looks at the various coherence protocols that are usedrigacdional memory systems. Section 6
gives details of our Transactional Token Coherence protdde then discuss some performance

results in section 7 and then finally conclude in section 8.

2 Concurrent Programming with Transactions

Existing parallel programming approaches require the yarogner to manage concurrency di-
rectly by creating and synchronizing parallel threads [[jis places a huge burden on the pro-
grammer. At the same time, the task is made more difficult lgyfétet that often conflicting
goals of performance and correctness need to be balancedo@xample, a frequent method
to ensure correctness in concurrent programming is the fusele to regulate access to critical
segments of the code. Using a large number of fine-grain lmdtsase performance, since the
threads do not waste time competing. On the other hand, usamy smaller locks increases the
locking overhead incurred and makes the program tough tecity implement.

Hammond et al. [4] introduce parallel programming techemgtor transactional coherence
and consistency (TCC) systems [3]. TCC relies on prograntefned transactions as the basic
unit of parallel work, communication, memory coherencemuogy consistency and error recov-

ery. This greatly reduces the overhead associated withucoerd programming.

int* data = load_dataf); /* input £/
int i, buckets[101];

for(i=0; i<1000; i++)4{
buckets[data[i]++];
}

print_buckets[buckets]; /* output */

Figure 1: Simple Program

The first step in converting a program to run concurrentlyrangactional memory is to divide
it into transactions.If needed, the programmer can also specify the order of each trawosacti
Once the program has been divided into transactions thegroger can then use the feedback
obtained from the system to further tune the system to aethest performance. This includes
increasing or decreasing the size of the transactions ieahmaximum benefit.

The following example program from Hammond et al. [4] givedear indication of the ease
of concurrent programming with transactions as compar#éugdraditional approach using locks
(Figure 1. The example is a simple sequential code segmantaiculates a histogram of 1000
integer percentages using an array of corresponding kaicket

Figure 2 shows what the concurrent version of the prograrksidike for both transactional
programming, and using lock based approach. Changes frerseduential version are showed
in bold.

In the transactional version, each iteration of fibreloop is converted into a separate transac-
tion. This is the only change needed for the transactionalae. The underlying implementation
guarantees that the sequential code will be executed ¢lytrr&@n the other hand the lock based
version requires the programmer to define the locks, andadhgunire them before each critical
section. Transactional programming thus eliminates thésteead associated with locks, and is
able to overcome one of the fundamental difficulties assediaith concurrent programming.

Another approach to transactional programming is to letuber explicitly mark out trans-
actions. By extending the ISA, the user can be provided witiyliage primitives to specify the

start and end of a transaction. This approach makes thatioarfsom lock-based programming

Transactional Lock-based

int* data = load data(); int* data = load datal();

int i, buckets[1l01]; int i, buckets[1l01];

t_for(i:O; i<1000,; it+){ LOCK TYPE bucketLock[101];
buckets[datal[i]++]; for (i=0; i<101; i++){

1 LOCK INIT (bucketLock[i])

print_buckets [buckets]; H

for (i=0; i<1000; i++){
LOCK (bucketLock [data[i]]:
buckets [data[i]++];
UNLOCK (bucketLock[data[i]] !
E
print_buckets [buckets];

Figure 2: Lock-based and Transactional Programs

much easier for a programmer. The critical sections neee forbtected by transactions instead
of locks. We follow this approach rather than the TCC apphoskich requires extensive modi-

fications to the existing models.

2.1 Microbenchmarks

We implemented two microbenchmarks to understand the degrdifficulty in using transac-
tions and to study certain performance characteristicsipfransactional memory system.

Btree: The first microbenchmark we developed was a Btree impleatient \We were able to
implement this program completely independent of the faat tve planned to use it in a multi-
threaded environment. The benchmark itself involves twdes:fia header, and the body of code
comprising the tree itself. To make this concurrent, we fyaénstrumented the code that called
the tree: we surrounded all calls to insert, lookup, andtdelih wrapper functions. For locking,
the first half of the wrapper acquired a single lock on thereritee, and the second released it.
The actual locking mechanism (locking variable and atoreadrmodify-write operation) were
abstracted away by a library. The transactional impleniemaccurred analogously, except that

abegi n_transacti on command denoted the beginning andeard_t r ansact i on end.

For us, then, implementing locking and transactions seamlioeasy, and both are trivial com-
pared to implementing the body of the code. The advantagamdactional programming are
thus hidden: first, no external library need keep track ok leariables. Second, the usefulness
of transactions lies in their performance advantage. Alsitogk over the entire tree defeats the
purpose of multithreading. In contrast, since transaefiaremory limits concurrency only when
truly necessary, making entire tree operations atomic needesult in serialization.

Bounded Buffer: This is a simple multithreaded program that models thedstechproducer-
consumer problem. Half of the threads in the program prodate while the other half consume
data. The think times for each of the threads were set to renyder to stress the transactional
memory system. The implementation ran on similar lines &b ¢ffi Btree.

For the programs that we implemented, we did not find thatgusansactional memory made
programming easier compared to using coarse-grain loakiswB are convinced it made it much
easier than it would have been had we been required to implgine-grained locking to achieve

tolerable performance.

3 Transactional Memory

In their seminal paper “Transactional Memory: ArchiteefuBupport for Lock-Free Data Struc-
tures” [5], Herlihy and Moss introduced the concept of teartdnal memory, a mechanism for
easing concurrent program by providing lock-free datacsétmes. Transactional memory lets
programmers specify multiple, non-contiguous memory kdofor atomic execution: either all
operations will appear to complete simultaneously, a @efisn commit, or none will, a trans-
action abort. All processors will further view these sequemnas serializable, which means that
multiple transactions cannot appear to interleave.

The goal of easing concurrent programming largely motivétés new paradigm. Compared
to locking, the authors found that transactional memonyiglates several problems, such as pri-
ority inversion, convoying, and deadlock related to theeordf lock acquisition. Herlihy and

Moss also demonstrate that transactional memory usuatjyediorms even the most efficient

locking schemes (on several microbenchmarks). The autttilsute this to the fact that trans-

actional memory limits sharing only when strictly necegsashile by nature programmers incur

the overhead of locking even when threads actually maketemat at concurrent access. This
is especially true when programmers ensure correctnesawid time-consuming corner-case
analysis by using a coarser grain of locking than actualuired. Using transactional mem-

ory, they can instead specify transactions at a coarseulgndty, and so reduce reasoning about
sharing patterns while still maintaining the performantieoking at a finer granularity.

Herlihy and Moss presented a hardware implementation os#&etional memory; we will
limit our focus to this medium as well. To provide further gnaling in existing work, we will
begin by comparing the two main approaches to concurrenayao

Transactional memory transactions naturally have muctommon with database transac-
tions. As in databases, a transaction in transactional mewmitl either commit, and atomically
expose its memory accesses to other threads, or abort, @nwhse it exposes no operations and
must usually retry. While transactions may abort for a grad reasons [5], they perhaps most
commonly do so due to avoid conflicting accesses, which btleakilusions of atomicity and
serializability. To instigate an abort, transactional negyrimplementations must provide some
mechanism, typically called concurrency control, for détey these conflicts.

Both database and transactional memory designs usua#yotak of two approaches: conser-
vative (blocking) concurrency control, or optimistic camency control. The blocking approach
requires processors to check for conflicts on every memargsac As soon as one is detected,
one or both transactions attempting to access the same tmoskabort. In contrast, optimistic
approaches tend to involve two phases. A transaction fiestiggs in its entirety, making sure
to save the previous state of altered memory blocks as a®#. gim the second phase, it per-
forms validation to ensure that no conflict occurred. Clgarptimistic concurrency control is
optimized for the workload where conflicts occur infreqigrtecause when they do happen, the
processor must roll back the entire transaction. In thetatase, the blocking approach seems

more efficient, because the processor will not continue éxete subsequent instructions of the

transaction after the first conflicting memory access occOfscourse, the preferred case of no
conflicts requires more overhead, as the processor must ooioate with all other threads on

every access before deciding to continue. Note that sinnsergative concurrency control can
also resultin aborts and rollbacks, it too must record mevivalues before making transactional

changes. Herlihy and Moss chose the optimistic approach [5]

31 TCC

We next discuss the transactional memory implementatidnishvmost influenced our work.
First, Transactional Memory Coherence and Consistenc{T8] treats all memory references
as part of some transaction. This differentiates it fromatier approaches we present, as does its
use of optimistic concurrency control. In TCC, multiple msatan hold the same line at the same
time. When a node completes a transaction, it broadcast$ il changes at once to the other
nodes. During a transaction, when a node receives such &tpétohecks these modifications
against its own accesses. If it detects a conflict, it mustbatk and abort. Hammond et al.
implement this with an additional read and write bit on earh,lwhich the processor sets when
it makes a speculative read or write. It clears them when timeesponding transaction either
commits or aborts. For correctness, the nodes must maitiaimformation throughout the life
of a transaction. Thus, to handle the case where a new memoega might replace such a
line, TCC recommends adding a victim buffer to hold its taggd, and write bits. Without this
optimization, or if the buffer becomes full, the processarsinstall until it can acquire commit
permission, which assures it exclusive access until it detep validation. Finally, Hammond
et al. handle conflicts by having each node checkpoint itsstegstate each time it commits.
When a node in a transaction sees a broadcast that accessefitsrspeculative lines, it rolls its
registers back to their state prior to the beginning of assaction.

Unlike TCC, the following two implementations both use camgtive concurrency control.
Ananian et al.'s Unbounded Transactional Memory (UTM) heiimeon the problem of overflow-

ing cache lines [2]. They propose a hardware implementdkiahlets a transaction access the

entire virtual address space and take an arbitrary amouimef The authors were motivated by
the observation that, while most transactions are smalgrg small percentage are quite large.
Ananian et al. wished to provide a mechanism for a uniformdaational interface: programmers
may use transactions without first having to calculate wérethey meet time or memory limi-
tations. However, their UTM implementation involves sfigant hardware additions. First, the
instruction set architecture must add transaction begint@msaction end instructions. A begin
instruction tells the processor to take a snapshot of itstergstate and register-renaming table in
case of rollback. The node cannot reuse physical registeile working on a transaction. The
node must expose this state, along with the address of ahtedoatler, to the operating system to
allow that software to correctly handle context switche$MJmaintains memory state with the
xstate data structure, which logs the accesses of all pgridinsactions. Associated with each
line is a read/write bit and a log pointer, which points to airgrecording the previous value,
a back-pointer to the block address, and a pointer to othas#ctions that have read-shared the
same block. The log for each transaction also tracks thasa@ion’s progress, which may be
pending, committed, or aborted. The processors perforamelgs on abort, by using the log to
restore previous values; log entries of committed transastmay also be periodically wiped.

Clearly this entire scheme requires extensive systerraitber.

32 UTM andLTM

To mitigate the costs incurred by TCC, Ananian et al. inticaluarge Transactional Memory [2].
In this proposal they limit the size of transactions to pbgBy addressable memory, and their
duration to the length of a time-slice. They do not permit@ctions to migrate among processors
while in progress. This reduction in scope limits hardwararges to only the processors and
caches, as opposed to affecting the entire memory subsyatem UTM. Like UTM, though,
LTM detects conflicts by maintaining read and write bits ie tache lines. It also supports
overflows by storing the replaced data in a main memory hédné.t@his involves the addition of

two more bits, a T bit to indicate whether a line belongs taadaction, and an O bit to indicate

whether that transaction has overflown. LTM stores spegeldata in the cache, so that a commit
only requires flushing the bits. On an abort, however, a mamemust restore the previous values

from main memory.

33 TTM

Finally, we base our study on a third version of transactiomemory, Thread-Level Transac-
tional Memory (TTM) [6]. TTM itself actually specifies an mfface, not a specific configuration.
By doing so, Moore et al. aim to deliberately separate tretitsadal semantics from a particular
implementation. This lets the same transactional proganuih on arbitrary combinations of
hardware and software. The authors define their interfaterins of threads. The abstraction en-
compasses both cacheable virtual addresses and threadsisible registers. Programmers in-
dicate transaction boundaries with explic#gi n_t ransacti on,conmi t .t ransacti on,
andabort _t ransact i on instructions. These calls depend on library-level suppwtha-
nisms which in turn depend on lower-level support mechasiom hardware. When the user
begins a transaction, the thread must allocate virtual mgrspace for a check-pointing log.
In the cache, read and write bits track the read and writecdetse transaction, and coherence
protocols detect conflicts. TTM resolves these by eithdlimgaor aborting the younger of the
offending transactions. The first time a transaction chamgee, it lazily writes the “before im-
age” to the associated log. Commiits flush the caches’ readiatebits. TTM offers a significant
degree of flexibility in abort handling. The hardware itsaliy restore values from the log, while
a software abort handler performs all other operationse Nwit since TTM stores the log in the
thread’s virtual address space, the log itself is also caaleethus improving the performance of
software that must access it.

Moore et al. show several TTM implementations [6]. All of thgncluding the basis for this
project, model a cache-coherent shared-memory multigsacewith private, write-back, write-
allocate, and set associative L1 and L2 caches. The autktescethe processor to include a

TTM mode bit, nesting count, and log pointer; logging ocatrthe granularity of a cache-block.

10

On the first transactional access to a block, the TTM modestset and the previous value is
copied to a shadow register file, which may eventually uptteevirtually-addressable log. This
TTM work focuses on write-invalidate MSI protocols, wheo®sely synchronous timestamps
order transactions. When the protocol detects a conflidahby an younger transaction, Moore
et al.’s implementation stalls the current transactioncdntrast, if the other transaction is older,
the current transaction aborts. This guarantees freedom lioth deadlock and starvation. The
TTM paper [6] presents results for two coherence protodwisadcast and directory. While both
can record accesses and detect conflicts, they differ Blighhow they handle overflows. The
broadcast protocol utilizes a two-bit Bloom filter, (onedsich to indicate read and write access)
which is set appropriately whenever a block is evicted frtwn ¢orresponding line. Note that
this may cause false positives. The directory protocolreddeghe idea of silent replacements to
a sticky modify state. In this state, when a cache writes laaphrticular line, the directory still
forwards it requests. This owner will also have immediate ddemss and must set the read and
write bits the next time it accesses the same block.

Despite the abundance of transactional memory propogd8 [8] [6], significant challenges
still remain. Many of them have to do with smoothing intei@ctwith the operating system.
For instance, transparent activities such as paging antexioswitches should not affect the
correctness of transactions. Current implementationsllbasuch events by rolling back, but
this seems unnecessarily wasteful. Similarly, transasti&hould have more definite semantics
even for user-visible activities such as system calls rinps, and exceptions. If unrelated to
the current transaction, ideally they should not affeceitecution. Another interesting issue is
input and output. Implementations may choose to bufferwuiptil transaction completion, but
this may cause problems if a later piece of the same transattust use it. Likewise, any input
used must be stored so that it can be re-read in the case ofoan &uch strategies naturally
cause complications for real-time applications. The sditsof transactions themselves also
offer some complexity. For instance, how should hardwarattnested transactions? Both TCC

and TTM subsume inner transactions, which means an abodesndork all the way back to

11

the outermost level of nesting. This solution clearly las&phistication, especially in terms of
performance.

To summarize, while researchers have made significant @segn exploring transactional
memory, much work remains. The rest of this paper will tackie piece of this greater project:

how transactional memory, TTM in particular, interactshaatvariety of coherence protocols.

4 Coherence Protocols

Cache coherence protocols are used by TTM for conflict detecturing the execution of a
transaction. The conventional cache coherence protooelmadified for this purpose. In this
section, we will take a brief look at some of these protocals their modified versions used by

TTM.

4.1 Directory Protocol

This is a standard MOESI directory protocol. For each catteeih the memory, the directory
maintains the list of caches that contain the correspondatg. It acts as an ordering point
for all the coherence and data requests in the system. Thecpias enhanced with migratory

optimization.

4.2 Hammer Protocol

This is a simplified version of the AMD hammer protocol. Itsabh MOESI protocol. However,
the directory does not maintain any list of sharers. It juestps track of whether memory is the
owner for any particular cache line. If not, it broadcases ¢thche requests to all the caches. It

also implements migratory optimization.

12

4.3 Token Protocol

This protocol uses tokens to keep track of coherence stateh he of data has a fixed number
of tokens associated with it through the life of a system. Ahearequires atleast one token to
read the data and requires all the tokens to write it. A spé&xiaer token is used to keep track
of ownership. This leads to a single writer, multiple readenplementation. A simple token
counting scheme is used to maintain correctness in the gobtBersistent Requests are used to
prevent starvation. The caches first put out transient iggdier data. These requests need not be
serviced by other caches. In which case, the requestingaasids out another transient request.
After the number of retries reacheshaeshold, it puts out a persistent request which has to be

serviced by other caches.

4.4 Xact_directory Protocol

A modified version of thé@irectory protocol. It is modified for supporting TTM. Caches contain
additional data for identifying data accessed during ssmation. Cache conflicts for lines resident
in the caches are detected in the cache itself. For transadtiat had cache overflows, Sticky-M

bits are used for conflict detection.

45 Xact_hammer Protocol

A modified version of thédammer protocol. The modifications made to support TTM are pretty
similar to the modifications made to tidrectory protocol. Since all requests are broadcast to
the caches, bloom filters can be used for conflict detection.

All the above protocols were taken from existing impleméates. The first two protocols
are used in the study of conventional systems using lockébasncurrent programming. The

transactional versions are used for the study of the traiosat memory system, TTM.

13

5 Token Coherencefor Transactional Memory

In this section, we present a modified version of token catmr@rotocol to support TTM. The
base protocol is tokenB, which a MOESI token coherence pobtohere all cache requests are

broadcast.

5.1 Design Overview
We now give an overview of the major modifications made to ttoeqeol.

¢ All outgoing requests from the cache are tagged with a tiamptwhich is loosely based
on the timestamp mechanism used in TLR. Timestamps can ltktasepose a global
ordering among all cache requests. A transaction is assign@mestamp when it first
starts off. All the cache requests issued during this tretisawill contain this timestamp.
Non-transactional cache requests are also assigned dampebefore they are issued. All

the timestamps are loosely synchronized.

e Cache lines are augmented with transaction state bitgttiatite if the line was read/written

during the current transaction.

e Conflict detection mechanism is inserted. Bloom filters aiaeal to each cache for conflict

detection in case of cache replacements.

e Conflict resolution mechanisms are put in place. On a conflietcurrent transaction can

either abort or block.

The addition of timestamps gives us additional flexibility designing the protocol. We

present two versions of the protocol based on how they déhltreinsient requests.

14

Step 1:
[=u)

]

Persistent_getX A
Persistent_getX A

store A

Step 2:

Persistent_getX B
- Al

store B

Persistent_getX B

B]

Step 3:

]

&1

store A

Initial State:
P1, P2, P3in transactions. P1 > P2 > P3
P2 has Ain’'MM’, P1 has B in 'MM’

Step 1
P3 issues Persistent_getX A.
P2 - ignore, P1 - Lockdown
step2:
P2 issues Persistent_getX B. @

P1 - Ignore, P3 - Lockdown

Step 3:
P3 needs 'A’. DEADLOCK!

Figure 3: Potential Deadlock with Persistdtequest Ordering in Transactions

5.2 xact_tokenl
5.2.1 Transient Requests

In a Non-Transactional Mode, all the state transitions &relar to the base token coherence
protocol. However, when the cache is in a Transactional Mt protocol first checks if the

incoming request conflicts with a line accessed during thieeatitransaction. If it does not then
it is treated as it would be in the base case. If it does copflien the timestamp of the incoming
request is compared with that of the transaction. If a regemstains an older timestamp, then

the current transaction has to abort, else the currentacting just ignores the request.

5.2.2 Persistent Requests

Token coherence protocol issues a persistent request whetects possible starvation, i.e after
a certain number of transient requests fail. The protocgaads to a persistent request by first
specifying an ordering on all the persistent requests atghdicular moment. It then satisfies

each persistent request by ’locking down’ the correspandache line in all the other caches.

The same semantics are observed if the cache is in a Nonabtaorsal Mode. However if the

15

cache is in the middle of a transaction, it aborts the cutransaction.

Timestamps could not be used for ordering persistent régjfresn transactions because of a
potential deadlock situation. Figure 3 gives an exampléhdérexample, three processdts, P2
and P3 are each executing a transactioR1 has cache lineé3 in its private cache and it was
modified during the current transaction. Similafh2 has cache linel in its private cache and
it was modified during the current transaction. The trangadtmestamps specify the processor
priority as P1 > P2 > P3. First, P3 puts out a persistent request for lie P2 ignores
the request, though it has the data, because of highertgridril goes into dockdown state,
i.e it forwards any tokens it receives for this line 8. So nowP3 waits for P2 to finish the
transaction and release the data. NéX,issues a persistent request for liBe P1 ignores the
request and holds it off till it can finish its own transactid®o P2 waits for P1 to complete its
transaction and release data. Finally, suppg@s&vants to issue a request for lige It cannot do
so becaus@3 has an outstanding persistent request for that lineP Swvaits for P3 to remove

the persistent request. And we end in a deadlock situation.

5.3 xact_token2

In the first version of the protocol, transactions abort wessearily on a persistent request even if
there is no conflict. So the second version, attempts to nizeithe number of persistent requests
issued in the system. This is done with the help of timestaripsy are used to specify a global

ordering of all the transient requests for a particular edute.

5.3.1 Transient Requests

All Transient requests are treated based on their timestamgueBRts with older timestamps
are serviced while requests with younger timestamps arerégh If a transaction receives a
conflicting request with an older timestamp it aborts. linely, this places an order in which all
requests are serviced, since at any point there is onlylolest request in the system.

However, tricky race conditions could lead to thldest request not being serviced, in which

16

Initial: P1 > P2 > P3

P3 has A in’'MM’
P1 sends Transient_getX for A

Transient_getX A

1) P2 receives Transient_getX from P1 - Ignore

2) P2 issue3ransient_getX for A

3) P3 receives Transient_getX from P2 - Send data
4) P2 received Data from P3

5) P3 receives Transient_getX from P1 - Ignore

Final: P2 has A in 'M’. P1's request not serviced

Figure 4: Potential Starvation with TransigRequest Ordering

case it has to be reissued. Figure 4 gives an example. We liv@eegrocessorB1, P2 and P3.
P3 has cache linel in its private cache in a modified state. Proced2bfirst puts out a transient
request for cache lingl. This request first reachd32 which ignores it since it does not have
the line in its cache. After some tim®&2 issues a transient request for lidewhich reache$’3.
Note that the earlier transient request fréth has not reacheé3 yet. P3 services the request
from P2 and sends the data 2. Now the initial request froni’1 reachesP3 at which point

it ignores it since it no longer has the data. THe®s request which was issued afteil, gets

serviced even though it is not the oldest.

5.3.2 Persistent Requests

As noted above, even with the modified transient request iséiesawe could end up with a
potential starvation scenario. Hence we would still needipient requests. The response to
persistent requests is similar to that in xémtenl. Transactions abort on a persistent request,
even if its for a non-conflicting line. However due to globatering of requests, we expect

persistent requests to be less frequently used.

5.4 Debugging

The protocol was tested using random test drivers. Theserdrgenerate random requests to

the caches in a way that stresses the protocol and tries edttérough all the transitions. A

17

Execution Times

3000000
2500000

2000000 _—
1500000 — e — directory
1000000
500000
0

hammer

Execution Time

Number of threads

Figure 5: Execution times for bounded buffer with varyingetids

number of bugs were identified through random testing. Wthiéeerandom tester identifies the
manifestation of these bugs, the actual identification efithg required going through thousands
of lines of log files. While this was time-taking, the exp@ge increased our confidence in the

correctness of our protocol.

6 Results

The results were gathered using the various coherencecpistio conjunction with TTM. TTM
is built on top of a Simics full-system simulator and custeed memory models built using the
Wisconsin GEMS toolset. We use parallel applications froem$PLASH-2 benchmark suite for
evaluating conventional lock based programs. These weoenabdified to run with transactions
and used for evaluating transactional programs.

Figure 5 presents the results for bounded buffer with varpiimber of threads using different
transactional cache coherence protocols. Each threadisldo a single processor. The program
was executed for a fixed number of transactions (10000). Weenan increase in the execution
times as the number of threads increase. This might seentereintuitive at first look. However,

we observe this increase due to a corresponding increake imumber of transaction aborts in

18

the system. AR threads, upto 40% percent of the transactions were obséovablort before

completion. Hence transactional memory systems woulap@rivell only on systems where the

contention for shared data is fairly low and hence the fraquef aborts is also low.

Execution Times (Water-Nsquared)

37400000

37300000

37200000
37100000
37000000
36900000
36600000
36700000
36600000

ExecutionCycles

36500000

Execution Times (Ocean)

70000000
PR
'8, 50000000
2 4poonooo
€ gnoooo0n

$ 20000000 +—

i=i=i=n=l=

]
W 10000000 +—

,
£

$
5 & & 2
& \\,D@ € & \@4‘ b‘;o «

& K
P &> £ & &

Figure 6: Execution times for WATER Figure 7: Execution times for OCEAN

We next present the results for four applications from the/AFH-2 benchmark suite. We
have the results for transactional token coherence prbkmciovo of them. We also observed that
the second version of transactional token coherence datpegd the first version in all the cases.
So we present the numbers only for the second version. Thésehow that the performance
depends on the workload. While we notice performance ingmmnts for transactional proto-
cols in case of water, raytrace and ocean, barnes seemsraddegith transactional memory.
We also note that transactional token protocol does nobparivell over the other transactional
protocols especially in the case of Ocean. It was obsenadltle protocol aborts in large trans-
actions involving considerable number of system calls eRecution of these transactions causes

significant overhead. This indicates the need to prioritiaasactions.

Execution Time s (BW=10000)

25000000
20000000
15000000
10000000

HHHE

Cycles

5000000

Protocols

Cycles

Execution Times (Rayrace)

160000000

140000000

120000000

100000000

80000000
60000000
40000000
20000000

0

2 = =

r’:

dir hammer

Protocols

xact_dir

xact_hammer

19

v

Conclusions

Transactional Programming seems to make concurrent progigg easier. It enables the im-

plementation of fast and correct parallel programs withgghificant intellectual effort when

compared to lock-based parallel programs. However traioset memory programs need not al-

ways result in performance improvements over carefullygies! lock-based programs. Careful

fine-tuning of transactions might still be needed to achmréormance gains. Finally, we present

a transactional token coherence protocol that supports. TTHd presence of cache request order-

ing in TTM presents significant opportunities to optimize girotocol.

References

(1]

(2]

(3]

(4]

(5]

(6]

Herb Sutter, "The Free Lunch is Over. A Fundamental Turowdrd Concurrency in Software,”

http: /imamwv.gotw.ca/publications/concurrency-ddj.htm March 2005

C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmauha@les E. Leiserson, Sean Lie, “Unbounded Trans-
actional Memory”,Proc. of the Eleventh International Symposium on High-Performance Computer Architecture,

February 2005.

Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstralohn D. Davis, Ben Hertzberg, Manohar K. Prabhu,
Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun, &fisactional Memory Coherence and Consistency”,

Proc. of the Thirty-First International Symposium on Computer Architecture (ISCA), June 2004.

Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstralohn D. Davis, Ben Hertzberg, Manohar K. Prabhu,
Honggo Wijaya, Christos Kozyrakis, Kunle Olukotun, "Pragmming with Transactional Coherence and Consis-
tency(TCC)” Proceedings of Annual Symposium on Programming Languages and Operating Systems (ASPLOS),
2004

Maurice Herlihy and J. Elliot B. Moss, “Transactional Mery: Architectural Support for Lock-Free Data Struc-

tures”, Proc. of the Twentieth International Symposium on Computer Architecture (ISCA), pp 289-300, May 1993.

Kevin Moore, Mark Hill and David A. Wood, “Thread-Levelrdnsactional Memory"Submitted to Parallel Archi-

tecture and Compilations Techniques (PACT), March 2005.

20

