Characterization of Problem Stores

Allison L. Holloway and Gurindar S. Sohi
Department of Computer Sciences
University of Wisconsin at Madison
Email: {ahollowa, sohi@cs.wisc.edu

Abstract— This paper introduces the concept of problem PC1: St X eviction prefetch PC2:Ld>
stores: static stores whose dependent loads often miss ineth \ | | |
cache. Accurately identifying problem stores allows the ady ! ! ! !
determination of addresses likely to cause later misses, fEmntially A B c
allowing for the development of novel, proactive prefetcmgand ~ ~ """~ ~"""""""""-~"----= =
memory hierarchy management schemes. 100,000s of cycles

We present a detailed empirical characterization of problen -
stores using the SPEC2000 CPU benchmarks. The data suggests Time
several key observations about problem stores. First, we fih
that the number of important problem stores is typically quite
small; the worst 100 problem stores write the values that wll
lead to about 90% of non-cold misses for a variety of cache
configurations. We also find that problem stores only account Many prefetching schemes start with static loads that are

for 1 in 8 dynamic stores, though they result in 9 of 10 misses. |ikely to result in a cache miss (at PC2) and try to determine
Additionally, the problem stores’ dependent loads miss intte L2 0 3ddress (X) that will be accessed by these loads. Prefetc

cache a larger fraction of the time than loads not dependent to th dd then i d that th let
problem stores. We also observe the set of problem stores isble 0 these addresses are then ISSUed so that they can complete

across a Variety of cache ConfigurationS. Fina“y’ we foundhat ahead Of When the |Oad iS eXeCUted. The addreSS Calculation
the instruction distance from problem store to miss and protlem for these prefetches, for all but the most basic accessrpatte
store to evict is often greater than one million instructiors, butthe which can be accomplished in hardware, typically requires
value is often needed within 100,000 instructions of the esion. ¢yme software calculations. These calculations couldeeith
be carried out in the main program thread, as with software
prefetching [7], or advanced loads (as in 1A-64 [2]), or in a
|. INTRODUCTION separate helper or prefetch thread [4], [8]. It is by now well

. . : et-stablished that a small number of static instructions eaus
Ever-increasing memory latencies have caused computer

. . . . majority of the cache misses in user programs [1], [4], [9].
architects to think about novel techniques to deal with mgmo) W. . °T prog [.] [] [°]
T . -Prefetching schemes typically restrict their attentionths
latencies incurred on cache misses. A common characteristi) 4 .
of these techniques igrefetching where the address that issmall set of static load instructions.
4 B 9 Looking at Figure 1 we see that a completely different

likely to cause the cache miss is determined and submitted_to . .)
.) approach to knowing the address (X) that will result in cache

the memory well before the corresponding load is encoudtere . : S .
: . misses, well in advance of the cache miss, is to consider the
allowing the latency of the memory operation to be overlappe

: . . o Store instruction (at PC1) which first writes into that addre
with other computation. As relative memory latencies iase
: : . If we knew when a store was performed, that the address to
computer architects will be called upon to invent even more, . . : . .
. . . . which the value is written will eventually be the object of
techniques for proactive prefetching and memory hierarch : .
management load miss, i.e., the store waspaoblem store we could

A prefetching scheme has two aspeaihat to prefetch, get the miss address at point A, far in advance of the actual

andwhento brefetch. We are concerned with novel techniau load instruction, and with little effort since the storeadhtes
P ' 9UsRe address anyway. Further, if the stores could be idedhtifie

Fig. 1. Sequence of Events from Store to Load Miss.

write-allocate cache in Figure 1. At some point in time dgring/er’ 'S to identify and understand these problem stores, an

the execution of the program, A, a store instruction (at PCifllsStmngh them from other stores. Addressing this chake

S . the subject of this paper.
creates a value which it puts in address X. Later Ioads_ andRecent work has shown that static stores and loads have

: o . Bple dependence relationships [3], [6]: thus, a dynamic
?hdd{esz X |tsFr>(ép2Iaced from thzgache,xrestutllth 'c'; amiss Whﬁgtance of a static load only depends on the dynamic instanc
¢ load (a) accesses address X at time C. of a few static stores. This set, called ttere setoy Chrysos

Manuscript submitted: 17 Nov. 2004. Manuscript accepté&Dg&c. 2004. and Em?r'_ typlcally_ has ver_y few enmes_ (often _One) (3] [6]
Final manuscript received: 21 Dec. 2004. Combining two different, independent ideas: (i) a few stati

loads are responsible for a disproportionate number ofecach II g ‘ .o 10 |
misses, and (ii) the values accessed by a static load are °°f I] ’Elﬁﬂfgo
produced by a few static stores, leads us to the main idea: osf I

we can expect a few static store instructions to create the
values that will eventually lead to load miss@hese static
stores are the problem stores that we would like to diststgui
from other stores.

We present a characterization of these problem stores, Firs
we show that there is, indeed, a small set of stores whose
dependent loads cause most of the misses in the program. ozt
We then show that these problem stores make up a relatively .|
small portion of all dynamic stores; their contribution teet .
total number of misses is much greater than their contdbuti float i comm e
to the total number of stores. Additiona”y' in L2 caches thFig. 2. Fraction of non-cold misses covered by the top 10,r&D10 worst
dependent loads of problem stores miss a higher percentaggrablem stores for a 8K (left), 128K (left middle) and 1M (rigmiddle)
the time than loads not dependent on problem stores. Finafl§e-level cache and two-level cache with a 128K L1 and 1M lighf).
we explore distances from problem store to load miss, proble

o o
o ~

o
>
T

Average non-cold miss coverage
o
ol

0.3

T
I top 10

store to evict, and evict to load miss so that we can determine <2 10
. apache I top
how far in advance we can identify a potential miss, how long ™ Jwp100

the line stays in the cache, and how long we will have to o
manage the line until a load will need it. parser

II. CHARACTERIZING PROBLEM STORES &
A. Problem Store ldentification

We define aproblem storeto be a static store whose sirack

dependent loads often miss. ucas

We examine the miss behavior for the entire Spec2000 CPU e
benchmark suite (both floating point and integer) run from th
beginning for 1 billion instructions with the train inputtse anmp

We also study three commercial workloads: Apache, SpecJbb —]
and OLTP. These are also run for one billion instructions, bu

start at a point where the caches are warm. Since we do Rigt 3. Fraction of all dynamic stores caused by the top 10a30 100

start from the beginning for the commercial benchmarks, oBfPblem stores for a 128K one-level cache.

tracking does not include every store written by the program

however, we feel our results are still representative of the) o
program behavior. We use a Simics-based SPARC Solaris fdilMl L2 (right). All L1 caches are 2-way set associative, all
system simulator [5], with our own cache model attached caches are 4-way set associative, and all caches have a 64

we can model the events to our own level of detail. Simidd/t€ line size.

feeds the cache one instruction at a time, stalling on cache/Ve call the percentage of all non-cold misses attributed to
misses, which are write-allocated. Simics’s internal eashs @ Set Of problem stores tieiss coverag@r simply coverage
been turned off. of that set. As the figure shows, for a 128K cache, the top 100
We track all loads and stores by their word address. G¥foblem stores have a coverage of roughly 93%, the top 50
a load hit or miss, we match the load with the static stof2ve & coverage of 85%, and the top 10 are often enough to
that had last stored to that address and update its hit/ nfg&yer 58% of all non-cold misses. Overall, the 1M one-level
information, assigning a miss to the matching store. We théAche has the highest fraction of load misses dependent on
sort all static stores by the total number of load misses tHoblem stores, but all the results are similar.
were dependent on dynamic instances of the store. Cold snisseThe commercial workloads tend not to have as high a
and misses where we did not capture the writing store are §@verage, though it is still relatively high at 70-80%; this

counted. could be the result of a larger working set, or the possybilit
o of slightly skewed results from missed stores. Taken tageth
B. Characteristics of Problem Stores this data implies that, as expected, the set of problem store

Figure 2 shows the average (geometric) fraction of nomwhich accounts for a significant portion of the non-cold @ach
cold misses attributed to the 10 (black), 50 (gray) and 100isses is quite small.
(white) worst problem stores for each class of benchmark forFigure 3 shows the fraction of dynamic stores caused by
a 8K (left), 128K (left middle) and 1M (right middle) one-dynamic instances of the top 10, 50, and 100 problem stores
level cache and for a two-level cache with a 128K L1 anith a 128K cache. Comparing this figure with the previous

T T T T T T T T
05 ' ' ' ' ?gg E— I top 10 | |
apache [top 50 | |

0.451 g X top 100

vortex [
twolf []
0.4r b perlbmk [1
parser []
mcf |
gzip []
gee []
eon []
crafty I
bzip2]
I
wupwise
swim |
sixtrack
magri 1
mesa [
lucas I
gay]
galgel]
fma3d [|
facerec
equake
art
apsi [1
applu 7
ammp |
average ; ;

L L L L L
0 10 20 30 40 50 60 70 80 90 100

float int comm avg

Fig. 5. Number of problem stores in the intersection of top8®and 100
problem store sets for an 8K, 128K and 1M 2-way set assoeiatiche with

Fig. 4. Fraction of time the dependent loads of problem stonéss in the 64 byte lines.

L2 cache for the top 10 (left), top 50 (middle) and top 100Ktjgoroblem
stores. The cache has a 128K L1 and a 1M L2. The rightmost khei&2
miss ratio for all loads for which we have seen their writingrss. 1 A —
I <10k
0.9 [<100k |
[<am
CJ>1m ||

figure suggests that problem stores contribute to a muckdarg %8/
fraction of misses than of references. The top 100 problem o7}
stores account for one in eight store references, yet tipica o
account for nine out of ten misses. The numbers are even more

dramatic for top 10 (and top 50) problem stores: they account ©°5f
for about 3% of all stores, but cause about 60% of all non-cold |

load misses.
0.3

C. Cache Hit/Miss Statistics for Problem Stores 02k] il

Figure 4 shows the average (geometric) miss ratios of the .|
L2 cache. We define miss ratio to be the number of load misses .
divided by the total number of loads, for a particular set of ° foa int comm avg
loads. The three leftmost bars for each class are the miss rat) o) .)
in the L2 for the dependent loads of the top 10 (lef), S{j9, Breakcoun of dsence i nstuctions etween o athe ynaric
(middle) and 100 (right) problem stores for a two-level @chevel cache with a 128K L1 and 1M L2 (right).
with a 128K L1 and 1M L2; the rightmost bar is the L2 miss
ratio for all loads for which we have seen the writing store.

In general, the worse the problem store, the higher the loade-level cache (all 2-way set associative with 64 byteshne
miss percentage. Additionally, for most of the benchmates, for each benchmark. If the sets of problem stores were gxactl
miss ratio for the top 10 problem stores, 25%, is signifigantthe same, the line for top 10 would be at 10, top 50 at 50 and
worse than the total miss ratio, 9%, and even the miss ratiop 100 at 100. Instead, overall, the top 10 share 4, top 50

for the loads of the top 50 and 100 problem stores. share 21, and top 100 share roughly 42. Some of the variance
N can arise because cache configurations can slightly chhege t
D. Stability of the Set of Problem Stores relative importance (and hit/ miss) characteristics ofestp

The previous data suggests that very few problem storiasis making the static stores appear in a different order in
account for most of the cache misses. However, the resultsttie rankings. The above data suggests that if we can capture
not show if there is any overlap between the set of probletine 100 worst problem stores for an 8K cache, on average we
stores for different cache configurations. If the set of fob would be able to also capture roughly 42 of the worst for both
stores is stable across a variety of cache configuratioss, tla 128K and 1M cache.
this set could be detected for one cache configuration, asdl us]]
as a proxy for the problem store set for another configuratidn: Distances between store, evict and miss

We measure the stability of the problem store set betweenFigure 6 presents the breakdown of distance between the
a collection of different cache configurations by countingynamic problem store instance and the resulting load miss.
the number of problem stores all the configurations have The bars are broken down by distance: less than 10,000,
common. Figure 5 shows the stability of the top 10, top 5000,000, and 1,000,000 instructions and greater than one
and top 100 problem stores between an 8K, 128K and 1illion instructions; the larger the bar, the more oftenttha

P problem stores results in a disproportionate number of &ach
oo = misses. The top 100 problem stores account for 93% of all
osf N - ||| [{=2 non-cold cache misses. The contribution of problem stores
orl | i to the number of cache misses was far greater than their

contribution to the total number of stores, and the loads tha
read from the stores have high miss ratios.We also observed
that the set of the top problem stores was reasonably stable
over a variety of cache configurations. Finally, we lookethat
distance in instructions from store to load miss, store fotev
and evict to load miss. The store distance statistics shaiv th
there are millions of instructions from store to miss andadtn
°‘11 — l that many from store to evict; however, there are signifigant
L —— rm omm v less from evict to miss, suggesting that the problem shoeld b
more tractable with good memory hierarchy management.

Fig. 7. Breakdown of distance in instructions between store evict (left Some of the empirical observations made from the data in
two) and distance in instructions between evict and loads rflight two).

Each set has results for a 128K one-level cache (left) ant&k 128with 1M this paper could, in hindsight, be made independently, and
L2 (right). non-empirically, by putting together the empirical obsdions
made in two independent bodies of prior work: (i) a few static
loads account for most cache misses [1], [4], [9], and (iismo
range of instruction distances occurred. loads depend upon a few (typically one) static stores [J], [6
The figure shows that 76% of misses attributed to problemSoftware and hardware identification of the set of problem
stores occur at least one million instructions after thébfmm stores opens up a plethora of possibilities for novel saftwa
store for a 128K cache, and 77% of the time for the Lgrefetching and memory hierarchy management techniques.
configuration. Additionally, almost every miss occurredajer Having introduced the concept of problem stores in this pape
than 100,000 instructions after the problem store wrote iige can also expect a lot of future work in software techniques
data. This data suggests that if problem stores are idehtifie exploit this concept.
correctly, the address of a future miss can be determined
trivially, long in advance of the miss, perhaps allowing for

proactive prefetching schemes with the ability to tolerate 1hiS Work was supported in part by National Science
latencies of tens of thousands of cycles or larger. Foundation grants EIA-0071924 and CCR-0311572 and the

We do not necessarily have to use knowledge of a futuiniversity of Wisconsin Graduate School. Allison Holloway
load miss as soon as the value is stored. If we know, at t4&S supported by a National Science Foundation fellowship.

store, that an instruction will load-miss on the address, we REFERENCES

can mark it and wait to manage it in the higher-level cachgg s. . Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau, BnGupta.
or when the line is evicted from the cache. Figure 7 shows Predictability of load/store instruction latencies. Rmoceedings of the

. ; e ; 26th Annual ACM/IEEE International Symposium on Microdetture
two sets of results: the distance (in instructions) fronresto pages 139152, 1993,

evict (left set) and from evict to load miss (right set). Ea¢h [2] B.-C. Cheng, D. A. Connors, and W. mei W. Hwu. Compileredited
these sets has two bars: one for a 128K cache alone (|eft) andearly load—address generation. Pnoceedings of the 31st International

: : Symposium on Microarchitectyrpages 138-147, 1998.
one for 128K L1 with 1M L2 (right). The address ranges arg, G‘" z[.) Chiysos and 3. S, Emif’ E/Iemory dependence prediatiing

the same as in the previous section. store sets. IrProceedings of the 25th Annual International Symposium
There are more than a million instructions between the store on Computer Architecturepages 142-153, 1998.

: : J. D. Callins, H. Wang, D. Tullsen, C. Hughes, Y.-F. Lee, Cavery,
0
and evict 55% of the time, and from 100,000 to 1,000,066 and J. Shen. Speculative precomputation: long—range tphéfg of

instructions another 45% of the time, but evict to miss mssul delinquent loads. InProceedings of the 28th Annual International
are shifted down one category: 70% of the time there are Symposium on Computer Architectupages 14-25, 2001.

; ; . P. S. Magnusson, M. Christensson, J. Eskilson, D. Fersge. Hallber,
10,000 to 1,000,000 instructions between the two; there ark 3. Hogberg, F. Larsson, A. Moestedt, and B. Werner. SimicswlA

more than one million instructions between the two only 30% system simulation platformlEEE Computer 35(2):50-58, Feb 2002.
of the time. These results make the problem more tractabl@: A. I. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. ShE®ynamic

: . : _ speculation and synchronization of data dependenceBrdeeedings of
if the address is marked as coming from a prObIem store, 30 the 24th International Symposium on Computer Archite¢i8@A) pages

45% of the time we only need to manage the line for another 181-193, June 1997.
100,000 instructions, rather than a million or more. [7] T. Mowry and A. Gupta. Tolerating latency through softeracontrolled
prefetching in shared—memory multiprocessalsurnal of Parallel and
Distributed Computing12(2):87-106, 1991.
lll._ CoNcLUSION [8] A. Roth and G. S. Sohi. Speculative data—driven muktitlaing. InPro-
This paper introduced the concept of problem stores, stores ceedings of the Seventh International Symposium on HidiofReance

h N | . hich will Computer Architecturepages 37—48, January 2001.
that write Into a memory location an access to which wi at(:ig] C. B. Zilles and G. S. Sohi. Execution-based predictising speculative

result in a load miss. A characterization of problem storas w slices. InProceedings of the 28th Annual International Symposium on
presented. The characterization suggests that a smallfset o Computer Architecturepages 2-13, June 2001.

0.6 1

0.5r 1

0.4 L

0.3F

ACKNOWLEDGMENTS

