
Characterization of Problem Stores
Allison L. Holloway and Gurindar S. Sohi

Department of Computer Sciences
University of Wisconsin at Madison

Email: {ahollowa, sohi}@cs.wisc.edu

Abstract— This paper introduces the concept of problem
stores: static stores whose dependent loads often miss in the
cache. Accurately identifying problem stores allows the early
determination of addresses likely to cause later misses, potentially
allowing for the development of novel, proactive prefetching and
memory hierarchy management schemes.

We present a detailed empirical characterization of problem
stores using the SPEC2000 CPU benchmarks. The data suggests
several key observations about problem stores. First, we find
that the number of important problem stores is typically quite
small; the worst 100 problem stores write the values that will
lead to about 90% of non-cold misses for a variety of cache
configurations. We also find that problem stores only account
for 1 in 8 dynamic stores, though they result in 9 of 10 misses.
Additionally, the problem stores’ dependent loads miss in the L2
cache a larger fraction of the time than loads not dependent on
problem stores. We also observe the set of problem stores is stable
across a variety of cache configurations. Finally, we found that
the instruction distance from problem store to miss and problem
store to evict is often greater than one million instructions, but the
value is often needed within 100,000 instructions of the eviction.

I. I NTRODUCTION

Ever-increasing memory latencies have caused computer
architects to think about novel techniques to deal with memory
latencies incurred on cache misses. A common characteristic
of these techniques isprefetching, where the address that is
likely to cause the cache miss is determined and submitted to
the memory well before the corresponding load is encountered,
allowing the latency of the memory operation to be overlapped
with other computation. As relative memory latencies increase,
computer architects will be called upon to invent even more
techniques for proactive prefetching and memory hierarchy
management.

A prefetching scheme has two aspects:what to prefetch,
andwhento prefetch. We are concerned with novel techniques
to determinewhat to prefetch well in advance of the actual
load that results in a miss. To put our proposal and previous
techniques in context, consider the timing of events for a
write-allocate cache in Figure 1. At some point in time during
the execution of the program, A, a store instruction (at PC1)
creates a value which it puts in address X. Later loads and
stores may access address X. At time B, the line containing
address X is replaced from the cache, resulting in a miss when
the load (at PC2) accesses address X at time C.

Manuscript submitted: 17 Nov. 2004. Manuscript accepted: 16 Dec. 2004.
Final manuscript received: 21 Dec. 2004.

100,000s of cycles

A B C

eviction prefetchPC1: St X PC2: Ld X

Time

Fig. 1. Sequence of Events from Store to Load Miss.

Many prefetching schemes start with static loads that are
likely to result in a cache miss (at PC2) and try to determine
the address (X) that will be accessed by these loads. Prefetches
to these addresses are then issued so that they can complete
ahead of when the load is executed. The address calculation
for these prefetches, for all but the most basic access patterns
which can be accomplished in hardware, typically requires
some software calculations. These calculations could either
be carried out in the main program thread, as with software
prefetching [7], or advanced loads (as in IA-64 [2]), or in a
separate helper or prefetch thread [4], [8]. It is by now well
established that a small number of static instructions cause a
majority of the cache misses in user programs [1], [4], [9].
Prefetching schemes typically restrict their attention tothis
small set of static load instructions.

Looking at Figure 1 we see that a completely different
approach to knowing the address (X) that will result in cache
misses, well in advance of the cache miss, is to consider the
store instruction (at PC1) which first writes into that address.
If we knew when a store was performed, that the address to
which the value is written will eventually be the object of
a load miss, i.e., the store was aproblem store, we could
get the miss address at point A, far in advance of the actual
load instruction, and with little effort since the store calculates
the address anyway. Further, if the stores could be identified,
the addresses could be marked and this information used for
different cache management techniques. The challenge, how-
ever, is to identify and understand these problem stores, and
distinguish them from other stores. Addressing this challenge
is the subject of this paper.

Recent work has shown that static stores and loads have
stable dependence relationships [3], [6]: thus, a dynamic
instance of a static load only depends on the dynamic instances
of a few static stores. This set, called thestore setby Chrysos
and Emer, typically has very few entries (often one) [3], [6].

Combining two different, independent ideas: (i) a few static



loads are responsible for a disproportionate number of cache
misses, and (ii) the values accessed by a static load are
produced by a few static stores, leads us to the main idea:
we can expect a few static store instructions to create the
values that will eventually lead to load misses. These static
stores are the problem stores that we would like to distinguish
from other stores.

We present a characterization of these problem stores. First,
we show that there is, indeed, a small set of stores whose
dependent loads cause most of the misses in the program.
We then show that these problem stores make up a relatively
small portion of all dynamic stores; their contribution to the
total number of misses is much greater than their contribution
to the total number of stores. Additionally, in L2 caches, the
dependent loads of problem stores miss a higher percentage of
the time than loads not dependent on problem stores. Finally,
we explore distances from problem store to load miss, problem
store to evict, and evict to load miss so that we can determine
how far in advance we can identify a potential miss, how long
the line stays in the cache, and how long we will have to
manage the line until a load will need it.

II. CHARACTERIZING PROBLEM STORES

A. Problem Store Identification

We define aproblem store to be a static store whose
dependent loads often miss.

We examine the miss behavior for the entire Spec2000 CPU
benchmark suite (both floating point and integer) run from the
beginning for 1 billion instructions with the train input set.
We also study three commercial workloads: Apache, SpecJbb
and OLTP. These are also run for one billion instructions, but
start at a point where the caches are warm. Since we do not
start from the beginning for the commercial benchmarks, our
tracking does not include every store written by the program;
however, we feel our results are still representative of the
program behavior. We use a Simics-based SPARC Solaris full-
system simulator [5], with our own cache model attached so
we can model the events to our own level of detail. Simics
feeds the cache one instruction at a time, stalling on cache
misses, which are write-allocated. Simics’s internal cache has
been turned off.

We track all loads and stores by their word address. On
a load hit or miss, we match the load with the static store
that had last stored to that address and update its hit/ miss
information, assigning a miss to the matching store. We then
sort all static stores by the total number of load misses that
were dependent on dynamic instances of the store. Cold misses
and misses where we did not capture the writing store are not
counted.

B. Characteristics of Problem Stores

Figure 2 shows the average (geometric) fraction of non-
cold misses attributed to the 10 (black), 50 (gray) and 100
(white) worst problem stores for each class of benchmark for
a 8K (left), 128K (left middle) and 1M (right middle) one-
level cache and for a two-level cache with a 128K L1 and

float int comm avg
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 n
on

−
co

ld
 m

is
s 

co
ve

ra
ge

top 10
top 50
top 100

Fig. 2. Fraction of non-cold misses covered by the top 10, 50 and 100 worst
problem stores for a 8K (left), 128K (left middle) and 1M (right middle)
one-level cache and two-level cache with a 128K L1 and 1M L2 (right).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

avg

ammp
applu

apsi
art

equake
facerec
fma3d
galgel
lucas
mesa
mgrid

sixtrack
swim

wupwise

bzip2
crafty

eon
gap
gcc

gzip
mcf

parser
perlbmk

twolf
vortex

vpr

apache
jbb

oltp top 10
top 50
top 100

Fig. 3. Fraction of all dynamic stores caused by the top 10, 50and 100
problem stores for a 128K one-level cache.

1M L2 (right). All L1 caches are 2-way set associative, all
L2 caches are 4-way set associative, and all caches have a 64
byte line size.

We call the percentage of all non-cold misses attributed to
a set of problem stores themiss coverageor simply coverage
of that set. As the figure shows, for a 128K cache, the top 100
problem stores have a coverage of roughly 93%, the top 50
have a coverage of 85%, and the top 10 are often enough to
cover 58% of all non-cold misses. Overall, the 1M one-level
cache has the highest fraction of load misses dependent on
problem stores, but all the results are similar.

The commercial workloads tend not to have as high a
coverage, though it is still relatively high at 70-80%; this
could be the result of a larger working set, or the possibility
of slightly skewed results from missed stores. Taken together,
this data implies that, as expected, the set of problem stores
which accounts for a significant portion of the non-cold cache
misses is quite small.

Figure 3 shows the fraction of dynamic stores caused by
dynamic instances of the top 10, 50, and 100 problem stores
in a 128K cache. Comparing this figure with the previous



float int comm avg
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 4. Fraction of time the dependent loads of problem stores miss in the
L2 cache for the top 10 (left), top 50 (middle) and top 100 (right) problem
stores. The cache has a 128K L1 and a 1M L2. The rightmost bar isthe L2
miss ratio for all loads for which we have seen their writing stores.

figure suggests that problem stores contribute to a much larger
fraction of misses than of references. The top 100 problem
stores account for one in eight store references, yet typically
account for nine out of ten misses. The numbers are even more
dramatic for top 10 (and top 50) problem stores: they account
for about 3% of all stores, but cause about 60% of all non-cold
load misses.

C. Cache Hit/Miss Statistics for Problem Stores

Figure 4 shows the average (geometric) miss ratios of the
L2 cache. We define miss ratio to be the number of load misses
divided by the total number of loads, for a particular set of
loads. The three leftmost bars for each class are the miss ratios
in the L2 for the dependent loads of the top 10 (left), 50
(middle) and 100 (right) problem stores for a two-level cache
with a 128K L1 and 1M L2; the rightmost bar is the L2 miss
ratio for all loads for which we have seen the writing store.

In general, the worse the problem store, the higher the load
miss percentage. Additionally, for most of the benchmarks,the
miss ratio for the top 10 problem stores, 25%, is significantly
worse than the total miss ratio, 9%, and even the miss ratios
for the loads of the top 50 and 100 problem stores.

D. Stability of the Set of Problem Stores

The previous data suggests that very few problem stores
account for most of the cache misses. However, the results do
not show if there is any overlap between the set of problem
stores for different cache configurations. If the set of problem
stores is stable across a variety of cache configurations, then
this set could be detected for one cache configuration, and used
as a proxy for the problem store set for another configuration.

We measure the stability of the problem store set between
a collection of different cache configurations by counting
the number of problem stores all the configurations have in
common. Figure 5 shows the stability of the top 10, top 50
and top 100 problem stores between an 8K, 128K and 1M

0 10 20 30 40 50 60 70 80 90 100

average

ammp
applu

apsi
art

equake
facerec
fma3d
galgel

gap
lucas
mesa
mgrid

sixtrack
swim

wupwise

bzip2
crafty

eon
gcc

gzip
mcf

parser
perlbmk

twolf
vortex

vpri

apache
jbb

oltp top 10
top 50
top 100

Fig. 5. Number of problem stores in the intersection of top 10, 50 and 100
problem store sets for an 8K, 128K and 1M 2-way set associative cache with
64 byte lines.

float int comm avg
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
≤10k
≤100k
≤1M
>1M

Fig. 6. Breakdown of distance in instructions between a missand the dynamic
problem store that wrote its address in a 128K one-level cache (left) and two-
level cache with a 128K L1 and 1M L2 (right).

one-level cache (all 2-way set associative with 64 byte lines)
for each benchmark. If the sets of problem stores were exactly
the same, the line for top 10 would be at 10, top 50 at 50 and
top 100 at 100. Instead, overall, the top 10 share 4, top 50
share 21, and top 100 share roughly 42. Some of the variance
can arise because cache configurations can slightly change the
relative importance (and hit/ miss) characteristics of stores,
thus making the static stores appear in a different order in
the rankings. The above data suggests that if we can capture
the 100 worst problem stores for an 8K cache, on average we
would be able to also capture roughly 42 of the worst for both
a 128K and 1M cache.

E. Distances between store, evict and miss

Figure 6 presents the breakdown of distance between the
dynamic problem store instance and the resulting load miss.
The bars are broken down by distance: less than 10,000,
100,000, and 1,000,000 instructions and greater than one
million instructions; the larger the bar, the more often that



float int comm avg
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
≤10k
≤100k
≤1M
>1M

Fig. 7. Breakdown of distance in instructions between storeand evict (left
two) and distance in instructions between evict and load miss (right two).
Each set has results for a 128K one-level cache (left) and 128K L1 with 1M
L2 (right).

range of instruction distances occurred.
The figure shows that 76% of misses attributed to problem

stores occur at least one million instructions after the problem
store for a 128K cache, and 77% of the time for the L2
configuration. Additionally, almost every miss occurred greater
than 100,000 instructions after the problem store wrote its
data. This data suggests that if problem stores are identified
correctly, the address of a future miss can be determined
trivially, long in advance of the miss, perhaps allowing for
proactive prefetching schemes with the ability to tolerate
latencies of tens of thousands of cycles or larger.

We do not necessarily have to use knowledge of a future
load miss as soon as the value is stored. If we know, at the
store, that an instruction will load-miss on the address, we
can mark it and wait to manage it in the higher-level caches
or when the line is evicted from the cache. Figure 7 shows
two sets of results: the distance (in instructions) from store to
evict (left set) and from evict to load miss (right set). Eachof
these sets has two bars: one for a 128K cache alone (left) and
one for 128K L1 with 1M L2 (right). The address ranges are
the same as in the previous section.

There are more than a million instructions between the store
and evict 55% of the time, and from 100,000 to 1,000,000
instructions another 45% of the time, but evict to miss results
are shifted down one category: 70% of the time there are
10,000 to 1,000,000 instructions between the two; there are
more than one million instructions between the two only 30%
of the time. These results make the problem more tractable:
if the address is marked as coming from a problem store, 30-
45% of the time we only need to manage the line for another
100,000 instructions, rather than a million or more.

III. C ONCLUSION

This paper introduced the concept of problem stores, stores
that write into a memory location an access to which will later
result in a load miss. A characterization of problem stores was
presented. The characterization suggests that a small set of

problem stores results in a disproportionate number of cache
misses. The top 100 problem stores account for 93% of all
non-cold cache misses. The contribution of problem stores
to the number of cache misses was far greater than their
contribution to the total number of stores, and the loads that
read from the stores have high miss ratios.We also observed
that the set of the top problem stores was reasonably stable
over a variety of cache configurations. Finally, we looked atthe
distance in instructions from store to load miss, store to evict
and evict to load miss. The store distance statistics show that
there are millions of instructions from store to miss and almost
that many from store to evict; however, there are significantly
less from evict to miss, suggesting that the problem should be
more tractable with good memory hierarchy management.

Some of the empirical observations made from the data in
this paper could, in hindsight, be made independently, and
non-empirically, by putting together the empirical observations
made in two independent bodies of prior work: (i) a few static
loads account for most cache misses [1], [4], [9], and (ii) most
loads depend upon a few (typically one) static stores [3], [6].

Software and hardware identification of the set of problem
stores opens up a plethora of possibilities for novel software
prefetching and memory hierarchy management techniques.
Having introduced the concept of problem stores in this paper,
we can also expect a lot of future work in software techniques
to exploit this concept.

ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation grants EIA-0071924 and CCR-0311572 and the
University of Wisconsin Graduate School. Allison Holloway
was supported by a National Science Foundation fellowship.

REFERENCES

[1] S. G. Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau, andR. Gupta.
Predictability of load/store instruction latencies. InProceedings of the
26th Annual ACM/IEEE International Symposium on Microarchitecture,
pages 139–152, 1993.

[2] B.-C. Cheng, D. A. Connors, and W. mei W. Hwu. Compiler-directed
early load–address generation. InProceedings of the 31st International
Symposium on Microarchitecture, pages 138–147, 1998.

[3] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using
store sets. InProceedings of the 25th Annual International Symposium
on Computer Architecture, pages 142–153, 1998.

[4] J. D. Collins, H. Wang, D. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery,
and J. Shen. Speculative precomputation: long–range prefetching of
delinquent loads. InProceedings of the 28th Annual International
Symposium on Computer Architecture, pages 14–25, 2001.

[5] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallber,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: Afull
system simulation platform.IEEE Computer, 35(2):50–58, Feb 2002.

[6] A. I. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. Dynamic
speculation and synchronization of data dependences. InProceedings of
the 24th International Symposium on Computer Architecture(ISCA), pages
181–193, June 1997.

[7] T. Mowry and A. Gupta. Tolerating latency through software–controlled
prefetching in shared–memory multiprocessors.Journal of Parallel and
Distributed Computing, 12(2):87–106, 1991.

[8] A. Roth and G. S. Sohi. Speculative data–driven multithreading. InPro-
ceedings of the Seventh International Symposium on High-Performance
Computer Architecture, pages 37–48, January 2001.

[9] C. B. Zilles and G. S. Sohi. Execution-based prediction using speculative
slices. InProceedings of the 28th Annual International Symposium on
Computer Architecture, pages 2–13, June 2001.


