
Token Coherence for Transactional Memory

Jayaram Bobba Michelle Moravan Umair Saeed

University of Wisconsin, Madison

Abstract

Concurrent programming holds the key to fully utilizing themulti-core chips provided

by CMPs. However, traditional concurrent programming techniques based on locking mech-

anisms are hard to code and error-prone. Transactional Programming is an attempt to sim-

plify concurrent programming where transactions are the main concurrent construct. Hard-

ware Transactional Memory systems provide hardware support for executing transactions and

take help from modified versions of standard cache coherenceprotocols for doing so. This

report presents a token coherence protocol for the transactional memory system, TTM [6].

It also presents some comparisons between standard lockingbased systems and transactional

memory systems. It has been observed that the performance oftransactional memory systems

is workload-dependent. However, transactional programming appears to be much easier than

programming with locks.

Keywords: Transactional Memory, Token Coherence, TTM, Coherence Protocols, Concurrent

Programming

1 Introduction

Traditionally, the onus for striving for greater computer performance has been on computer archi-

tects. Continual advances in computer technology dictatedby Moore’s Law have allowed archi-

tects to come up with newer and more innovative ways to increase computer performance. This

1



has led software programmers to enjoy these benefits withouthaving to worry too much about

performance issues. Until now, no matter how fast processors get, software consistently found

new ways to eat up the extra speed. Increase the speed of the hardware ten times, and software

usually finds ten times as much to do [1]. This has allowed mostclasses of applications to enjoy

free and regular performance gains.

With processor speeds leveling off due to severe limitations imposed by packing more and

more transistors in a given area, the traditional laid back approach of software developers will

have to change. Processors are going to continue to become more and more powerful, however the

current trends suggest that these improvements are not going to come from increase in processor

speed. Rather, these improvements are going to result from using multiple processors in parallel.

This impacts the existing software programming models in a big way. In order to benefit from

this increase in performance, software would have to departfrom its traditional single-thread

execution flow, and would have to center around concurrent programming.

There are several limitations to concurrent programming which have led to a slow adoption

of this model. The most severe of these is that concurrent programming is hard. In the traditional

software programming model, the programmer has to worry about errors within a single flow of

execution. The addition of multiple threads introduces data races, deadlocks and starvation issues

which are not straightforward to detect, and even more difficult to debug. To overcome these new

issues means the programmers have to fundamentally alter how they think about programming.

There are several existing approaches which allow the programmers to write correct concur-

rent programs. One of the most common of these is to use locks or barriers to protect critical

sections within the program from multiple threads executing in parallel. These require a signif-

icant overhead on part of the programmer. Transactional programming is a way to reduce this

overhead for the programmers, by dividing the program into several transactions which can ex-

ecute concurrently. Transactional memory models that support transactions can be implemented

either in hardware or software. In this report, we confine ourattention to hardware approaches to

transactional memory.

2



Transactional memory models typically use cache coherenceprotocols to detect conflicts

among transactions. Conflict detection is used to maintain isolation among transactions. Atomic-

ity is ensured by logically making all the changes visible atonce to the rest of the system. In this

report, we will study the performance of some of the cache coherence protocols on a transactional

memory system, TTM [6]. We also come up with a new cache coherence protocol based on token

coherence. In addition, we also implement some simple transactional programs and study the

performance on these systems.

The rest of the report is organized as follows: In section 2, we give an overview of concur-

rent programming with transactions. Section 3 discusses Transactional Memory, and its various

implementations. It also discusses the implementation that we chose for our project. Section 5

looks at the various coherence protocols that are used in transactional memory systems. Section 6

gives details of our Transactional Token Coherence protocol. We then discuss some performance

results in section 7 and then finally conclude in section 8.

2 Concurrent Programming with Transactions

Existing parallel programming approaches require the programmer to manage concurrency di-

rectly by creating and synchronizing parallel threads [3].This places a huge burden on the pro-

grammer. At the same time, the task is made more difficult by the fact that often conflicting

goals of performance and correctness need to be balanced too. For example, a frequent method

to ensure correctness in concurrent programming is the use of locks to regulate access to critical

segments of the code. Using a large number of fine-grain locksincrease performance, since the

threads do not waste time competing. On the other hand, usingmany smaller locks increases the

locking overhead incurred and makes the program tough to correctly implement.

Hammond et al. [4] introduce parallel programming techniques for transactional coherence

and consistency (TCC) systems [3]. TCC relies on programmerdefined transactions as the basic

unit of parallel work, communication, memory coherence, memory consistency and error recov-

ery. This greatly reduces the overhead associated with concurrent programming.

3



Figure 1: Simple Program

The first step in converting a program to run concurrently on transactional memory is to divide

it into transactions.If needed, the programmer can also specify the order of each transaction.

Once the program has been divided into transactions the programmer can then use the feedback

obtained from the system to further tune the system to achieve best performance. This includes

increasing or decreasing the size of the transactions to achieve maximum benefit.

The following example program from Hammond et al. [4] gives aclear indication of the ease

of concurrent programming with transactions as compared tothe traditional approach using locks

(Figure 1. The example is a simple sequential code segment that calculates a histogram of 1000

integer percentages using an array of corresponding buckets.

Figure 2 shows what the concurrent version of the program looks like for both transactional

programming, and using lock based approach. Changes from the sequential version are showed

in bold.

In the transactional version, each iteration of thefor loop is converted into a separate transac-

tion. This is the only change needed for the transactional version. The underlying implementation

guarantees that the sequential code will be executed correctly. On the other hand the lock based

version requires the programmer to define the locks, and thenacquire them before each critical

section. Transactional programming thus eliminates this overhead associated with locks, and is

able to overcome one of the fundamental difficulties associated with concurrent programming.

Another approach to transactional programming is to let theuser explicitly mark out trans-

actions. By extending the ISA, the user can be provided with language primitives to specify the

start and end of a transaction. This approach makes the transition from lock-based programming

4



Figure 2: Lock-based and Transactional Programs

much easier for a programmer. The critical sections need to be protected by transactions instead

of locks. We follow this approach rather than the TCC approach which requires extensive modi-

fications to the existing models.

2.1 Microbenchmarks

We implemented two microbenchmarks to understand the degree of difficulty in using transac-

tions and to study certain performance characteristics of our transactional memory system.

Btree: The first microbenchmark we developed was a Btree implementation. We were able to

implement this program completely independent of the fact that we planned to use it in a multi-

threaded environment. The benchmark itself involves two C files: a header, and the body of code

comprising the tree itself. To make this concurrent, we merely instrumented the code that called

the tree: we surrounded all calls to insert, lookup, and delete with wrapper functions. For locking,

the first half of the wrapper acquired a single lock on the entire tree, and the second released it.

The actual locking mechanism (locking variable and atomic read-modify-write operation) were

abstracted away by a library. The transactional implementation occurred analogously, except that

a begin transaction command denoted the beginning and anend transaction end.

5



For us, then, implementing locking and transactions seem equally easy, and both are trivial com-

pared to implementing the body of the code. The advantages oftransactional programming are

thus hidden: first, no external library need keep track of lock variables. Second, the usefulness

of transactions lies in their performance advantage. A single lock over the entire tree defeats the

purpose of multithreading. In contrast, since transactional memory limits concurrency only when

truly necessary, making entire tree operations atomic neednot result in serialization.

Bounded Buffer: This is a simple multithreaded program that models the standard producer-

consumer problem. Half of the threads in the program producedata while the other half consume

data. The think times for each of the threads were set to zero,in order to stress the transactional

memory system. The implementation ran on similar lines to that of Btree.

For the programs that we implemented, we did not find that using transactional memory made

programming easier compared to using coarse-grain locks. But we are convinced it made it much

easier than it would have been had we been required to implement fine-grained locking to achieve

tolerable performance.

3 Transactional Memory

In their seminal paper “Transactional Memory: Architectural Support for Lock-Free Data Struc-

tures” [5], Herlihy and Moss introduced the concept of transactional memory, a mechanism for

easing concurrent program by providing lock-free data structures. Transactional memory lets

programmers specify multiple, non-contiguous memory blocks for atomic execution: either all

operations will appear to complete simultaneously, a transaction commit, or none will, a trans-

action abort. All processors will further view these sequences as serializable, which means that

multiple transactions cannot appear to interleave.

The goal of easing concurrent programming largely motivated this new paradigm. Compared

to locking, the authors found that transactional memory eliminates several problems, such as pri-

ority inversion, convoying, and deadlock related to the order of lock acquisition. Herlihy and

Moss also demonstrate that transactional memory usually outperforms even the most efficient

6



locking schemes (on several microbenchmarks). The authorsattribute this to the fact that trans-

actional memory limits sharing only when strictly necessary, while by nature programmers incur

the overhead of locking even when threads actually make no attempt at concurrent access. This

is especially true when programmers ensure correctness andavoid time-consuming corner-case

analysis by using a coarser grain of locking than actually required. Using transactional mem-

ory, they can instead specify transactions at a coarser granularity, and so reduce reasoning about

sharing patterns while still maintaining the performance of locking at a finer granularity.

Herlihy and Moss presented a hardware implementation of transactional memory; we will

limit our focus to this medium as well. To provide further grounding in existing work, we will

begin by comparing the two main approaches to concurrency control.

Transactional memory transactions naturally have much in common with database transac-

tions. As in databases, a transaction in transactional memory will either commit, and atomically

expose its memory accesses to other threads, or abort, in which case it exposes no operations and

must usually retry. While transactions may abort for a variety of reasons [5], they perhaps most

commonly do so due to avoid conflicting accesses, which breakthe illusions of atomicity and

serializability. To instigate an abort, transactional memory implementations must provide some

mechanism, typically called concurrency control, for detecting these conflicts.

Both database and transactional memory designs usually take one of two approaches: conser-

vative (blocking) concurrency control, or optimistic concurrency control. The blocking approach

requires processors to check for conflicts on every memory access. As soon as one is detected,

one or both transactions attempting to access the same blockmust abort. In contrast, optimistic

approaches tend to involve two phases. A transaction first executes in its entirety, making sure

to save the previous state of altered memory blocks as as it goes. In the second phase, it per-

forms validation to ensure that no conflict occurred. Clearly, optimistic concurrency control is

optimized for the workload where conflicts occur infrequently, because when they do happen, the

processor must roll back the entire transaction. In the abort case, the blocking approach seems

more efficient, because the processor will not continue to execute subsequent instructions of the

7



transaction after the first conflicting memory access occurs. Of course, the preferred case of no

conflicts requires more overhead, as the processor must communicate with all other threads on

every access before deciding to continue. Note that since conservative concurrency control can

also result in aborts and rollbacks, it too must record previous values before making transactional

changes. Herlihy and Moss chose the optimistic approach [5].

3.1 TCC

We next discuss the transactional memory implementations which most influenced our work.

First, Transactional Memory Coherence and Consistency (TCC) [3] treats all memory references

as part of some transaction. This differentiates it from theother approaches we present, as does its

use of optimistic concurrency control. In TCC, multiple nodes can hold the same line at the same

time. When a node completes a transaction, it broadcasts allof its changes at once to the other

nodes. During a transaction, when a node receives such a packet, it checks these modifications

against its own accesses. If it detects a conflict, it must roll back and abort. Hammond et al.

implement this with an additional read and write bit on each line, which the processor sets when

it makes a speculative read or write. It clears them when the corresponding transaction either

commits or aborts. For correctness, the nodes must maintainthis information throughout the life

of a transaction. Thus, to handle the case where a new memory access might replace such a

line, TCC recommends adding a victim buffer to hold its tag, read, and write bits. Without this

optimization, or if the buffer becomes full, the processor must stall until it can acquire commit

permission, which assures it exclusive access until it completes validation. Finally, Hammond

et al. handle conflicts by having each node checkpoint its register state each time it commits.

When a node in a transaction sees a broadcast that accessed one of its speculative lines, it rolls its

registers back to their state prior to the beginning of its transaction.

Unlike TCC, the following two implementations both use conservative concurrency control.

Ananian et al.’s Unbounded Transactional Memory (UTM) homes in on the problem of overflow-

ing cache lines [2]. They propose a hardware implementationthat lets a transaction access the

8



entire virtual address space and take an arbitrary amount oftime. The authors were motivated by

the observation that, while most transactions are small, a very small percentage are quite large.

Ananian et al. wished to provide a mechanism for a uniform transactional interface: programmers

may use transactions without first having to calculate whether they meet time or memory limi-

tations. However, their UTM implementation involves significant hardware additions. First, the

instruction set architecture must add transaction begin and transaction end instructions. A begin

instruction tells the processor to take a snapshot of its register state and register-renaming table in

case of rollback. The node cannot reuse physical registers while working on a transaction. The

node must expose this state, along with the address of an abort handler, to the operating system to

allow that software to correctly handle context switches. UTM maintains memory state with the

xstate data structure, which logs the accesses of all pending transactions. Associated with each

line is a read/write bit and a log pointer, which points to an entry recording the previous value,

a back-pointer to the block address, and a pointer to other transactions that have read-shared the

same block. The log for each transaction also tracks that transaction’s progress, which may be

pending, committed, or aborted. The processors perform clean-ups on abort, by using the log to

restore previous values; log entries of committed transactions may also be periodically wiped.

Clearly this entire scheme requires extensive system alteration.

3.2 UTM and LTM

To mitigate the costs incurred by TCC, Ananian et al. introduce Large Transactional Memory [2].

In this proposal they limit the size of transactions to physically addressable memory, and their

duration to the length of a time-slice. They do not permit transactions to migrate among processors

while in progress. This reduction in scope limits hardware changes to only the processors and

caches, as opposed to affecting the entire memory subsystem, as in UTM. Like UTM, though,

LTM detects conflicts by maintaining read and write bits in the cache lines. It also supports

overflows by storing the replaced data in a main memory hash table. This involves the addition of

two more bits, a T bit to indicate whether a line belongs to a transaction, and an O bit to indicate

9



whether that transaction has overflown. LTM stores speculative data in the cache, so that a commit

only requires flushing the bits. On an abort, however, a processor must restore the previous values

from main memory.

3.3 TTM

Finally, we base our study on a third version of transactional memory, Thread-Level Transac-

tional Memory (TTM) [6]. TTM itself actually specifies an interface, not a specific configuration.

By doing so, Moore et al. aim to deliberately separate transactional semantics from a particular

implementation. This lets the same transactional program to run on arbitrary combinations of

hardware and software. The authors define their interface interms of threads. The abstraction en-

compasses both cacheable virtual addresses and threads’ user-visible registers. Programmers in-

dicate transaction boundaries with explicitbegin transaction, commit transaction,

andabort transaction instructions. These calls depend on library-level supportmecha-

nisms which in turn depend on lower-level support mechanisms from hardware. When the user

begins a transaction, the thread must allocate virtual memory space for a check-pointing log.

In the cache, read and write bits track the read and write setsof the transaction, and coherence

protocols detect conflicts. TTM resolves these by either stalling or aborting the younger of the

offending transactions. The first time a transaction changes a line, it lazily writes the “before im-

age” to the associated log. Commits flush the caches’ read andwrite bits. TTM offers a significant

degree of flexibility in abort handling. The hardware itselfmay restore values from the log, while

a software abort handler performs all other operations. Note that since TTM stores the log in the

thread’s virtual address space, the log itself is also cacheable, thus improving the performance of

software that must access it.

Moore et al. show several TTM implementations [6]. All of them, including the basis for this

project, model a cache-coherent shared-memory multiprocessor with private, write-back, write-

allocate, and set associative L1 and L2 caches. The authors extend the processor to include a

TTM mode bit, nesting count, and log pointer; logging occursat the granularity of a cache-block.

10



On the first transactional access to a block, the TTM mode bit is set and the previous value is

copied to a shadow register file, which may eventually updatethe virtually-addressable log. This

TTM work focuses on write-invalidate MSI protocols, where loosely synchronous timestamps

order transactions. When the protocol detects a conflict caused by an younger transaction, Moore

et al.’s implementation stalls the current transaction. Incontrast, if the other transaction is older,

the current transaction aborts. This guarantees freedom from both deadlock and starvation. The

TTM paper [6] presents results for two coherence protocols:broadcast and directory. While both

can record accesses and detect conflicts, they differ slightly in how they handle overflows. The

broadcast protocol utilizes a two-bit Bloom filter, (one biteach to indicate read and write access)

which is set appropriately whenever a block is evicted from the corresponding line. Note that

this may cause false positives. The directory protocol extends the idea of silent replacements to

a sticky modify state. In this state, when a cache writes backa particular line, the directory still

forwards it requests. This owner will also have immediate M access and must set the read and

write bits the next time it accesses the same block.

Despite the abundance of transactional memory proposals [2] [3] [5] [6], significant challenges

still remain. Many of them have to do with smoothing interaction with the operating system.

For instance, transparent activities such as paging and context switches should not affect the

correctness of transactions. Current implementations handle such events by rolling back, but

this seems unnecessarily wasteful. Similarly, transactions should have more definite semantics

even for user-visible activities such as system calls, interrupts, and exceptions. If unrelated to

the current transaction, ideally they should not affect itsexecution. Another interesting issue is

input and output. Implementations may choose to buffer output until transaction completion, but

this may cause problems if a later piece of the same transaction must use it. Likewise, any input

used must be stored so that it can be re-read in the case of an abort. Such strategies naturally

cause complications for real-time applications. The semantics of transactions themselves also

offer some complexity. For instance, how should hardware treat nested transactions? Both TCC

and TTM subsume inner transactions, which means an abort undoes work all the way back to

11



the outermost level of nesting. This solution clearly lackssophistication, especially in terms of

performance.

To summarize, while researchers have made significant progress in exploring transactional

memory, much work remains. The rest of this paper will tackleone piece of this greater project:

how transactional memory, TTM in particular, interacts with a variety of coherence protocols.

4 Coherence Protocols

Cache coherence protocols are used by TTM for conflict detection during the execution of a

transaction. The conventional cache coherence protocols are modified for this purpose. In this

section, we will take a brief look at some of these protocols and their modified versions used by

TTM.

4.1 Directory Protocol

This is a standard MOESI directory protocol. For each cache line in the memory, the directory

maintains the list of caches that contain the correspondingdata. It acts as an ordering point

for all the coherence and data requests in the system. The protocol is enhanced with migratory

optimization.

4.2 Hammer Protocol

This is a simplified version of the AMD hammer protocol. Its also a MOESI protocol. However,

the directory does not maintain any list of sharers. It just keeps track of whether memory is the

owner for any particular cache line. If not, it broadcasts the cache requests to all the caches. It

also implements migratory optimization.

12



4.3 Token Protocol

This protocol uses tokens to keep track of coherence state. Each line of data has a fixed number

of tokens associated with it through the life of a system. A cache requires atleast one token to

read the data and requires all the tokens to write it. A special Owner token is used to keep track

of ownership. This leads to a single writer, multiple readers implementation. A simple token

counting scheme is used to maintain correctness in the protocol. Persistent Requests are used to

prevent starvation. The caches first put out transient requests for data. These requests need not be

serviced by other caches. In which case, the requesting cache sends out another transient request.

After the number of retries reaches athreshold, it puts out a persistent request which has to be

serviced by other caches.

4.4 Xact directory Protocol

A modified version of theDirectory protocol. It is modified for supporting TTM. Caches contain

additional data for identifying data accessed during a transaction. Cache conflicts for lines resident

in the caches are detected in the cache itself. For transactions that had cache overflows, Sticky-M

bits are used for conflict detection.

4.5 Xact hammer Protocol

A modified version of theHammer protocol. The modifications made to support TTM are pretty

similar to the modifications made to theDirectory protocol. Since all requests are broadcast to

the caches, bloom filters can be used for conflict detection.

All the above protocols were taken from existing implementations. The first two protocols

are used in the study of conventional systems using lock-based concurrent programming. The

transactional versions are used for the study of the transactional memory system, TTM.

13



5 Token Coherence for Transactional Memory

In this section, we present a modified version of token coherence protocol to support TTM. The

base protocol is tokenB, which a MOESI token coherence protocol where all cache requests are

broadcast.

5.1 Design Overview

We now give an overview of the major modifications made to the protocol.

• All outgoing requests from the cache are tagged with a timestamp which is loosely based

on the timestamp mechanism used in TLR. Timestamps can be used to impose a global

ordering among all cache requests. A transaction is assigned a timestamp when it first

starts off. All the cache requests issued during this transaction will contain this timestamp.

Non-transactional cache requests are also assigned a timestamp before they are issued. All

the timestamps are loosely synchronized.

• Cache lines are augmented with transaction state bits that indicate if the line was read/written

during the current transaction.

• Conflict detection mechanism is inserted. Bloom filters are added to each cache for conflict

detection in case of cache replacements.

• Conflict resolution mechanisms are put in place. On a conflict, the current transaction can

either abort or block.

The addition of timestamps gives us additional flexibility in designing the protocol. We

present two versions of the protocol based on how they deal with transient requests.

14



P1 P2

P3

B A

P1 P2

P3

B A

P1 P2

P3

B A
P1 P2

P3

P1 P2

P3

P1 P2

P3

store A

store B

store A

Step 1: Step 2: 

Step 3: Initial State:

Step 1:

        P1, P2, P3 in transactions. P1 > P2 > P3
P2 has A in ’MM’, P1 has B in ’MM’

P3 issues Persistent_getX A. 
P2 − ignore, P1 − Lockdown

Step 2:
        P2 issues Persistent_getX B.
        P1 − Ignore, P3 − Lockdown

Step 3:
        P3 needs ’A’. DEADLOCK!

Persistent_getX A
Persistent_getX A

Persistent_getX B

Persistent_getX B

Figure 3: Potential Deadlock with PersistentRequest Ordering in Transactions

5.2 xact token1

5.2.1 Transient Requests

In a Non-Transactional Mode, all the state transitions are similar to the base token coherence

protocol. However, when the cache is in a Transactional Mode, the protocol first checks if the

incoming request conflicts with a line accessed during the current transaction. If it does not then

it is treated as it would be in the base case. If it does conflict, then the timestamp of the incoming

request is compared with that of the transaction. If a request contains an older timestamp, then

the current transaction has to abort, else the current transaction just ignores the request.

5.2.2 Persistent Requests

Token coherence protocol issues a persistent request when it detects possible starvation, i.e after

a certain number of transient requests fail. The protocol responds to a persistent request by first

specifying an ordering on all the persistent requests at that particular moment. It then satisfies

each persistent request by ’locking down’ the corresponding cache line in all the other caches.

The same semantics are observed if the cache is in a Non-Transactional Mode. However if the

15



cache is in the middle of a transaction, it aborts the currenttransaction.

Timestamps could not be used for ordering persistent requests from transactions because of a

potential deadlock situation. Figure 3 gives an example. Inthe example, three processorsP1, P2

andP3 are each executing a transaction.P1 has cache lineB in its private cache and it was

modified during the current transaction. SimilarlyP2 has cache lineA in its private cache and

it was modified during the current transaction. The transaction timestamps specify the processor

priority asP1 > P2 > P3. First, P3 puts out a persistent request for lineA. P2 ignores

the request, though it has the data, because of higher priority. P1 goes into alockdown state,

i.e it forwards any tokens it receives for this line toP3. So nowP3 waits forP2 to finish the

transaction and release the data. Next,P2 issues a persistent request for lineB. P1 ignores the

request and holds it off till it can finish its own transaction. SoP2 waits forP1 to complete its

transaction and release data. Finally, supposeP1 wants to issue a request for lineA. It cannot do

so becauseP3 has an outstanding persistent request for that line. SoP1 waits forP3 to remove

the persistent request. And we end in a deadlock situation.

5.3 xact token2

In the first version of the protocol, transactions abort unnecessarily on a persistent request even if

there is no conflict. So the second version, attempts to minimize the number of persistent requests

issued in the system. This is done with the help of timestamps. They are used to specify a global

ordering of all the transient requests for a particular cache line.

5.3.1 Transient Requests

All Transient requests are treated based on their timestamp. Requests with older timestamps

are serviced while requests with younger timestamps are ignored. If a transaction receives a

conflicting request with an older timestamp it aborts. Intuitively, this places an order in which all

requests are serviced, since at any point there is only oneoldest request in the system.

However, tricky race conditions could lead to theoldest request not being serviced, in which

16



2

3

4
P1 P2

P3

1
Initial: P1 > P2 > P3

P3 has A in ’MM’
P1 sends Transient_getX for A

Transient_getX for A
1) P2 receives Transient_getX from P1 − Ignore 

Final: P2 has A in ’M’. P1’s request not serviced 

3) P3 receives Transient_getX from P2 − Send data
4) P2 received Data from P3
5) P3 receives Transient_getX from P1 − Ignore

2)  P2 issues

5

Transient_getX A

Transient_getX ATransient_getX A

Data A

Figure 4: Potential Starvation with TransientRequest Ordering

case it has to be reissued. Figure 4 gives an example. We have three processorsP1, P2 andP3.

P3 has cache lineA in its private cache in a modified state. ProcessorP1 first puts out a transient

request for cache lineA. This request first reachesP2 which ignores it since it does not have

the line in its cache. After some time,P2 issues a transient request for lineA which reachesP3.

Note that the earlier transient request fromP1 has not reachedP3 yet. P3 services the request

from P2 and sends the data toP2. Now the initial request fromP1 reachesP3 at which point

it ignores it since it no longer has the data. ThusP2’s request which was issued afterP1, gets

serviced even though it is not the oldest.

5.3.2 Persistent Requests

As noted above, even with the modified transient request semantics, we could end up with a

potential starvation scenario. Hence we would still need persistent requests. The response to

persistent requests is similar to that in xacttoken1. Transactions abort on a persistent request,

even if its for a non-conflicting line. However due to global ordering of requests, we expect

persistent requests to be less frequently used.

5.4 Debugging

The protocol was tested using random test drivers. These drivers generate random requests to

the caches in a way that stresses the protocol and tries to take it through all the transitions. A

17



Figure 5: Execution times for bounded buffer with varying threads

number of bugs were identified through random testing. Whilethe random tester identifies the

manifestation of these bugs, the actual identification of the bug required going through thousands

of lines of log files. While this was time-taking, the experience increased our confidence in the

correctness of our protocol.

6 Results

The results were gathered using the various coherence protocols in conjunction with TTM. TTM

is built on top of a Simics full-system simulator and customized memory models built using the

Wisconsin GEMS toolset. We use parallel applications from the SPLASH-2 benchmark suite for

evaluating conventional lock based programs. These were also modified to run with transactions

and used for evaluating transactional programs.

Figure 5 presents the results for bounded buffer with varying number of threads using different

transactional cache coherence protocols. Each thread is bound to a single processor. The program

was executed for a fixed number of transactions (10000). We notice an increase in the execution

times as the number of threads increase. This might seem counter-intuitive at first look. However,

we observe this increase due to a corresponding increase in the number of transaction aborts in

18



the system. At8 threads, upto 40% percent of the transactions were observedto abort before

completion. Hence transactional memory systems would perform well only on systems where the

contention for shared data is fairly low and hence the frequency of aborts is also low.

Figure 6: Execution times for WATER Figure 7: Execution times for OCEAN

We next present the results for four applications from the SPLASH-2 benchmark suite. We

have the results for transactional token coherence protocol for two of them. We also observed that

the second version of transactional token coherence outperformed the first version in all the cases.

So we present the numbers only for the second version. The results show that the performance

depends on the workload. While we notice performance improvements for transactional proto-

cols in case of water, raytrace and ocean, barnes seems to degrade with transactional memory.

We also note that transactional token protocol does not perform well over the other transactional

protocols especially in the case of Ocean. It was observed that the protocol aborts in large trans-

actions involving considerable number of system calls. Re-execution of these transactions causes

significant overhead. This indicates the need to prioritizetransactions.

Figure 8: Execution times for BARNES Figure 9: Execution times for RAYTRACE

19



7 Conclusions

Transactional Programming seems to make concurrent programming easier. It enables the im-

plementation of fast and correct parallel programs withoutsignificant intellectual effort when

compared to lock-based parallel programs. However transactional memory programs need not al-

ways result in performance improvements over carefully designed lock-based programs. Careful

fine-tuning of transactions might still be needed to achieveperformance gains. Finally, we present

a transactional token coherence protocol that supports TTM. The presence of cache request order-

ing in TTM presents significant opportunities to optimize the protocol.

References

[1] Herb Sutter, ”The Free Lunch is Over: A Fundamental Turn Toward Concurrency in Software,”

http://www.gotw.ca/publications/concurrency-ddj.htm March 2005

[2] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, Sean Lie, “Unbounded Trans-

actional Memory”,Proc. of the Eleventh International Symposium on High-Performance Computer Architecture,

February 2005.

[3] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben Hertzberg, Manohar K. Prabhu,

Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun, “Transactional Memory Coherence and Consistency”,

Proc. of the Thirty-First International Symposium on Computer Architecture (ISCA), June 2004.

[4] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben Hertzberg, Manohar K. Prabhu,

Honggo Wijaya, Christos Kozyrakis, Kunle Olukotun, ”Programming with Transactional Coherence and Consis-

tency(TCC)”Proceedings of Annual Symposium on Programming Languages and Operating Systems (ASPLOS),

2004

[5] Maurice Herlihy and J. Elliot B. Moss, “Transactional Memory: Architectural Support for Lock-Free Data Struc-

tures”,Proc. of the Twentieth International Symposium on Computer Architecture (ISCA), pp 289-300, May 1993.

[6] Kevin Moore, Mark Hill and David A. Wood, “Thread-Level Transactional Memory”,Submitted to Parallel Archi-

tecture and Compilations Techniques (PACT), March 2005.

20


