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Abstract

Future multicore processors will be more susceptible to a variety of
hardware failures. In particular, intermittent faults, caused in part
by manufacturing, thermal, and voltage variations, can cause bursts
of frequent faults that last from several cycles to several seconds
or more. Due to practical limitations of circuit techniques, cost-
effective reliability will likely require the ability to temporarily
suspend execution on a core during periods of intermittent faults.

We investigate three of the most obvious techniques for adapting
to the dynamically changing resource availability caused by inter-
mittent faults, and demonstrate their different system-level implica-
tions. We show that system software reconfiguration has very high
overhead, that temporarily pausing execution on a faulty core can
lead to cascading livelock, and that using spare cores has high fault-
free cost. To remedy these and other drawbacks of the three base-
line techniques, we propose using a thin hardware/firmware layer
to manage an overcommitted system — one where the OS is con-
figured to use more virtual processors than the number of currently
available physical cores. We show that this proposed technique can
gracefully degrade performance during intermittent faults of var-
ious duration with low overhead, without involving system soft-
ware, and without requiring spare cores.

Categories and Subject Descriptors B.8.2 [Performance and Re-
liability]: Performance Analysis and Design Aids

General Terms Design, Performance, Reliability

Keywords Intermittent Faults, Overcommitted System

1. Introduction

The components of future multicore processors will become less re-
liable as technology scales, because individual devices are increas-
ingly susceptible to a variety of hardware faults [6,8,10,12,34,36].
In particular, technology experts warn about an increase in in-
termittent faults — faults which occur frequently and irregularly
for a period of time, commonly due to process variation or in-
progress wear-out, combined with voltage and temperature fluctu-
ations [6,8,12,13]. These are in addition to transient faults (or soft
errors), typically caused by particle strikes, and permanent faults,
which occur repeatedly after a device sustains irreversible damage.

Hardware reliability techniques have shown great promise at
tolerating faults, i.e., at hiding the effects of faults from the system-
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and user-level software running on the hardware [4, 16, 19, 20,
27, 30, 31, 37, 40]. Such techniques, however, have weaknesses
along one or more axis of fault coverage; overheads from time,
power, and area; and circuit complexity. As devices become more
unreliable, the ways in which faults manifest are likely to increase,
with a consequential increase in the complexity and overhead of the
techniques to tolerate the faults.

Intermittent faults present further challenges for designers. Un-
like transient faults due to single-event upset (SEU), intermittent
faults occur in bursts that can last from several cycles to several
seconds or more. While it may be possible for complex hardware
and/or software schemes to deal with a variety of intermittent faults
on their own, we believe that such schemes will be neither practi-
cal nor desirable. We must, therefore, explore additional techniques
that can enable circuit-level schemes to be more effective against
these faults. In particular, we believe that the ability to temporarily
suspend program execution on a core that is sustaining intermittent
faults will be an effective ploy for 1) reducing several of the factors
contributing to the faults in the first place, 2) simplifying system
design by reducing the fault coverage requirement, and 3) aiding in
the diagnosis of permanent circuit damage.

Naively suspending a processing core is not a common prac-
tice because it is not transparent to software and can lead to serious
system-level consequences. Fortunately, multicore processors pro-
vide unique opportunities for enabling techniques to adapt to the
dynamically changing resource availability created by intermittent
faults. We present a qualitative and quantitative comparison of three
of the most logical adaptation techniques, 1) pausing execution on
the faulty core without notifying the OS, 2) using spare cores, and
3) asking the OS to stop using the faulty core, and demonstrate
their different system-level effects. To remedy several drawbacks
of these three, we propose a fourth technique: using a thin hard-
ware/firmware layer to manage an overcommitted system — one
where the OS is configured to use more virtual processors than the
number of physical cores [46].

Before exploring our results in detail (Section 5), we discuss the
causes of intermittent faults and our major assumptions (Section 2),
explore the qualitative properties of the four adaptation techniques
(Section 3), and provide details of our methodology (Section 4).

2. Background: Intermittent Faults

Intermittent hardware faults are hardware errors which occur in
bursts for a period of time, commonly due to process variation
or in-progress wear-out, combined with voltage and temperature
fluctuations (often called PVT variations), among other factors
[6,8,12,13]. These variations can result in timing errors even when
operating conditions are well within the specified noise margins.

Because intermittent faults are affected by a large number of
factors, the duration of bursty faults can vary across a wide range
of timescales. For example, voltage fluctuations are typically short-
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lived, on the order of several to hundreds of nanoseconds [8,22,33].
Temperature fluctuations alter a device’s timing characteristics over
millisecond to second time scales [32]. Different software phases,
which can change on the order of 100ms to several seconds [35],
can exercise different components of a core, activating different
intermittent faults. Finally, as wear-out progresses over the course
of days [40], it can cause intermittent faults to become frequent
enough to be classified as permanent [12].

Many uncertainties remain regarding the occurrence of inter-
mittent faults in future technologies. In this paper, we make three
primary assumptions regarding these faults. Below we examine the
insights that lead us to believe these assumptions are reasonable.

1) Bursty intermittent faults will occur frequently. While the
exact rates of various faults are not certain for future processors,
current technology trends clearly indicate that even the design
of commodity processors will be greatly affected by these faults.
First, wear-out failures are expected to become much more frequent
[7, 8, 34], but devices typically do not fail suddenly, they display
intermittent behavior for a period of time beforehand [12, 13, 40].
Second, continued device scaling will result in increased PVT
variations, increased cross-talk, and decreased noise margins [7,
8, 10, 12, 13, 34], all of which lead to increased susceptibility to
intermittent timing faults.

The fault rates we choose to examine in this paper are in the
range of 0.1% Fault Duty-Cycle and up, meaning each core is af-
fected by a fault 0.1% of the time or more. We study such high
rates for several reasons. First, by studying and proposing solutions
that remain effective at such rates, we help process researchers un-
derstand what frequencies of hardware faults can be tolerated by
higher layers in the system. Second, it is unclear whether intermit-
tent faults between multiple cores will be correlated, though our
evaluations assume course-granularity failures are independent.1

High rates make it likely that multiple cores will fail at the same
time, approximating a period of correlated faults. Finally, these
rates are well beyond the expectation for current systems, but not
beyond the public considerations of industry technologists [6].

2) Practical circuits cannot mask all intermittent faults. While
many techniques for tolerating various faults have been proposed
[4, 16, 19, 20, 27, 30, 31, 37, 40], the ways in which faults manifest
are likely to increase as devices become more unreliable. This will
lead to a continued increase in the complexity and overhead of the
techniques to tolerate the faults. We believe circuit, and higher-
level, techniques will thus be employed to reduce the frequency
of intermittent faults, but cost-effective techniques are unlikely to
completely eliminate these faults, or prevent their occurrence from
being noticed by system or application software.

For example, techniques such as Razor [16] can detect and cor-
rect many timing related faults until the timing errors become too
large. After that point, techniques like Razor will be forced to ei-
ther fall back on another, much more complex and higher overhead
reliability technique, or adopt a simpler policy of suspending the
use of a core while conditions stabilize.

3a) Suspending use of a core . . . reduces factors causing faults.
Suspending the use of a core cannot repair manufacturing vari-
ations or in-progress wear-out. However, temporarily suspending
computation on a core will cause temperature and voltages to sta-
bilize, reducing the further occurrence of any intermittent faults
caused by these two major factors.

3b) . . . reduces faults. Suspending the use of a core when a burst
of faults begins, or is expected to occur, can improve the overall
reliability of the system. Due to the factors influencing intermit-
tent faults, correlated faults within a core or other localized area

1 This assumption is only relevant to Section 5.3.

are very likely. Thus, the kinds of events that are most challenging
for existing techniques to protect against, e.g., multiple concurrent
faults or faults affecting critical structures, are most likely to occur
together during temperature, voltage, or other fluctuations. All reli-
ability techniques have a certain probability of manifesting unpro-
tected errors to higher levels in the system. By reducing the number
of faults they must protect, especially the ones they are least likely
to protect, the number of faults they miss is reduced.

Current high-availability systems already take a similar ap-
proach by having service technicians replacing chips when cor-
rectable intermittent faults begin to occur [12]. However, the gran-
ularity of failure in a multicore (portions as opposed to an entire
chip), and the increasing frequency of these faults even for com-
modity processors, make chip-level replacement undesirable.

3c) . . . is likely to be useful for other purposes. Several pro-
posals call for fine-grained reconfiguration of a core’s components
(e.g., [9, 37]), or match a program’s requirements to a particular
core’s degraded capabilities, (e.g., [21]). We believe that the ability
to suspend execution on a core, without significantly impacting the
rest of the system, makes these techniques more feasible. We ex-
pect additional uses for temporarily suspending computation will
be discovered as architects consider the viability of such a policy.

3. Adapting to Intermittent Faults

Naively suspending program execution on a core is not a common
practice because it is not transparent to software and can have se-
rious system-level implications. Fortunately, multicore processors
provide unique opportunities, including inherent redundancy, low
on-chip latency, and high bandwidth, which enable several tech-
niques for adapting to the temporary loss of one or more cores.
In this section, we discuss three such techniques which represent
the current state-of-the-art, and propose a fourth technique to rem-
edy serious drawbacks in each of the first three. In Section 5, we
present a quantitative comparison of all four techniques, consid-
ering throughput, effects on latency-critical applications, fairness,
and overheads at different fault rates.

Throughout this discussion, we refer to the chip’s physical cores
simply as cores. We refer to the software-visible processing units as
virtual processors or VCPUs. In many cases, the two are equivalent.
However, the hardware/firmware may choose to expose more or
fewer virtual processors to software than there are physical cores,
or it may transparently reassign a VCPU from one core to another.
For simplicity, we typically refer to the lowest software layer as the
operating system (OS), which could be replaced with hypervisor
throughout with no loss of generality.

3.1 Existing Adaptation Techniques

Technique 1: Pause Execution The first technique we examine
for suspending the use of a core is to just pause the execution
of instructions for a period of time. As shown in Figure 1(a),
when a core (C2 in this case) sustains an intermittent fault, the
microarchitecture pauses the execution of instructions from the
virtual processor assigned to that core (V2).

Pausing execution is the simplest technique we examine, and
has been used, in a uniprocessor at least, for thermal management
[18]. In a multicore, other cores continue to execute instructions,
thus pausing execution on one core will not drastically affect the
other cores as long as they do not attempt to communicate with the
thread assigned to the paused core. If communication is present,
however, pausing one core can cause a cascading effect, livelocking
other cores.

This technique is not fair, because threads scheduled on the
paused virtual processor are starved, and it can similarly impact the
latency of critical applications. We would expect to observe low
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(a) Pause Execution (b) Spare Cores

(c) OS Reconfiguration (d) Overcommitted

Figure 1. Core Suspension Techniques

throughput for workloads where threads frequently communicate,
but for faults of short duration, this technique may be adequate for
some applications.

Technique 2: Spare Cores Unlike pausing, setting aside one or
more cores as spares is expected to have little impact on software
during a fault. For example, an eight-core chip might only ex-
pose seven cores to the OS. During a fault, the chip, using a hard-
ware/firmware layer, can transparently remap the affected virtual
processor from the faulty core to the spare. (We discuss recovering
the state of the VCPU in Section 3.3.) Core sparing is depicted in
Figure 1(b).

Hot (powered up) spares are appropriate for short duration inter-
mittent faults as circuit techniques can reduce leakage power when
the core is not needed [43]. Since the performance degradation is
negligible during a fault (as long as the number of faults do not
exceed the number of spares), spare cores are also effective for
long-duration or permanent faults. Partly for these reason, spares
are used in real systems (though to our knowledge, for permanent
faults only) [3, 39].

The major drawback of setting aside spare cores, especially for
commodity processors, is the high overhead of not using these
cores during fault-free execution. In addition, this technique cannot
tolerate more concurrent failures than the number of spares without
an additional fall-back mechanism.

Technique 3: OS Reconfiguration A third possible technique is
to ask the OS (or hypervisor) to reconfigure itself to only use the
remaining fault-free cores. This technique is depicted in Figure
1(c), where the de-configured virtual processor is not assigned any
software threads or guest virtual machines to run. Some current
OSs (such as Solaris) and hypervisors (such as those that run on
the IBM zSeries) already contain this functionality [2,42]. For other
systems, this technique requires intrusive software modifications.

Software reconfiguration can take several milliseconds, and can
cause high overheads for faults of short duration. But the perfor-
mance of the system should gracefully degrade once reconfigura-
tion is complete, since the OS retains responsibility for scheduling
threads, maintaining fairness, and achieving low latency for critical
applications.

On the surface, this technique also appears to eliminate the
need for hardware adaptation mechanisms. Unfortunately, that is
not the case, since current operating systems requires the faulty
core, and all other cores, to operate correctly until reconfiguration
is complete [28,42]. For the evaluations in Section 5, we utilize our
proposed technique (discussed next) during reconfiguration, though
it is not needed once reconfiguration has taken place.

3.2 Utilizing an Overcommitted System

A qualitative look at three existing techniques for suspending the
use of a core has revealed several deficiencies: fairness and latency
concerns, along with the possibility of cascading livelock; high
fault-free overhead and the need for a fall-back mechanism; and
OS-intrusive modifications plus the need for advanced notice of an
upcoming fault.

Technique Overview To alleviate these drawbacks, we propose
a fourth technique which uses a thin hardware/firmware layer to
abstract the details of fault management from the system software,
while presenting a view of continuous, fully-functional, reliable op-
eration. Such abstraction is achieved during periods of intermittent
faults by building on our prior work on an overcommitted system
— one where the system software is configured to use more pro-
cessors than the number of currently available cores [46]. This tech-
nique operates beneath the ISA, making it applicable to all system
software that can be loaded on the machine.

The function of the hardware/firmware layer is to virtualize
the cores. That is, the system software is not allowed to directly
control the physical cores implemented on the chip, but rather
control the virtual processors (VCPUs) that are exposed to it. The
hardware/firmware layer then manages the mapping of VCPUs
to cores, such that a given VCPU, unbeknownst to the system
software, can be quickly migrated to a different physical core, or
briefly paused. The operation of this layer is similar to, but much
simpler than a traditional Virtual Machine Monitor (VMM).

In an overcommitted system, two (or more) OS-visible VCPUs
must share a single physical core during a fault. Figure 1(d) shows
an example of using this technique, with virtual processors V2 and
V3 sharing core C3. V2 is currently executing, while V3 is not,
but they can frequently switch to avoid the issues associated with
the generic pause technique. The VCPUs that are co-assigned are
rotated to achieve fairness; for example, at some point, V2 may
have C3 to itself while V3 and V0 share C0.

We use hardware spin detection to facilitate overcommitting
unmodified Solaris [26, 46], since a VCPU that is not currently
running could be holding a kernel lock or be the recipient of
a cross-call. Spin detection preempts requesters spinning on the
lock, or initiators waiting for acknowledgment of the cross-call, in
favor of VCPUs that are performing useful work. Spin detection
is not required for correctness, as long as the hardware/firmware
periodically forces a VCPU switch. Spin detection is, however, an
important performance optimization.

Hardware/Firmware Complexity This technique involves mod-
est hardware/firmware complexity. Required features involve a
mechanism to context switch a virtual processor, a VCPU to core
mapping table, spin detection hardware, and control logic.

In our model, transferring a VCPU from one core to another in-
volves first moving all of the processor state, including visible state
and control registers, into the caches. The state is then restored on
another core (or later on the same core), allowing the coherence
protocol to transparently migrate the data when necessary. To re-
duce complexity, we assume that this functionality is implemented
in firmware/microcode using loads and stores to a reserved portion
of the physical address space. This support for transferring state is
similar to that contained in current products [1, 44].

A table mapping VCPUs to their currently assigned cores is
necessary both for scheduling decisions and for interrupt delivery.
We assume this small, infrequently accessed table is implemented
in hardware, and is hardened or replicated to protect against faults.

Spin detection hardware is helpful with unmodified Solaris.
However, virtualization-aware OSs, or ISAs that suggest the use
of a particular instruction to indicate spinning or idle processors
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(similar to X86’s hlt instruction) can eliminate this added com-
plexity [2, 45].

Finally, we need control logic with inputs from the fault detec-
tion mechanism, spin detection hardware, and mapping table. This
logic needs to perform simple scheduling decisions, direct the mi-
gration of virtual processors, and maintain the mapping table. We
assume this simple logic is implemented in hardware.

Overall, this is a modest amount of complexity, though certainly
more than is required for the pausing technique. However, all of
these components except spin detection are already required in
order to use spare cores.

ISA Transparency By placing control over the use of faulty and
non-faulty cores below the ISA, the abstraction of fault-free opera-
tion occurs transparently to both the OS and a traditional hypervi-
sor such as VMWare or IBM’s Power5 Hypervisor. Such a model
allows chip manufacturers to ship a chip that is expected to ex-
perience intermittent faults, but will continue to operate correctly
regardless of the system software installed on the machine. The
model provides several benefits for chip makers: first, the burden
of correct hardware operation remains with the hardware vendor,
not the system software vendor; second, the new chip automati-
cally works with products from multiple system software vendors,
and with legacy system software as well; and finally, as we will
see in Section 5, placing control of faulty cores beneath the ISA
allows some of the functionality to be implemented in hardware,
making it easier to quickly adapt to frequent changes in hardware
configuration.

3.3 Other Issues

We make two additional assumptions about hardware detection and
recovery mechanisms to frame our continued discussions. First,
three of the mechanisms require that the virtual processor execut-
ing on the suspended core be moved to a different core. Though
recovering the state from a suspended core may be possible in cer-
tain circumstances (e.g., [28]), it is clearly infeasible for others.
Instead, we assume that the fault recovery mechanism periodically
creates checkpoints, similar to [37], [25], or [41]. The checkpoints
are stored into the cache every 10k cycles, and on I/O, and are con-
sistent across the on-chip cores [25, 41].

Second, we assume that circuit-level techniques exist within a
single core for detecting and recovering from many simple faults,
whereas upon detecting a rash of intermittent faults on a core,
the circuit mechanisms initiate a rollback to the previous validated
checkpoint and then begin the adaptation mechanisms. The use of
Dual-Modular Redundancy (DMR), or triple redundancy (TMR),
as a detection and recovery mechanism is also be possible. Since
we are primarily interested in the effects on software, the results of
this paper would remain unchanged if one considers DMR cores to
form one logical processing core, and then performs the adaptation
techniques only on the logical core.

If using TMR, the temporary loss of only one of the three
redundant cores might still allow the continued use of DMR on the
remaining cores. Though several nice properties of TMR disappear,
including extremely high coverage and forward error correction,
the continued coverage may be sufficient, reducing the amount of
time it may be necessary to invoke core suspension mechanisms.

4. Experimental Methodology

4.1 Simulation

For the experiments in Section 5, we use Virtutech Simics [29], an
execution driven, full-system simulator which functionally models
a SunFire 6800 server in sufficient detail to boot unmodified oper-
ating systems. We use Simics as a functional simulator only, and

model timing using Simics MAI with our own cycle-accurate pro-
cessor and memory hierarchy module.

We model both an OOO core and, to reduce simulation time,
an in-order core for all experiments of 100ms or longer. We model
each OOO core as a 2-wide, 128-entry window core at 3 GHz. The
in-order core is a simple blocking model. The chip exposes eight
cores to the OS in most experiments. Each core contains split 16k,
2-way I&D caches, and a unified 512k, 4-way private L2. We also
model a 16MB, 16-way, shared L3 that is exclusive with the L2s.
Cores maintain coherence via a MOSI directory protocol over a
point-to-point interconnect with an average 10 cycle latency. The
L2 directory uses shadow tags, which are co-located with each
L3 bank. Main memory is 350 cycles load-to-use, with 40 GB/sec
of off-chip bandwidth. These microarchitecture parameters of the
cores and caches have little practical impact on our results.

For experiments which use processor virtualization, we evalu-
ate a thin virtual-machine layer assuming low-level firmware with
hardware support. We do model the overhead of firmware execu-
tion to migrate VCPUs. This task is performed by storing the run-
ning VCPU’s state in a portion of cacheable physical memory and
loading it later from the same or a different core. The state can be
transparently migrated to other cores using the on-chip coherence
protocol. Swapping VCPUs on a core requires several hundred cy-
cles to store and then load the large SPARC V9 architected register
state, and migrating costs up to 1000 cycles. We use the Spin De-
tection Buffer from [46].

In all simulations, we pause all cores for 10k cycles (3.3µsec)
upon initiation of fault recovery to roll back to the latest verified
checkpoint and account for the work lost.

OS Reconfiguration To perform OS adaptation, we instruct So-
laris to unconfigure one of its eight virtual processors, CPU4. In
our simulations, we do this by sending an interrupt to a second pro-
cessor, CPU3. As the interrupt is executing on CPU3, we force it
to call sbd ioctl() with the necessary arguments to unconfig-
ure CPU4. The function and arguments are the same as would be
called by the command cfgadm -C unconfigure CPU4, but
the interrupt mechanism allows us to call this function at arbitrary
points without the overhead of the command. Note that the Solaris
psradm command, which can take CPU4 ‘off-line’ is insufficient,
as the processor is still required to process cross-calls. Also note
that due to limitations in the Simics functional model, we are un-
able to perform this experiment with newer versions of Solaris, or
to perform the analogous experiment of reconfiguring a CPU. We
use the overcommitted technique as the fall-back mechanism until
the virtual processor is unconfigured.

Spare cores Due to our methodology, comparing runs using sep-
arate commercial workload checkpoints with different numbers of
OS-visible VCPUs is impractical. Thus, for the throughput exper-
iments, we model spare cores using the overcommitted technique
with oracle spin detection and without charging overhead for stor-
ing, migrating, or switching VCPU state. We do properly simulate
a seven processor system with our microbenchmark for latency and
fairness experiments, since our microbenchmark (discussed below)
is very regular and is dominated by user code.

4.2 Workloads

We use several workloads for these experiments. vortexMIX is
a simple multiprogramming workload consisting of 8 copies or
255.vortex from SpecINT2000 running reference inputs. OLTP is a
TPC-C-like workload using IBM’s DB2 database. The database is
scaled down from TPC-C specification to about 800MB and runs
192 concurrent user threads with no think time. Apache and Zeus
are static web servers driven by the Surge client. We do not use
any think time in the Surge client. pmake is a parallel compile of
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Measuring Throughput We evaluate workload throughput in
Section 5.1. For these experiments, one core experiences a
detected fault at the beginning of execution; simulations are then
run for a range of times from 100µs to 1 second.

Measuring Latency and Fairness For both the latency and
fairness experiments in Section 5.2, we use our microbenchmark
and simulate a single 10ms fault beginning at 100µs of simula-
tion, and then run for 11ms. The spare core experiments have
seven threads and seven VCPUs, with eight threads and eight
VCPUs for the rest.

Measuring Overall Performance Impact Determining the
overall impact of intermittent faults requires accounting for pe-
riods of fault-free execution as well. We run several experiments
with faults randomly occurring at a particular rate. The fault dura-
tion is fixed in each experiment, but the inter-arrival time of faults
is sampled, independently for each core, from a normal distribu-
tion of moderate variance ( µ

σ
= 10).

We randomize in-progress faults and inter-arrival latencies at the
beginning of simulation, and run enough randomized trials to
achieve a proper distribution of long faults with only 1sec sim-
ulations. However, we cannot properly setup the system soft-
ware at the beginning of simulation to already be affected by
an in-progress fault, and thus the results reported for the pause
scheme are optimistic for the longer fault durations. Using much
longer trials would require computationally intractable simulation
for these experiments.

Table 1. Experiment Descriptions

PostgreSQL using GNU make and the Sun Forte Developer 7 C
compiler. We do not include serial phases. artOMP is 330.art m
from the SpecOMP2001 suite, using reference inputs, and warmed
up and running in steady-state. Due to workload variability, we
simulate multiple runs and report average results. For readability,
we omit confidence intervals from the graphs, but we run suffi-
cient trials and observe small enough variance to keep the 95%
C.I. within 10%, and typically much less. Furthermore, small per-
formance variations have no effect on the qualitative results of this
paper. We use a microbenchmark in Section 5.2, which consists of
one thread per processor, where threads each execute short CPU-
bound transactions and have no communication. We use committed
user instructions as our metric for work in all experiments. User
commits has been shown to correlate well with other ‘work’ met-
rics, such as workload transactions [47].

5. Quantitative Analysis

Intermittent faults are caused by a variety of factors, and typically
last for a range of durations (see Section 2). In this section we
present a quantitative analysis to understand the implications of
different fault rates and durations on the four adaption techniques.

We focus on two kinds of experiments. First, we inspect the
system behavior in detail during a fault by measuring throughput,
latency and fairness. After we understand these implications, we
inspect the overall impact of these faults, including fault-free ex-
ecution, for a wide range of fault durations and frequencies. The
three types of experiments we perform are described in Table 1.

5.1 Throughput During a Fault

In this section, we demonstrate the throughput of all four tech-
niques during intermittent faults of various durations, discussing
each in turn. The line at 7

8
in throughput graphs represents the ex-

pected best-case slowdown of losing one core.

Pause Execution Figure 2 shows the throughput of each bench-
mark when pausing execution for faults of various durations. For
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Figure 2. Throughput of Pausing Execution During Faults of Var-
ious Duration
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the shorter 100µs and 1ms faults, all workloads observe through-
put within 25% of the best case. Across a range of fault durations,
vortex continues to have throughput similar to the best case, while
art is only slightly lower than that. The commercial workloads, on
the other hand, which have significant OS activity and communi-
cation between cores, observe much lower throughput for faults of
duration greater than 1ms — even approaching zero throughput for
100ms and 1sec faults.

Figure 3 helps explain this throughput loss for longer faults.
This figure shows the first portion of a trace of the number of cores
performing useful work during every 0.3ms of a 100ms fault. We
define useful work for each core as whether or not any user instruc-
tions were executed in each 0.3ms period, and sum this boolean
value over all eight OS-visible cores. For all workloads, the num-
ber of cores performing useful work immediately drops to seven
(or lower) after the fault. Vortex, with eight independent processes,
remains at seven for the duration of the fault. For artOMP, a sec-
ond core stops performing work after 2ms because it has blocked
waiting on a TLB shootdown request sent to the VCPU formerly
executing on the paused core.

The other four workloads, however, have much more frequent
interaction among cores, causing rapid degeneration of the entire
system’s forward progress. For Apache and Zeus, nearly half of the
VCPUs in the system stop making forward progress within 1ms
of the fault. For the three commercial workloads in this graph, all
VCPUs stop making forward within 3–11ms. The fault-free cores
are simply executing OS spin loops waiting for either cross calls to
complete, or locks held by the faulting processor [46]. While not
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Figure 5. OS Reconfiguration of Zeus

Apache artOMP OLTP pmake vortex Zeus
2.12 1.69 2.12 2.40 1.89 4.09

Table 2. Reconfiguration Latency (ms)

shown in the graph, all cores will eventually resume useful work
after the paused core is re-enabled, provided the paused interval
is short enough that the OS kernel does not panic (∼1 second for
Solaris 9).

Despite its simplicity, Figures 2 and 3 show that the cascading
livelock suffered by many workloads makes pausing execution
unattractive for long faults. On the other hand, for short (<1ms)
periods, this technique may be appropriate in some environments.

OS Reconfiguration To determine the performance of OS Recon-
figuration, we again inject faults of various durations in our simu-
lation. For these experiments, we send an interrupt to the OS to
unconfigure the VCPU that was running on the core sustaining the
fault, as described in Section 4.

During the longer 100ms and 1sec fault durations, the cost
of OS reconfiguration begins to amortize, and the throughput of
all the workloads approaches the expected value of one less core
compared to the baseline. For the shorter intervals, however, the
cost of reconfiguration is not amortized — the loss in throughput is
2–6 times the loss expected from a single disabled core.

The time required for reconfiguration to complete is shown in
Table 2. During this time, the OS requires all eight VCPUs to con-
tinue to execute code, by either using a fall-back adaptation mech-
anism, or by continuing to execute code on the faulty core itself. In
addition, this latency also represents the minimum length of time
that overheads from reconfiguration will be incurred, even if the

Fault duration
100µs 1ms 10ms 100ms 1sec

R
el

at
iv

e 
T

hr
ou

gh
pu

t

0.5

0.625

0.75

0.875

1

Apache artOMP OLTP pmake vortex Zeus

Figure 6. Throughput of Spare Cores

Fault duration
100µs 1ms 10ms 100ms 1sec

R
el

at
iv

e 
T

hr
ou

gh
pu

t

0.5

0.625

0.75

0.875

1

Apache artOMP OLTP pmake vortex Zeus

Figure 7. Throughput of an Overcommitted System

suspended core is re-enabled in the meantime (since reconfigura-
tion cannot simply be stopped once in progress). The first point for
each benchmark is thus placed on the x-axis (and measured against
the baseline) at point in time that the VCPU is finally disabled.

Similar to Figure 3, Figure 5 explains this data by measuring
useful work during various intervals. At 1.3ms (label ‘Fault’), both
the VCPU executing on the faulty core (Solaris’s CPU4) and the
recipient of the interrupt (Solaris’s CPU3), stop committing user
instructions. At 3.6ms (label ‘Unconfig.’), CPU4 is finally uncon-
figured and enters a PROM idle loop. All processors in the system
are quiesced twice to avoid deadlock arising from outstanding cross
calls, according to comments in the source code. Note that the la-
tencies in Table 2 are an average — this trace took only 2.3ms.

Spare Cores Spare cores can provide throughput during a fault
that matches the fault-free throughput (which also uses one less
core than the baseline). Figure 6 demonstrates this fact. For the
shortest fault, 100µs, the 10k cycles we assume for recovering
from the fault introduces some overhead. Likewise, the process of
transferring VCPU state and then incurring misses on all cached
data causes additional initial overhead. For all the longer durations,
however, there is practically no loss in throughput compared to the
best expectation. artOMP appears to incur sub-linear slowdown for
certain runs. This is an artifact of our methodology for simulating
spare cores (see Section 4): a VCPU in the baseline system enters
a spin loop waiting for all other VCPUs to acknowledge one of the
aforementioned TLB shootdowns, causing our perfect spin detec-
tion to yield the core to a productive thread.

Overcommitted System Figure 7 demonstrates the high perfor-
mance of the overcommitted system. Similar to using spare cores,
this technique incurs some overhead for the shortest faults due
to the recovery time and cache misses. However, this overhead is
small and is quickly amortized for longer fault rates.

Using an overcommitted system with spin detection during pe-
riods of intermittent faults yields throughput similar to using spare
cores. Unlike spare cores, however, this technique retains the ability
to utilize the entire machine during periods of fault-free execution,
and can handle concurrent failures.
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5.2 Microbenchmarking Latency & Fairness

While throughput is important, other performance metrics are
equally important for certain applications. For example, latency is
critical for Multiplayer Online Games [15], or for telemetry ap-
plications, and fairness may be important for consolidated servers.
Other metrics may be of interest as well. Ideally, we would use
these target applications to measure transaction latency and fair-
ness, but the complexity of building such workloads, combined
with irregular or long transactions and the distorting effects of other
software components, conspire to make such an evaluation difficult.
Instead, we use a microbenchmark, described in Section 4, to un-
derstand the underlying behavior of our four adaptation techniques.
We omit the data for different fault durations for brevity, but the re-
sults are easily extrapolated from the data for 10ms.

5.2.1 Latency

Figure 8 shows the cumulative distribution of transaction latencies
from each software thread for our microbenchmark. Both axes are
logarithmic to highlight transactions that deviate from the common
case.

In the baseline, fault-free system, we see that 99.5% of transac-
tions take 16µs or less, while several transactions take 40–100µs.
We see very similar data when using a spare core, and when paus-
ing execution, except that one transaction, the one on the paused
core, takes over 10ms. Note that our microbenchmark, dominated
by user code with no communication, represents the best case for
pausing execution. With OS reconfiguration, many transactions are
delayed by 100µs–1ms, while the OS quiesces all VCPUs. Because
the OS migrates threads off the faulty core, no transactions are de-
layed as long as the 10ms fault, but many outliers remain.

When using an overcommitted system, the frequency with
which VCPU context switching occurs can impact latency-sensitive
applications. However, this frequency is configurable in firmware,
and can be increased if necessary for a small increase in switch-
ing overhead. We have tuned our simulated firmware to perform
a VCPU context-switch at least every 20µs, and thus observe that
12% of transactions take approximately 20µs longer than the base-
line (since two VCPUs are vying for the same core). No outliers
are delayed by more than 20µs longer than the baseline.

5.2.2 Fairness

To measure fairness, we examine the total number of transactions
committed by each software thread. In Figure 9, we observe that the
system with a spare core commits a nearly equal number of trans-
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Figure 9. Microbenchmark Transactions from each SW Thread

Base Spare Pause OS OverC
F.S. [11] ↑ 1.00 1.00 0.44 0.49 0.94
ΣM0 [24] ↓ 0.92 1.00 5.47 7.14 1.17

Table 3. Fairness of Metrics for Different Techniques

actions per thread, and thus provides similar fairness as the baseline
(not shown). This result assumes that the application software can
be easily partitioned seven ways, which is not the case for many
scientific applications. Note that the the graph for spare cores only
has seven bars, while the others have eight.

We observe that the overcommitted system is able to provide
conceptually similar fairness as spare cores and the baseline, even
during the failure of one core. On the other hand, pausing execution
causes one thread to be significantly impeded by the fault. Since the
OS is still scheduling software threads among all eight VCPUs, one
application thread is starved when pausing.

Due to the overhead of using at least one VCPU to orchestrate
reconfiguration, and the quiescing of all VCPUs, OS reconfigura-
tion cannot maintain fairness among software threads during the
10ms interval we simulate. We would expect that for longer fault
durations, the OS might fare better.

To quantify the degree of fairness, we examine both the fair
speedup (F.S.) metric used by Chang, et al. [11], and the ΣM0

metric from Kim, et al. [24]. For fair speedup, we take the harmonic
mean of the speedup between each software thread and the most
productive thread in that experiment. ΣM0 is derived from the sum

of M0 across all pairs of threads i, j, where M
ij
0

= ‖Xi − Xj‖,

Xi =
Transi

Transp
, and p is the most productive thread.

For fair speedup, higher is better, and for ΣM0, lower is better.
These metrics are shown in Table 3. For both metrics, the baseline
and spare cores are very close, while the overcommitted system is
only slightly worse than both of them. Pausing and OS reconfigura-
tion are significantly worse. Though the metrics differ in how much
they penalize the OS and pausing schemes, both clearly show that
these two techniques are inferior in terms of fairness.
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5.3 Overall Impact of Different Fault Rates

Thus far we have examined throughput during faults without con-
sidering intervening periods of fault-free execution. Now we look
at the overall impact of the four techniques across a range of fault
durations and frequencies.

Using an analytic model, we extrapolate the throughput data
from Section 5.1 to determine the overhead at various fault rates.
We use an analytic model to examine overheads in a more con-
trolled environment, because we cannot perform an execution-
driven simulation of either OS reconfiguration due to limitations
in Simics, or spare cores due to its inability to handle more con-
current faults than spares (see Section 4). We also present data for
execution-driven simulations using the other two techniques to val-
idate the model and to explore multiple concurrent failures.

5.3.1 Analytic Model

In our simple analytic model, we first average the overhead (1 -
throughput) from all six benchmarks. We break the pause scheme
into two groups, Pause 1, containing the commercial workloads
(Apache, Zeus, OLTP, and pmake) for which pausing works poorly,
and Pause 2, containing vortex and artOMP, for which pausing
works well. Then, we factor in the expected fraction of time these
techniques are employed during runs with various fault rates. For
simplicity, we assume no concurrent faults.

In Figure 10, each line in the graph keeps the duty-cycle con-
stant, i.e., the fraction of the time each core is experiencing a fault.
Thus, 100µs faults with a duty cycle of 1% are occuring, on aver-
age, every 10ms, and 1sec faults are occurring, on average every
100sec. The solid gray lines near the top of the graph represent a
duty cycle of 10%. The middle set of dark dashed lines represent
a duty cycle of 1%, and the lower, lighter dashed lines represent
0.1%. Both axis are logarithmic. Because we assume no concurrent
faults, space cores incurs ∼12.5% overhead for 0.1–1% duty cycle,
and slightly more for 10%.

In all experiments, we see that the group Pause 2, as well as the
overcommitted scheme, incur overheads from 1–2 times the duty
cycle. The same is true for the group Pause 1 for 100µs faults, and
for OS reconfiguration for 1sec faults. However, for longer faults,
we observe overheads of approximately eight times the duty cycle
for Pause 2, since a fault on each core affects the other eight as
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Figure 11. Overhead with Different Fault Duty-Cycles (Execution
Driven Simulation) Light Dashed Lines: 50%, Solid Gray Lines:
10%, Dark Dashed Lines: 1%

well. Similarly for OS reconfiguration, not only does a fault on
one core affect the others, but the latency of reconfiguration causes
overheads 2–3 orders of magnitude larger that the duty cycle for
the shortest faults.

All techniques are expected to incur low overheads when fault
rates are low, but even when fault rates create a duty cycle of 0.1%,
care must be taken when invoking the pause or OS reconfiguration
techniques.

5.3.2 Execution-Driven Simulation

The simple analytic model in the previous section was unable to
handle multiple concurrent failures, which is necessary in order to
experiment with higher fault duty-cycles. In this section, we present
results of execution-driven simulation using randomly generated
periods of intermittent faults.

For longer faults, multiple concurrent failures actually benefit
the pause scheme in comparison to the duty cycle, since other cores
that might be affected by pausing one have some probability of
already being paused themselves. This is evidenced in Figure 11 by
the 100ms duration on the 10% duty-cycle line: the Pause 1 incurs a
55% overhead with simulation, but a projected 80% overhead from
our model.

Using an overcommitted system maintains the overall impact at
a level commensurate with the duty-cycle for all applications in all
experiments. It is also nearly the same as the Pause 2 group (i.e.,
workloads which have little communication). In summary, using an
overcommitted system yields low overhead, even when half of the
cores, on average, are faulty. The same is not true for any of the
other schemes.

5.4 Future Multicores

Based on what we can assume about future multicores, we believe
that the qualitative results of our experiments will generally hold.
Future technologies will allow room for many more than eight
cores, and this will undoubtedly have an impact on techniques for
adapting to intermittent faults. If applications are partitioned so
that they each use no more cores that they do in our simulations,
we would expect the results for pausing execution to be similar.
However, this technique could be devastating if a single application,
with occasional communication, is using all cores of the chip.
As long as all the cores are under the control of a single OS, or
single hypervisor, the system software may still have to quiesce all
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Quantitative Goals Qualitative Goals Appropriate
Fairness Latency Throughput No-Fault Cost Complexity Concurrent Timescales

Pause Exec. X X X
√

Low
√

≤1ms
Spare Cores

√ √ √
X Med. X 100µs–1sec+

OS Reconfig. X X X
√

High X ≥100ms
Overcommitted

√ √ √ √
Med.

√
100µs–1sec+

Table 4. Results Summary

cores to prevent deadlock, increasing the latency and overheads of
software reconfiguration.

Using spare cores becomes more viable as fault rates increase
and the relative granularity of spares decreases. However, this tech-
nique still cannot easily adapt to long or short-term changes in the
number of concurrent faults. For example, when using a laptop on
an airplane, or when one section of a data center becomes too hot,
fault rates may increase, requiring more spares. At other times, few
if any spares may be necessary. Setting the number of spares too
high introduces overhead, and setting it too low increases the prob-
ability of observing more concurrent faults than spares. An over-
committed system, on the other hand, has a distinct advantage since
it can dynamically adapt to these changes.

6. Related Work

Intermittent faults Many circuit-level techniques for tolerating
intermittent faults have been proposed [4, 19, 20, 31], but they are
generally applicable only to individual components. Consequently,
they are likely to be useful for reducing the frequency, but not elim-
inating, intermittent faults. Similarly, thermal management tech-
niques (e.g., [32, 38]) can be used to reduce the frequency of faults
by managing thermal variations. However, for future processors,
avoiding intermittent faults with these techniques will require them
to be overly conservative, thus providing low performance.

Reconfiguring after Device-level Faults Several methods have
been presented to continue use of a core despite permanent faults.
These techniques involve fine-grained diagnosis and reconfigura-
tion of a core’s components [9,37], or attempt to match a program’s
requirements and a core’s capabilities, such as Core Salvage [21].
We believe that the ability to suspend execution on a core in order
to perform diagnosis and reconfiguration would likely be a simpli-
fying addition to these techniques.

Fault Tolerance in Distributed Systems Much distributed sys-
tems research has addressed fault tolerance for clusters of com-
puters, e.g., [3, 5, 14, 17, 23]. For most of this research, the unit
of failure is an entire machine, including the cpu(s), memory, and
system software. Such course-grained units are not applicable to
systems comprised of only a few, or even one, multicore chip.

In addition, the comparatively short timescales of device-level
intermittent faults render these software-based adaptation tech-
niques ineffective because they cannot adapt quickly enough (see
Section 3.1). For example, if certain cores on a chip observe in-
termittent faults every few seconds, software techniques will, by
necessity, consider the entire chip to be permanently faulty.

Chameleon [23] provides a reliable software-based fault toler-
ant system. They use the term Adaptive Fault Tolerance to describe
a system that is flexible to the dynamic demands of applications,
but not necessarily to the dynamic conditions of the hardware.

7. Conclusions

As technology continues to scale, the effects of intermittent faults
will become important considerations in multicore design. Al-
though complex reliability techniques may tolerate many intermit-
tent faults without affecting the rest of the system, we believe these
approaches will require, or be greatly simplified by, the ability to

temporarily suspend computation on a core during bursts of such
faults.

We examine the system-level implications of thee obvious
mechanisms for adapting to the temporary loss of one or more
cores, and show that all three have serious deficiencies as summa-
rized in Table 4. To remedy these drawbacks, we propose a fourth
technique: using a thin hardware/firmware layer to manage an over-
committed system — one where the OS is configured to use more
virtual processors than the number of currently available physical
cores. Utilizing an overcommitted system is the only mechanism
to achieve high marks on all of the performance metrics across a
range of timescales, gracefully handle multiple concurrent failures,
and involve only moderate complexity.

By eliminating the system-level concerns through our proposed
overcommitted system, we believe researchers will find the ability
to suspend execution on a core to be a useful tool — both to
simplify the design and improve the coverage of reliable chips,
and for other uses that have yet to be discovered. Furthermore,
we motivate our work using intermittent faults, yet a variety of
factors will cause the resource configurations of future multicores
to dynamically and frequently vary. We believe that the flexibility
of techniques such as our proposed overcommitted system will
allow architects and system designers to continue exploring the
opportunities and challenges of this frequent resource variation.
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