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Abstract
The most popular methods for managing storage and pro-
viding crash consistency are I/O virtualization and jour-
naled filesystems respectively. This popularity is due to
their widespread use in production environments. How-
ever, both of these methods have evolved separately in
different contexts in the past.

This paper presents a first look on providing crash con-
sistency for virtual I/O caches through journaled filesys-
tems. We find that nested filesystem journaling in guest
and host operating systems has a significant performance
cost. This cost is attributed to the use of traditional disk
interfaces for cache flushes and lack of coordination be-
tween the two journaling levels. We present vDrive, a
consistent virtual I/O system architecture, with a new vir-
tual disk interface and semantic journaling mechanism
designed to provide high performance.

We have implemented vDrive interface extensions in
the KVM/QEMU virtual I/O system and semantic jour-
naling in the Linux ext4 filesystem. We show through ex-
periments that vDrive outperforms nested journaling by
up to 142% and correctly recovers to a consistent state
after a crash.

1 Introduction

In recent years, virtualization has improved hardware uti-
lization allowing service providers to offer a wide range
of application and infrastructure services [3, 16, 24]. I/O
virtualization enables efficient and flexible allocation of
storage resources across different virtualized workloads.

To achieve high bare-metal performance, I/O intensive
workloads require direct access to physical disks or log-
ical volumes. For this purpose, modern hypervisors im-
plement a technique called PCI Passthrough or Direct-
Path I/O [40]. Passthrough I/O achieves high perfor-
mance by bypassing the host software on the I/O path.
However, it gives up a lot of virtualization flexibility in-

cluding complicated VM live migration and no storage
space overcommit.

As a result, the most popular I/O virtualization tech-
nique today is paravirtual I/O1 [29, 38]. A virtual I/O
system consists of a modified driver in the guest oper-
ating system, and a virtual disk exported to the guest as
a block device but stored as a file on the host filesys-
tem. This enables flexible allocation of storage space
and additional management features embedded in VM
images [28]. Previous work has pointed to the perfor-
mance implications of virtual I/O resulting from nested
file systems [21], and addressed the overheads for fre-
quent switches between guest and host operating sys-
tems [14, 15].

In this paper, we present a first look on the perfor-
mance implications of crash consistency for virtual I/O.
The most popular and widely adopted technique to pro-
vide crash consistency in virtualized environments is the
use of journaled filesystems in guest and host operat-
ing systems. However, the two journal levels in nested
filesystem journaling interact in ways, which have not
been studied earlier, and result in significant performance
cost. We find that this performance cost is attributed
to two major reasons embedded in the original design
of filesystem journaling. First, journaling has been de-
signed to provide crash resilience on bare-metal hard-
ware for data resident in a physical disk cache. Sec-
ond, journaling uses the traditional storage interfaces for
flushing data to disk storage. In contrast, virtual I/O in-
troduces a more complex hierarchy of cache levels, but
at the same time provides greater flexibility to rethink the
software interface to virtualized storage.

The first source of overhead for nested filesystem jour-
naling arises because the two journaling protocols pro-
vide crash resilience for the same application data write
independently across different cache levels in guest and
host without any coordination. The guest filesystem

1we refer paravirtual I/O as virtual I/O in the rest of the paper
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journal provides crash resilience against the virtual disk
cache, while the host filesystem journal protects against
the physical disk cache. As a result, each write from the
guest application waits longer because of multiple stalls
and additional writes introduced during journal commits
at each level. This significantly degrades the combined
system performance for applications running atop nested
journal filesystems. We investigate the design of a nested
journaling protocol, which is aware of the virtual I/O se-
mantics to minimize these overheads.

The second source of overhead arises due to the use of
the traditional storage interface of expensive disk cache-
flushes for nested filesystem journaling. The disk cache-
flush operations used in modern drives impose both or-
dering and durability guarantees for writes [36, 27]. Re-
cent work on optimistic crash consistency [5] decouples
the costs of ordering and durability for disk cache-flushes
on a single level of filesystem journal. We investigate the
first application of optimistic crash consistency to vir-
tual I/O for reducing the commit cost of nested filesystem
journaling. We find that it requires revisiting the software
cache-flush interface to virtual disk and major changes to
the virtual I/O system. However, these changes simplify
the integration of optimistic crash consistency with the
guest filesystem than what is required for a single jour-
nal level [5]. We exploit this opportunity to reduce the
overheads of nested journaling.

We present vDrive: an efficient and consistent virtual
I/O system. vDrive solves the above problems by using
a new technique to provide low overhead crash consis-
tency: semantic journaling for virtual I/O. vDrive ex-
tends the virtual disk interface by introducing two new
primitives: vorder and vflush, which are exported to the
virtual I/O drivers in the guest operating system. The
vorder operation only guarantees ordering of preceeding
writes, while vflush enforces both order and durability.
The guest drivers use these primitives selectively based
on the semantics of the data being persisted from the vir-
tual cache hierarchy to the physical disk. With both prim-
itives, vDrive always enforces the order of committed
writes so as to enable a consistent state recovered after
a crash.

The main contributions of this paper are as follows:

• We present the first experimental analysis of the
consistency and performance tradeoffs for virtual
I/O. We conduct our experiments across different
storage technologies. We identify a key prob-
lem with virtualized disk storage: overhead of
nested filesystem journaling for different virtual I/O
caching modes.
• We design, implement and evaluate vDrive, an ef-

ficient and consistent virtual I/O system, which ex-
ploits a new virtual disk interface to implement se-
mantic journaling for virtual I/O traffic. vDrive im-
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Figure 1: Virtual I/O Storage Stack: The figure shows
the different software and caching layers in the virtual
I/O storage stack.

proves virtual I/O performance by up to 142% over
nested journaling and correctly recovers to a consis-
tent state after crash.

The remainder of the paper is structured as follows.
Section 2 and 3 motivate vDrive by describing a qual-
itative and quantitative analysis of virtual I/O perfor-
mance tradeoffs respectively. Section 4 and 5 present the
detailed description of vDrive design and implementa-
tion. Finally, we evaluate vDrive design techniques in
Section 6, and finish with related work and conclusions.

2 Motivation

In this section, we describe how the standard virtual I/O
model achieves crash consistency through nested filesys-
tem journaling and different caching modes within guest
and host operating systems. We demonstrate how these
techniques and the use of a traditional disk interface (i.e.
cache-flush commands) result in negative performance
impact for virtual I/O.

Virtual I/O Storage Stack. Figure 1 shows the vir-
tual I/O stack comprised of different software layers and
cache levels in the guest and host operating systems.
An application I/O request in the guest can be served
from the guest OS page cache, otherwise it is forwarded
through the frontend guest virtual I/O device driver to the
backend virtual disk running in the host user-space. The
virtual disk is typically a file on the host fileystem whose
layout can vary based on the feature or performance re-
quirements [28].

There are two sets of interfaces for a virtual disk:
virtio-blk interface [29] with the guest driver and the
posix filesystem interface with the host OS. Apart from
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Figure 2: Virtual I/O Tradeoffs: The figure shows the
impact of different nested journaling and virtual caching
modes on the performance, consistency and freshness of
data for virtual I/O. We show the most relevant combi-
nations of filesystem journaling modes in guest and host
OS: data, ordered, writeback and ordered without cache-
flush. We show the popular cache modes for guest disk
cache, host page cache and disk write cache: direct,
none, write-through, write-back and unsafe.

the read and write requests; the guest driver can send
cache-flush commands to the virtual disk. The virtual
disk further translates them into the host filesystem fsync
system calls. Finally, the host filesystem sends cache-
flush commands to flush data from the physical disk
write cache.

A guest I/O request can get cached within the host at
three levels: virtual disk cache, host page cache or the
physical disk cache. Each guest virtual machine can be
configured from the host to use one of the five different
combinations for host cache modes: write-back (all three
caches are enabled), write-through (guest disk cache is
disabled), none (host page cache is disabled), direct (both
guest disk cache and host page cache are disabled) and
unsafe (all caches are enabled and any cache-flush com-
mands from guest are ignored).

The guest and host filesystems can use journaling to
provide write ordering and durability across the virtual
and physical disk write caches. There are three major
modes for journaling: data (both metadata and data are
committed into the journal before being written into the
main filesystem), ordered (data is written to the main
filesystem before metadata is committed into the jour-
nal), and write-back (no ordering is preserved, data may
be written into the main filesystem after metadata has
been committed into the journal). The filesystem jour-
nals send disk cache-flush commands to ensure ordering
and durability of writes.

Virtual I/O Tradeoffs. The different virtual caching
and nested filesystem journaling modes provide differ-
ent tradeoffs between performance, consistency and data
freshness. Figure 2 shows a classification of such trade-
offs among the four most relevant combinations of cache
and journaling modes.

The first lowermost region in blue corresponds to the
combination of ordered or data journaling modes in both
guest and host, and any of the four cache modes which
pass guest cache-flush commands for journal commits
through all cache levels. After recovery, this combina-
tion provides a consistent and the most recent or fresh
state, which existed before a crash. However, these guar-
antees comes at the performance cost to provide write or-
dering and immediate durability through expensive disk
cache-flushes. The use of synchronous I/O mode in guest
and host (shown as the origin of the two axes in Figure 2)
provides immediate durability for all writes with a huge
performance loss.

The second region in red corresponds to the combi-
nation of write-back or ordered journaling modes in both
guest and host. The use of write-back journaling mode in
either guest or host could result in unordered writes to the
physical disk, and an inconsistent and stale virtual disk
image after a crash. The use of ordered journaling mode,
especially in the guest, results in frequent cache-flush
requests. As a result, these journaling mode combina-
tions provide lower performance with the three caching
modes: direct, none and write-through; all of which by-
pass some cache levels at host for unordered writes from
journal commits. Apart from the consistency cost, these
three cache modes provide different levels of cache ex-
clusiveness and differ in performance due to different
cache hit rates (we elaborate this further in Section 3).

The third region in dark green corresponds to no-
journaling or combination of ordered journaling modes
in guest and host without cache flushes enabled for jour-
nal commits. This is equivalent to the unsafe caching
mode, which ignores all cache-flush requests from guest
regardless of journaling mode. These combinations sac-
rifice both consistency and freshness of data in the virtual
disk for a guest to achieve high virtual I/O performance.

Why vDrive? The fourth circular region in light green
corresponds to the space around the combination of or-
dered journaling modes in both guest and host, and write-
back virtual caching mode. This is the default combi-
nation in KVM/QEMU, which provides consistent and
fresh states but at a high performance cost of cache-
flushes in nested ordered journaling mode. We focus
within this region because all three spaces described ear-
lier converge here. As a result, moving in different di-
rections within this region result in different tradeoffs for
performance, consistency and freshness. Therefore, we
aim to find an approach to improve the performance of
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Figure 3: Caching modes for virtual I/O: The figure
shows the impact of different caching modes for virtual
disk storage on varmail, random write and seq write
workloads.

nested ordered journaling mode with the ability to re-
cover to a consistent state. To achieve this, we use op-
timistic crash consistency for virtual I/O by decoupling
the guarantees of write ordering and durability for nested
journal commits. The vDrive design provides write or-
dering but eventual durability to achieve higher runtime
performance, and recover to a consistent virtual disk im-
age, which existed within a bounded time interval before
a crash.

3 Quantifying Virtual I/O Tradeoffs

We now quantitatively show the performance impact of
different virtual caching and nested filesystem journaling
modes. We use the Linux ext4 journaled filesystem in
KVM guest and host for our experiments.

Virtual I/O Caches. Figure 3 shows the performance
impact of the different virtual caching modes for the de-
fault ext4 ordered journaling mode with cache-flushes
enabled (at filesystem mount-time) in both guest and
host OS. We use the filebench suite [1] of write-intensive
workloads (random and sequential writes to isolate the
impact of cache hit rates, and varmail: fsync intensive to
isolate the cost of crash consistency).

The varmail benchmark simulates a mail server and
includes many small synchronous updates, thereby ex-
ercising both the journaling and caching mechanisms
through frequent cache-flush requests. As a result, all
cache modes perform similar and upto 3.5x slower than
the unsafe mode. None of these four traditional caching
modes can provide better performance for this workload
with their existing consistency semantics.

For random write workload, the write-back cache
mode is better than other caching modes and compara-
ble to unsafe mode. The is because write-back cache
is inclusive of all cache levels and fewer cache-flush
commands from the workload result in larger effective
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Figure 4: Filesystem journaling for virtual I/O: The
figure shows the impact of filesystem journaling on dif-
ferent storage devices (7.2K RPM SATA, 10K RPM SAS
Disks and PCI-e Flash SSD). Cache flushes on commit
are performed in both guest and host OS (Nested), host
OS only (Host), and disabled in both OS (None).

cache size. The none mode performs about 20% better
than write-through for both random and sequential write
modes. Disabling the host page cache in none mode
turns all write operations into direct I/O operations to
disk write cache, which perform better than synchronous
I/O in write-through mode. Direct mode performs worst
because it converts all writes into direct synchronous op-
erations each of which result in a disk cache-flush.

Overall, we find that all the virtual caching modes
including the default write-back mode always perform
slower than unsafe caching mode. The peformance dif-
ference is especially significant when the application and
the filesystem journal within the guest OS issue frequent
cache-flush commands to achieve a consistent virtual
disk image.

Nested Filesystem Journaling. We now isolate the
impact of nested filesystem journaling in guest and host
OS on virtual I/O performance. Figure 4 shows the per-
formance of three different ext4 ordered journal mode
configurations: Nested (both guest and host filesystems
use ordered journal mode with cache-flushes enabled),
Host (unlike Nested mode, cache-flushes are disabled for
guest filesystems) and None (cache-flushes are disabled
for both guest and host filesystems). We conduct experi-
ments on three different storage devices: a nearline 7.2K
RPM SATA disk, an enterprise 10K RPM SAS disk, and
a high-end PCI-e Flash SSD. For brevity, we only show
the results for the varmail workload and write-back cache
mode.

Nested filesystem journaling has significant perfor-
mance impact on disk storage. For a nearline disk, dis-
abling cache-flushes for guest filesystem journal com-
mits results in nearly a factor of five performance im-
provement. The enterprise disk has relatively lower seek
and data transfer times from disk write cache to disk be-
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cause of a faster spindle. Nonetheless, the performance
loss is still more than 3x for nested filesystem journaling.
Disabling host filesystem journal cache-flushes result in
only about 8% performance improvement over no flushes
in guest (Host configuration in Figure 4). Overall, nested
filesystem journaling with cache-flushes enabled on both
guest and host has significant negative performance im-
pact on virtual I/O performance for disk storage.

Figure 4 also shows the performance impact of nested
journaling on a high-end PCI-e Fusion-io SSD [11]. We
also found similar results on an Intel SATA SSD [17].
As expected, flash SSDs have faster random access laten-
cies than disks. Therefore, cache-flushes resulting from
nested filesystem journal commits in guest and host oper-
ating systems have less than 10% performance impact on
both SSDs. One approach to boost nested journaling per-
formance on disk storage is the use of an external journal
placed on a flash SSD. However, an external journal on
a different device cannot be synchronously updated with
filesystem updates, and the result is an inconsistent or
read-only filesystem [8].

These findings indicate that providing low overhead
crash consistency with the use of traditional cache-flush
interface for virtual caches and nested filesystem journals
is challenging on virtualized disk storage. To overcome
these challenges, we design vDrive with the following
three goals:

• Consistent interface to provide a consistent virtual
disk image across a system crash or power failure.
• Cache management to improve performance for the

virtual cache hierarchy.
• Filesystem journaling to reduce the cost of cache-

flushes for nested filesystems.

4 System Design

vDrive is a new virtual I/O system designed to improve
performance for virtual I/O and provide a consistent vir-
tual disk image after a crash or power failure. This sec-
tion describes the design of the virtual disk interface
and consistency guarantees of vDrive, nested journaling
protocol, and cache management. Figure 5 shows the
flow of write and cache-flush requests from the guest to
vDrive and from vDrive to the host filesystem.

4.1 vDrive Interfaces
The vDrive design provides a consistent disk interface
that reflects the need of a virtual disk to: (i) provide in-
order guest journal commits to achieve a consistent vir-
tual disk image across a crash, and (ii) provide immediate
or eventual durability to trade between performance and
freshness of a virtual disk.

The vDrive interfaces, as shown in Table 1, are a small
extension to the standard virtio interface [29] between

Name Function
vflush flush I/O operations from the virtual

disk write cache.
vorder order I/O operations queued ahead

of vorder.
aio-notify notify that all I/O operations queued

before vorder have been synchro-
nized to physical disk.

preadv/pwritev gather/scatter a vector of blocks
from virtual disk file at a given off-
set to host memory buffers.

Table 1: The vDrive Interfaces

guest OS virtual driver and host user-space QEMU vir-
tual disk driver, and the posix interface between the vir-
tual disk cache manager and the host filesystem.

4.1.1 Guest Interfaces
The standard virtio interface between the guest OS and
virtual disk is based on a virtio ring buffer implemen-
tation. The guest driver enqueues read/write/flush re-
quests into the ring buffer and kicks-off the buffer to the
host. The guest disk cache manager implemented within
the QEMU emulation block driver dequeues the requests
from the ring buffer and then translates them in a separate
I/O thread to the underlying system calls to the virtual
disk file on the host filesystem.

vDrive provides two new synchronization primitives
to decouple ordering and durability guarantees of guest
flushes to the virtual disk.

Write Flush. The vflush primitive is similar to the tra-
ditional flush interface used for ATA/SAS disks, also
termed as “cache-flush” or “synchronize cache”, which
flushes all buffered writes from the disk write cache. This
primitive provides both immediate durability and correct
write ordering. It only returns when the buffered writes
have been acknowledged to be flushed from all three host
cache levels including the guest disk write cache, host
page cache and the physical disk write cache. As a result,
the cost of the vflush primitive is larger for a virtual disk
than the traditional cache-flush for physical disk write
caches.

Write Order. The vorder primitive provides ordering
for all writes buffered within the three host cache lev-
els. When the operation returns, this request has been
only submitted to the I/O queue in the host OS. Immedi-
ate durability of the preceeding writes is not guaranteed
upon its return. However, all preceeding writes complete
in the order as they were submitted by the guest driver
to the host emulation framework. As a result, new writes
issued after vorder will always be durable after the writes
preceeding vorder. The cost of using this primitive is al-
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ways less than that of vflush as it does not acknowledge
for durability.

By default, all cache-flush requests from the guest
filesystem are converted to vorder requests from the
guest virtual I/O driver. The application and guest oper-
ating system also has an option of using the vflush prim-
itive to force flush through all cache levels in the host.
We describe the selection mechanisms and policies for
the use of these primitives in more detail in our discus-
sion on semantic journaling in Section 4.2.

4.1.2 Host Interfaces
The vDrive cache manager is implemented within the
QEMU user-space virtual disk driver and controls when
blocks are flushed from the three host caches: guest disk
cache, host page cache and physical disk cache. It ex-
tends the existing interface used between the traditional
QEMU user-space virtual disk driver and the host filesys-
tem.

Flush Notification. The vDrive block driver can is-
sue new writes after vorder, which reach disk after all
preceeding writes issued before vorder. However, the
vorder primitive does not wait to acknowledge the dura-
bility of preceeding writes. The vDrive cache manager
instead uses the aio-notify interface to asynchronously
acknowledge the completion of all preceeding writes.
The aio-notify is a new interface implemented within the
vDrive cache manager as a signal handler. Specifically,
this primitive is used to receive a notification when all
writes buffered within the host caches prior to a vorder
operation have been flushed to the disk. The vDrive
cache manager also updates additional information such
as the number of pending write operations and resets
a timer within the aio-notify call. As we will discuss
later in Section 4.2, this information is useful to bound
the freshness of the virtual disk image recovered after a
crash.

Scatter/Gather I/O. The vDrive cache manager uses
the existing scatter-gather vectored interface imple-
mented within the QEMU block driver to issue read-
/write system calls to the host filesystem. In addition, it
updates the number of write operations pending to be ac-
knowledged through aio-notify or vflush on each pwritev
operation.

4.2 Semantic Journaling
The new vDrive interfaces enable the design of semantic
journaling to reduce the cost of crash consistency for I/O
virtualization. To understand semantic journaling better,
we first examine the interaction between the guest and
host filesystems using Linux ext3/ext4 ordered journal-
ing mode protocols. Much of our discussion is also ap-
plicable to other journaling filesystems such as IBM JFS,
SGI XFS and Windows NTFS.

Journaling Protocol. Figure 5 shows the flow of ap-
plication writes to a data block (D) through the guest
filesystem, virtual I/O driver, guest cache manager within
the host user-space QEMU block driver and the host
filesystem. When a guest application updates the filesys-
tem state, either the filesystem metadata (M), user data
(D), or ofen both need to be updated in an ordered man-
ner. The atomic update of the filesystem metadata in-
cluding the inode and allocation bitmap to the journal
is referred to as a transaction. The filesystem must first
write data blocks (D) and log the metadata updates (JM )
to the journal (filesystem write W1), then finally write
a commit block (JC) to the journal to mark transaction
commit (filesystem write W2). Finally, the metadata (M)
can be written in place to reflect the change (filesystem
write W3). Therefore, the journaling protocol is: D and
JM before JC before M, or more simply: D | JM →
JC → M. The data (D) and the journal metadata entries
(JM ) can represent multiple disk blocks within a transac-
tion, whereas the commit record (JC) is always a single
sector. In summary, for each application write to data
(D), there are three logical filesystem write operations:
W1, W2 and W3 (see Figure 5). A logical write can be
composed of multiple physical disk writes to discontigu-
ous blocks. There is no ordering required within a logical
write itself for ordered journal mode [27].

The guest filesystem also issues cache-flush com-
mands (shown as F1 and F2 in Figure 5), wherever or-
der (→) is required between the different writes in this
protocol. This is because the protocol has been origi-
nally designed to use a physical disk cache-flush inter-
face, which provides both write ordering and immediate
durability. Recent work on optimistic crash consistency
proposes to decouple the cache-flush ordering and dura-
bility semantics with modifications to a single level of
filesystem journal and the physical disk interface [5]. As
we will show next, implementing optimistic crash con-
sistency for vDrive through semantic journaling mainly
requires changes to the virtual disk interface and the vir-
tual I/O system, and minimal changes to the guest filesys-
tem.

The traditional KVM/QEMU virtual I/O system (guest
driver and host QEMU block driver) further translates
each cache-flush command into a fsync system call to
the virtual disk file on the host filesystem. As shown in
Figure 5, the host filesystem uses another level of jour-
naling protocol (d | jm → jc → m) separately for each
of the three logical writes (d being W1, W2 and W3 re-
spectively). The nesting of the two journaling protocols
has two negative performance impacts. First, it results in
write amplification: a guest application write can be con-
verted into upto nine writes to the physical disk. Second,
it results in write stalls: the first guest cache-flush (F1)
only required for guest write ordering stalls the virtual
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Figure 5: Nested and Semantic Journaling: This figure shows the interaction between guest and host filesystem
journaling for nested journaling on traditional virtual disk and semantic journaling on vDrive. The vDrive design
uses vorder and aio-notify interfaces.

I/O system until the first group of host filesystem updates
(d | jm → jc → m corresponding to W1) have been ac-
knowledged to be flushed to disk. The second group of
updates corresponding to W2 is only issued after receiv-
ing the acknowledgement for F1. Similarly, F2 results in
another stall between the group of writes corresponding
to W2 and W3.

In contrast, we observe that the cache manager and
virtual disk are emulated entirely within the host soft-
ware. As a result, the vDrive design has the flexibility
to address the cost of nested journaling by using its new
synchronization interfaces for cache-flush requests. We
classify the cache-flush requests from the guest filesys-
tem based on the semantics of the data being persisted.
For simplicity, we pass the semantic information used for
classifying the cache-flush requests by annotating them
within the guest filesystem and virtual memory subsys-
tems. With the use of more sophisticated approaches
proposed in the past [35, 37], this classification can be
also done by rather discovering the semantic information
within the virtual I/O system.

The vDrive classifies the cache-flush command based
on its semantic requirements for ordering and durability
to provide a consistent virtual disk image after a crash.
There are broadly four major classifications based on
when the cache-flush is issued: journal transaction com-
mit, virtual memory page write-backs, checkpoints for
journal truncation, and flushing I/O queues after a disk
write failure.

Journal Commits. vDrive converts all guest filesys-
tem cache-flush commands after the journal commit

record (JC) into vorder request to the virtual disk. This
ensures correct write ordering both within and across dif-
ferent guest filesystem transactions without incurring the
cost of immediate durability for each journal commit.
The vDrive also keeps track of the time elapsed since the
last vorder completion has been notified through the aio-
notify handler. If this time interval exceeds the freshness
threshold for vDrive and there are pending write opera-
tions, it issues a vflush to the host filesystem. This en-
sures that the virtual disk image recovered after a crash
is always consistent and has all updates older than the
freshness threshold before the crash. If the workload
is read-intensive, there are fewer pending write opera-
tions and the cost of a vflush operation is not incurred by
vDrive.

VM Page Write-backs. In addition to the journal com-
mits, the guest virtual memory subsystem also writes-
back pages when the dirty to clean page ratio exceeds
a configured threshold. As these write-backs happen in
the background and do not require immediate durability,
vDrive only requires correct ordering for them with other
writes. As a result, vDrive uses the vorder primitive for
such VM page write-backs.

Journal Truncation. When the guest journal gets full,
a cleanup is required for the journal tail to re-use space
in memory and disk pre-allocated for the journal. The
journal metadata checkpoint (M) and all transactions cor-
responding to the re-used journal space are flushed to
the virtual disk before the cleanup starts. vDrive issues
a vflush request for all such cache-flush requests to en-
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force immediate durability and avoid any transactions or
checkpoints lost due to cleanup.

Write Failure. In addition to the journal truncation,
vDrive also classifies a cache-flush request issued when a
new write fails because of a stopped guest I/O scheduler
queue. The guest I/O queue is stopped when the device
driver signals it cannot service further requests because
of full virtual/hardware disk queue. The vDrive issues a
vflush request to flush all enqueued requests with imme-
diate durability guarantee and only then allows the queu-
ing of the new write request.

4.3 Crash Behavior and Recovery
With the use of default write-back virtual cache and or-
dered nested filesystem journaling modes, the filesys-
tem recovers by replaying the journal upto the last fully
committed transaction. However, a partially committed
transaction could happen if a crash happens after the data
block (D) or the JM , but before the commit record has
been written out to the journal. If the data write is to a
new allocated block, it would result in garbage data after
recovery. Otherwise, if it was an overwrite to an already
allocated block, it would result in partially updated data
after recovery. There is no data corruption possible in or-
dered journaling mode because metadata of the filesys-
tem always points to valid data that existed before the
crash. As a result, both the filesystems in guest and host
will always recover to a consistent state that existed be-
fore the crash.

The vDrive design provides similar crash recovery
guarantees: the filesystem always recovers to a consis-
tent state that existed before the crash. The host filesys-
tem still uses the ordered filesystem, and provides similar
guarantees as before. With the use of vorder for journal
commits and vflush operations for journal truncation, the
vDrive journaling mechanism has the following ordering
invariants for the guest filesystem writes:

1. Data block (D) and journal metadata entries (JM )
within a transaction always reach disk before the
journal commit record (JC).

2. Two different transactions are always committed in-
order.

3. A transaction is never released for journal re-use
before all previous checkpointed blocks (M) are
flushed to disk.

Upon recovery, a partially committed guest transaction
could still result in garbage data or partially updated data
as before. However, these vDrive invariants guarantee
that the metadata in the filesystem never points to invalid
data, which did not exist. However, within this consis-
tency semantics, we relax the guarantee about freshness
of data to trade for higher performance. Journal replay
brings the guest filesystem to a consistent state, which

existed before the crash, but not necessarily the most
fresh state. The vDrive architecture bounds the consis-
tent state to be no older than the freshness threshold of
the virtual disk.

5 Implementation

The implementation of vDrive entails three components:
the semantic classifier, the vDrive virtual disk interface
and the cache manager. The first two are implemented
inside the Linux 3.2 kernel as modifications to the jbd2
journaling module for ext4 filesystem and virtio blk vir-
tual I/O block driver respectively. The cache manager
is implemented within the QEMU block driver for raw
posix I/O.

We base the semantic classifier on the jbd2 journaling
layer and the virtual memory subsystem in Linux, which
enables to classify the different cache-flush requests sent
to the block layer. This makes our modifications modu-
lar and does not require changes to the ext4 filesystem
structures. At the block layer, we sought to leave as
much code as possible unmodified. Thus, we augment
cache-flush requests from the higher layers with an ad-
ditional field, effectively adding our new interface com-
mands as sub-types of the existing cache-flush command.
The write to the commit record in the journal transaction
commit adds the vorder sub-type. Similarly, the writes
from the virtual memory writeback thread also adds the
vorder sub-type to the associated flush command. How-
ever, the writes during the journal cleanup for check-
pointing add the vflush sub-type to ensure that journal
space is not re-used for a transaction before it is com-
mitted and its metadata is checkpointed. The I/O queue
restart code-path also uses the vflush sub-type to flush all
the preceeding requests in the queue on a write failure.
The block layers pass the sub-type field down to the next
layer. We modified the I/O scheduler to consider both
sub-types as a traditional cache-flush command while
servicing them. This enables us to achieve the same or-
dering guarantees for vorder as for a traditional cache-
flush request in the guest operating system.

We modify the guest virtio blk driver, which imple-
ments the interface to the virtual block device in the host
emulated using the QEMU block driver. It inserts the I/O
requests in the virtio ring buffer and triggers the QEMU
block driver to service those requests using a work queue
of threads. We modified the virtio blk driver to insert
a different vorder and vflush request into the virtio ring
buffer based on the sub-type of the command received
from the block request queue in guest. The QEMU
emulation framework pops off the request from the vir-
tio ring and hands it to the QEMU block driver.

We base our cache manager implementation on the
block driver for raw posix I/O in QEMU. The raw
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posix driver provides best performance than other drivers
supporting different image formats and implementing
additional features [28]. We modify the code path
for handling cache-flush requests in the block driver.
The QEMU block driver issues a fdatasync system call
for each cache-flush command received from the guest
driver. We modify it to issue an aio fsync system call
with D SYNC flag for a corresponding vorder command
received from guest. On vDrive initialization, we setup
an asynchronous I/O control block, signal event handler
for aio fsync implementing the aio-notify notification,
and a freshness threshold timer. We reset the freshness
timer on each aio-notify notification or vflush comple-
tion. Similarly, we update the number of write opera-
tions issued so far on each pwritev call to the host filesys-
tem. The cache manager implementation has the flexibil-
ity to use alternative notification interfaces with different
semantics such as posix inotify, asynchronous durabil-
ity notifications [5], and callbacks implemented on PCI-
e based storage systems [41, 33]. The cache manager
also forces a vflush operation if there are pending write
operations and the freshness timer exceeds the fresh-
ness threshold of vDrive. We configure the freshness
threshold to match the average latency of a single cache-
flush request: 50 ms. We find through experiments that
this provides good runtime performance and still tightly
bounds the virtual disk freshness within the cache-flush
request latency.

6 Evaluation

We evaluate vDrive’s design components against tradi-
tional virtual disk storage on two axes: performance and
reliability.

6.1 Methods
Experiments were performed on a machine equipped
with two sockets and 8 cores-per-socket Intel Xeon
E5530 CPU running at 2.4 GHz with 24 GB of memory,
146 GB 10K RPM IBM 42D0421 SAS drive, and run-
ning Linux 3.2 and KVM/QEMU 1.5.3. We use an Intel
S3700 SATA SSD [17] and PCI-e Fusion-io SSD [11] for
experiments reported in Section 3. The guest virtual ma-
chine is configured with 4 GB memory, 4 core processor
and a virtual disk of 60 GB.

We compare the vDrive virtual I/O system using
semantic journaling and new virtual disk interfaces
against the baseline system, which uses the unmodified
KVM/QEMU virtual disk. All systems use Linux ext4
ordered mode filesystems in both guest and host oper-
ating systems. The baseline system is configured in
three different modes by using different barrier options
to configure cache-flushes when mounting the filesys-
tems: nested journal with disk cache-flushes enabled in

both guest and host, only the guest journal enabled with
cache-flushes, no journal enabled with cache-flushes.
These three modes present different performance and
consistency tradeoffs for the baseline system. We use
raw posix I/O image and write-back guest disk cache
mode as they both provide best performance across dif-
ferent virtual disk image configurations.

We first measure performance of vDrive under a num-
ber of micro- and macro-benchmarks (Section 6.2) run-
ning in the guest. We use random and sequential write
workloads with 200 K writes with an fsync every 1K
writes over a 10 GB file. These micro-benchmarks are
used to exercise the journaling code paths and are dif-
ferent from the micro-benchmarks used in Section 3
to isolate the performance difference between different
cache modes. We run the filebench varmail (1:1:1 read-
s/writes/fsyncs), fileserver (1:2 reads/writes), and web-
server (10:1 reads/writes) workloads [1] and MySQL
benchmark (200K OLTP transactions on a table of 1M
rows) from sysbench [2]. These macro-benchmarks ex-
ercise all the read, write and fsync code paths of the vir-
tual storage stack.

We also perform two case studies (Section 6.3) to
demonstrate how vDrive provides crash consistency and
recovery using atomic writes used within a text editor
(gedit) and log management within a database (SQLite)
running within the guest. We write a tool to capture
block-level I/O traces at the host virtual disk layer and
analyze the crash behavior by applying a subset of writes
from the trace to the original disk image to reconstruct
the image after crash.

6.2 System Comparison
Figure 6 shows the performance of the vDrive system
and three different journaling mode combinations (see
Section 6.1) normalized to nested journaling in the base-
line system. The first four workloads: varmail, MySQL,
rand-write, and seq-write are write/fsync intensive, thus
exercise the journaling disk cache-flush interface. The
fileserver benchmark is write-intensive and is bound
by the overhead of frequent metadata updates for ap-
pend/delete system calls to the guest filesystem. Sim-
ilarly, the webserver benchmark is read-intensive and
is bound by the random read performance of the vir-
tual disk. As a result, these two workloads get most of
their requests hit in host caches and have minimal per-
formance impact of 8%-11% because of journaling or
cache-flushes.

For the four write/fsync-intensive workloads, dis-
abling cache-flushes for host journal (guest system) im-
proves performance by 15%-56%, but disabling both
guest and host (no system) cache-flushes has a much
larger impact. The guest journal impacts performance
more because it flushes out guest disk cache and host
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Figure 6: Application Performance: The performance
of guest-only journaling, no journaling, and vDrive’s se-
mantic journaling normalized to nested journaling. The
absolute performance of nested journaling and improve-
ment of vDrive’s semantic journaling are shown as labels
in the figure.

page cache on a journal commit. This corrobates with
the vDrive design, which exploits the guest journal se-
mantics to reduce its overhead.

The vDrive system with semantic journaling outper-
forms nested journaling by 47%-142%. This improve-
ment is mainly due to the use of the vorder interface,
which allows for lower write stall times and more parallel
writes to the host filesystem while still maintaining the
correct order for writes to disk. In contrast, the no cache-
flush system does not provide any ordering or durability
for writes and result in substantial performance improve-
ment over nested journaling, especially for the write-
only random and sequential workloads (10x-28x im-
provements over nested journaling). This is because all
writes in these workloads complete out-of-order and get
acknowledged as soon as they hit any of the in-memory
cache levels within the host. The vDrive system is 22%-
95% slower than the no cache-flush system, which is at-
tributed to the cost it pays for correct write ordering using
the vorder and bounded freshness using the vflush inter-
face for guest journal commits.

6.3 Case Studies
We now evaluate how vDrive’s crash behavior compares
against nested journaling. We use two applications: an
atomic write to a file within a popular text editor (gedit)
and log management within the SQLite database.

Table 2 shows the crash behavior for nested journal-
ing on the baseline system and semantic journaling on
vDrive respectively. We capture block-level traces at the
host virtual disk layer when executing the application in
guest. We then simulate crashpoints by applying subsets

Gedit SQLite
System Nested vDrive Nested vDrive
Total Crashpoints 10 10 30 30
Old State 3 5 12 21
New State 7 5 18 9

Table 2: Crash Behavior. The number of crashpoints sim-
ulated for two applications, and the resulting application
states after remounting the filesystem in the guest on the
virtual disk image obtained after crash. Old and new
states correspond to before and after application execu-
tion.

of writes from the trace to the original virtual disk image
to reconstruct the crashpoint virtual disk image. We then
restart the guest virtual machine, remount the filesystem
on the reconstructed virtual disk image, and run recovery
to test for crash behavior.

Atomic Write. The atomic write to a file within gedit
creates a new version of the file under a temporary name,
issues a fsync to flush the atomic write to disk, and re-
names the temporary file to the original file name. As
a result, an atomic write ensures that either the old con-
tents before the write (old state) or new contents after the
write (new state) are available in the file in entirety, both
of which are consistent states.

As shown in Table 2, nested journaling uses the cache-
flush interface and points to either the old or new contents
of the file after recovery. Semantic journaling preserves
the same crash behavior as nested journaling by always
recovering to a consistent state. However, it recovers to
the old state more frequently than nested journaling. This
is because journal commits use the vorder interface in
vDrive, which delays durability for writes. Neither of
the two modes result in an inconsistent state where the
filesystem was not able to recover or the recovered file
did not have old or new contents or have a mix of con-
tents.

Log Management. The SQLite database uses a two
fsync sequence for committing its transactions: first af-
ter committing its writes to a log file, and second after
making in-place updates to the database. We simulate
a SQLite transaction transferring data across a set of ta-
bles. After the filesystem recovery, the SQLite database
performs its own recovery to reach to a consistent state,
which reflects either pre-transaction (old state) or post-
transaction (new state) changes.

As earlier, recovery on vDrive results in the old pre-
transaction state for about 70% of the crashpoints. The
vDrive design trades off the freshness of the virtual disk
image for application runtime performance. For the
nested journal, we find that the database recovers to the
post-transaction state more often. This is because there
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is a higher chance that either the filesystem or the SQLite
will recover to the new state. If the first fsync is not
committed, the filesystem recovers to an old state and
the database recovery performs a roll-back from the log
file. If the first fsync is committed, the filesystem recov-
ers to an old state but the database recovers to the new
state by replaying the log changes. If both the fsyncs are
committed, both the filesystem and database recover to
the new state. In all cases, both vDrive and baseline sys-
tems always recover to either the old or new state, both
of which are consistent.

We also tested the no cache-flush journaling mode
from Section 6.2, which provides performance higher
than semantic journaling, but causes delayed as well as
re-ordered writes. In this mode, the crashpoints resulted
in different inconsistent images with unmountable or
read-only filesystems, orphaned filesystem inodes, and
data corruption with mixed contents from the old and
new states.

7 Related Work

Our work builds on past work on virtual I/O, new storage
interfaces, and consistent storage systems.

Virtual I/O Performance. Recent work has sought
to improve the performance of I/O virtualization.
ELVIS [15] and ELI [14] improve virtual I/O perfor-
mance for network and read/write I/O in KVM/QEMU.
They propose the use of exit-less interrupts and polling
to reduce the number of switches between guest and
host. Further, they scale virtual I/O performance by us-
ing x86 hardware support for posted interrupts. Past
work [31, 25] has also investigated guest scheduling
mechanisms to improve virtual network and I/O perfor-
mance in the context of Xen [4]. Similarly, the per-
formance overheads for nested filesystems have been
analyzed with advice implied for new filesystem de-
signs [21]. In contrast, vDrive is the first system im-
plementation to account for the performance and con-
sistency tradeoffs for journaling in nested filesystems.
vDrive provides high performance for crash consistency
with the use of journaled filesystems, and does not re-
quire any costly additional data copies as in other consis-
tency techniques such as local snapshots and distributed
replication [28, 39].

New Storage Interfaces. Recent proposals have in-
vestigated storage interface extensions for specific use
cases such as flash caching [32, 10, 23], new filesys-
tems [41, 19, 5], flash databases [26], and key-value
stores [12]. Most of these works have benefitted from the
internal mechanisms within a flash SSD such as logging,
garbage collection and sparse address spaces. How-
ever, such a tight integration mostly requires offloading

software functionality to hardware with changes to the
standard SATA/SCSI protocols [33, 41, 5, 30] or cus-
tom communication channels [12, 22] on the PCI-e bus.
In contrast, this work specifically targets disk storage
and virtual environments where the benefits of provid-
ing high performance data consistency are significantly
higher than flash storage. In addition, Xen and virtio
support paravirtual I/O barriers for SCSI block devices
to enforce write ordering only limited for write-through
disk caching [30, 29, 4]. vDrive provides significantly
better control than these operations by using a combina-
tion of vflush, vorder and flush notifications that work for
all caching modes in guest and host systems.

Consistent Storage. A number of approaches to build-
ing higher performing and crash-consistent filesystems
have been investigated in the past [13, 9, 6]. How-
ever, most of these proposals either increase filesystem
complexity significantly [13, 6] or provide very general-
ized frameworks to order filesystem updates [9]. Recent
works on filesystem [5], databases [7] and storage proto-
cols [30] propose the use of optimistic crash consistency
and closely relate to vDrive’s design principles. In this
work, we explore the first use of optimistic crash con-
sistency to address the performance overheads of nested
journaling. We find that it requires major changes to the
virtual I/O system and rethinking the software interface
between the guest and host operating systems. Recently,
new optimizations have also been proposed to minimize
the overheads for nested journaling arising from SQLite
log and ext4 filesystem journal in the Android I/O stack
on flash storage [18, 20, 34]. However, those optimiza-
tions focus primarily on cheap and slow flash storage
popularly used in smartphones or tablets, and are not di-
rectly applicable to virtual disk I/O stack.

8 Conclusions

Virtual I/O has been widely adopted in production en-
vironments for application and infrastructure services in
the recent past. We present a first look on the crash con-
sistency and performance tradeoffs for virtual I/O. Our
findings reveal deep insights into the performance costs
and interaction of nested filesystem journals. We pro-
pose a new virtual disk interface and semantic journaling
technique to address the performance overheads associ-
ated with nested journaling. As new non-volatile mem-
ory technologies become available, such as phase-change
and storage-class memory, it will be important to revisit
the interface to further address the system call overheads
for virtual I/O.
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