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Abstract

Processor performance has steadily increased in the past several decades. The continuation of this, along

with drop in the price to performance, is critical to accelerating the transformations that will result from ap-

plications that demand powerful computing. Unfortunately, the processor industry has faced problems with

the incumbent processing model —out-of-order superscalarprocessor— with increasing design complexity

and power consumption combined with diminishing performance gains. Processor manufacturers, en masse,

have sidestepped this predicament by moving to multicore systems; the current generation of multicore

systems being multiple processing cores in a chip. In the future, applications that demand higher and/or

continuously increasing performance must rely on parallelexecution in some form to use the processing

cores in a multicore system. Multi-threaded applications such as enterprise application servers and scientific

programs, can benefit from multicore systems as they are either easily parallelizable due to the nature

of the application, or have been written by expert programmers who have carefully orchestrated threads.

However, such applications occupy only a small fraction of the end-user market. Parallelizing the large

fraction of single-threaded programs would require many experienced multi-threaded programmers, as well

as significant time requirements to both develop such applications and debug them. Novel approaches are

required for parallel execution of programs for the upcoming generations of multicore architectures.

Speculative parallelization is a class of techniques that achieves parallel execution from a sequential

program. The basic idea behind proposals in this class is to compose regions of program code as threads, and

speculatively execute these “threads” in parallel. With extra hardware support, violations of dependencies

from the sequential program order between the threads are determined, and the threads’ execution serialized.

This dissertation proposes Program Demultiplexing or PD, aspeculative parallelization model that has two

novel contributions.

In PD, a speculative thread is composed of a method in a program. A method (also known as procedure,

function or subroutine) is a fundamental programming construct used to express a desired sub-computation

in a program. Methods are a good choice for a parallel execution model such as PD because they are

specified by the programmers and, therefore allow them to reason about performance and correctness. While

there is no mandatory programming rule that a program shouldbe composed of many methods, and each
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one should solve a specific sub-task, modern applications are commonly developed by many developers

who program their tasks as several methods for easier debugging and reusability, and use methods from

one or more libraries and language packages. It is of no doubtthat most applications are developed with a

considerable level of reasoning that determines how the problem must be solved. Methods are an integral

part in this development process.

With this choice, PD is based on the observation that a sequential program is a collection of different

methods called by the programmer, one after another, for convenience in expressing the computation, as

well as to satisfy the default assumption of execution on a single processing core. Parallelism, even if it

may exist between different methods, remains unexploited.In PD, different methods are “demultiplexed”

from the sequential program order. The execution of a method, which is performed when it is called in a

sequential program, is separated, and speculatively executed at a point earlier, on a different processing core.

The execution model, therefore, may be speculatively executing several methods in a program, in parallel.

The second aspect of PD is a refinement to the execution model used by previous speculative paralleliza-

tion proposals, which was to speculatively traverse the control-flow graph of a program at the granularity

of speculative threads, and fork them for speculative execution. This control-flow based speculative paral-

lelization approach has a shortcoming. Data requirements for a speculative thread are not considered and,

therefore, the execution model may be prone to data violations. This could result in mis-speculations and

discarding of not only the thread that violated the dependency but, because of the speculative control flow

traversal, the squashing of all threads that follow. PD analyzes data requirements of a speculative thread and

determines the most suitable point the thread can begin execution, which is usually much earlier than the

call site of the method that the speculative thread is associated with. It uses the call site in the program only

for committing the speculative thread and to preserve the sequential program order.

PD achieves its style of execution with two software generated components. Atrigger specifies the point

in the program when a speculative thread may begin execution. It may be placed directly in the program,

or can be provided as conditions (predicates) based on program counters. In the latter case, the conditions

are evaluated dynamically by the hardware which, when satisfied, begins the speculative thread. Ahandler

provides the explicit live-ins of a speculative thread, which are the parameters of the method that it calls. In
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addition, the handler also evaluates branches that the callsite may be control dependent on, to ensure that

the speculative execution of the method is not wasted.

Proposed hardware support for PD consists of speculative execution of the threads, the foremost require-

ment for all speculative parallelization proposals. Private caches are used to ensure that stores performed

by the speculative thread are tracked. To hold the results ofa speculative thread, until it can be used by the

program or another speculative thread, and to squash a speculative thread that violated any dependencies,

private caches may be used. This dissertation instead, proposes novel and efficient storage structures

collectively referred to as the execution buffer pool, to alleviate the contention that speculative threads may

have if they use the private cache(s) of a processing core. Finally, to support evaluation of triggers, trigger

condition code registers are provided to store the results of predicates of triggers, which are operated on by

micro-code that evaluates the conditions specified in the triggers.

A simulation-based implementation of PD is evaluated on integer benchmarks from the SPECCPU2000

suite, programs written in C with no explicit concurrency and/or motivation to create concurrency. Several

results of the implementation are examined, notably the methods chosen for PD, their size, read and write

sets during speculative execution and the overheads incurred during speculative execution, the utilization of

processing cores during speculation, the sizing of proposed hardware structures, performance benefits, and

limitations of program ordered forking model in prior speculative parallelization proposals. PD achieves

harmonic mean speedup of 1.5x on benchmarks evaluated. The execution model has significant potential to

achieve greater performance improvements and scalabilityon a wide variety of applications.
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CHAPTER 1

I NTRODUCTION

In von Neumann architectures, a sequential program, more commonly referred to as a program, is

defined as a stored set of instructions. The execution state of these instructions, specified by the register and

memory values, is defined by an instruction pointer or program counter. The simplest means of executing

a program is to execute the instruction pointed to by the instruction pointer, which will result in the access

and modification of register and/or memory values, including the instruction pointer. After execution, the

instruction pointer points to the next instruction to be executed. This process is repeated until the end of

program is reached. Performance achieved by the machine is defined by the execution time or run time of

the program.

A major accomplishment of the microprocessor industry is the improvement in performance with every

generation of processors. For example, Intel Corporation now markets processors that are 5,000 times faster

than their first microprocessor in 1971 [147]. Advancementsin process and material technology, innovations

in the architectural, micro-architectural, and circuit implementations, and efficient design tools have helped

achieve this significant gain.

A topic that is of interest, particularly for innovations toimprove performance, is parallelism. Parallelism

in programs is a fundamental characteristic of the program that denotes the independence of computations

in a program. Parallelism provides the ability to perform several computations (instructions) in a program

concurrently because of their independence. Exploiting itcan help reduce execution time and improve

performance of a program. The desired extent of parallelismor concurrency to be exploited by the system

will determine the support needed from the hardware and software subsystems, and will determine the im-

provement in performance that can be achieved. It is necessary to use different means to exploit parallelism

at several granularities of instructions to achieve improvements in performance. I describe some of them

next.
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ILP. Instruction-level parallel (ILP) [146, 176, 179] execution is one of the most popular hardware based

parallel execution models to date; almost every processor is built to exploit ILP. A uniprocessor exploiting

instruction level parallelism employs techniques to extract parallelism from few hundreds of instructions.

By using a variant of Tomasulo’s algorithm [192] implemented in hardware (also called dynamic scheduled

out-of-order processing), false dependencies between instructions are eliminated and instructions executed

from the reorder buffer according to their data dependencies, hence achieving an “out-of-order” execution

model. The changes to the register and memory values made by an instruction are held until all prior

instructions in the reorder buffer have committed their changes. This ensures that the software system sees

the changes of an instruction in the order of the sequential program. Another instruction-level parallel

processing model is the Very Long Instruction Word or VLIW processors [34,51,52,66,158,159,172] that

uses software to schedule independent instructions in the same cycle by means of an explicit instruction

set architecture. Examples of out-of-order processors include Alpha 21264 [100], Intel Pentium Pro [50],

Intel Pentium 4 [89], IBM Power4 [190], and VLIW processors such as the Intel Itanium [132, 173]. The

development and use of instruction-level parallel execution techniques has been supported by a significant

body of research and by commercial microprocessors.

Distributed ILP. Traditional ILP uniprocessors have centralized hardware resources such as the reorder

buffer, load and store queues, that limit the scalability ofthe micro-architecture. In addition, the complexity

of such architectures can result in significant power consumption, heat dissipation, and complex and time

consuming validation. To tackle these shortcomings, yet design a scalable instruction-level parallel process-

ing system, there have been several recent academic proposals for decentralization of the cycle critical micro-

architectural structures that are power efficient. Examples are ILDP [102], TRIPS [169], and RAW [189]

processors. All of these proposals consider new instruction sets with low-latency scalar operand networks to

communicate values between distributed processing units.The distributed processing units or tiles usually

consist of a local storage (register file), execution units,and a programmable switch. Some of these proposals

(RAW and TRIPS) require compile time support to assign instructions to processing units and/or support to

orchestrate the communication of values between the units.The WaveScalar processor [187] is considered

a data-flow based distributed micro-architecture as it divides a program into waves, and executes these

waves on processing units that fire dynamically according todata dependencies. Several of these proposals
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not only target the instruction-level parallelism targeted by the out-of-order superscalar processor, but also

parallelism beyond that, at a coarser granularity.

Traditional Non-Speculative Parallelization. Due to diminishing efficiency in increasing the extent of

parallelism that can be exploited by hardware, software techniques are used to exploit parallelism at a very

coarse level, say, of the order of several hundred thousand instructions. The multi-threaded programming

model has long served this purpose. A multi-threaded program is composed of several threads and can

be executed concurrently on several processing cores. Eachthread is in itself a sequential program and

therefore, with corresponding program counters or instruction pointers. There has been a significant body of

work in expressing parallel execution as a collection of multiple sequential programs [4,5,13,15–18,28,29,

39, 53, 71–73, 79, 80, 85, 99, 109, 113–115, 127, 130, 141, 149, 156, 160, 195, 197, 206]. This is achieved

by writing a parallel program for a problem, either by havingthe programmer express the parallelism

explicitly in the program by managing multiple threads, or by extracting parallelism automatically from a

sequential program, thus creating a multi threaded application. I broadly refer to this form of non-speculative

parallelization as control-driven parallelization.

There are several software parallelization models that fall under the umbrella of control-driven par-

allelization, each suitable for a specific set of applications. The decomposition of a problem into multi-

threaded application will depend on the form and type of parallelism present in it [186]. In the class of

embarrassingly parallel applications, concurrency is easily achieved as threads will have no shared state

between them, or frequently access shared data with minimalmodifications. For example, server-side

programs such as webservers can have many concurrently running threads each servicing one or more web

requests. Similarly, parallel compilation application such as pmake can compile several C/C++ program

source files concurrently. In these cases, parallelism is easily expressed by the programmer using threads.

Another large class of applications is programs that exhibit structured parallelism such as scientific,

multimedia, signal processing, and bioinformatics programs. For example, scientific programs usually have

instructions that reference an array, perform some stencilcomputation on the data values referenced, and

store the computed value(s) back in the array. Parallelism can be automatically extracted and represented as

a collection of control-driven threads such as distributing chunks of loop iterations in a scientific program

between many processors. Libraries such as OpenMP can be used to transform a sequential program into
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a parallel program by means of pragmas placed before chosen regions of code to be parallelized. These

pragmas are processed by the compiler’s pre-processor, which automatically inserts calls to the library for

dividing the loop iterations across many processors. At theend of a parallel region, a barrier placed by

the compiler ensures that all processing cores have finishedtheir assigned task before proceeding with the

rest of the program. Other data parallel means (also known as, single instruction multiple data stream or

SIMD [67]) such as the MMX [148], 3DNow! [137], SSE [21], AltiVec [60], and Tarantula [63] instruction

set extensions on processors, can be used for expressing structured parallelism.

Many applications however, exhibit unstructured parallelism that is not straightforward to identify and

cannot be easily expressed by the programmer. Moreover, many applications use irregular data structures

and have data access patterns that are not easy to analyze andare not amenable to automatic parallelization.

Features of modern languages and compiler infrastructuresfurther hinder the analysis and parallelization of

the entire program. These include, separate compilation offiles, dynamic linking of libraries, dependence on

the runtime system to perform several tasks for a managed application, usage of language packages, object-

oriented practices such as information hiding, multiple inheritance, and so on. Therefore, parallel algorithms

to problems often have to be carefully constructed by expertprogrammers, and then programmed in the

desired language with the use of synchronization primitives such as locks to protect any data shared and

modified between threads. Expectedly, this is a hard task, asthe low-level concurrency primitives provided

are difficult to use correctly, and errors in these facilities are difficult to detect and debug. Therefore, newer

languages such as Java, ship with standardized and tested concurrency packages that provide features such

as atomic variables, time-out locks, task scheduling framework for invoking, scheduling, executing and

controlling threads. These eliminate many potential sources of problems such as deadlocks, starvation,

race conditions, and excessive context switching between contended threads, increase reliability and main-

tainability of code, and reduce programming effort. Another issue with lock-based synchronization that

the research community has been recently tackling is the serialization of entry into a critical section by

many threads. This, if not minimized, can become a serious bottleneck if locks are not judiciously used,

compromising scalability and performance of an application. For this, the research community has been

studying transactional memory programming [7, 81, 83, 84, 86, 87, 128, 133, 134, 153–155, 174, 205] to ease

the creation and programming of multi-threaded applications. Transactional memory introduces the notion
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of a transaction, a region of code whose changes are indivisible or atomic. The changes are visible if the

transaction is committed, and discarded when it is squashed. Transactional programming allows achieving

higher performance as transactional regions can be enteredconcurrently by many threads. A transaction is

executed speculatively and, at the end of the execution, committed if it did not violate any data dependencies,

or squashed and re-executed serially, if it did. Transactions, unlike lock-based regions, are also composable,

and therefore, two or more transactions can be combined intoa larger transaction without knowing their

internals.

Transactional programming is still a research proposal with several aspects such as programmability,

debugging, and hardware support being actively investigated. While programmers inclined to write multi-

threaded applications would benefit from transactional programming, it is not clear if the majority of end-

user single-threaded applications will become parallel. In any case, research in performance improvements

of sequential programs is important even in multi-threadedapplications because the majority of them do not

have abundant threads to run on future multicore systems that are expected to have hundreds of cores.

The creation of multithreaded programs remains, and is likely to remain, hard primarily because of

the complexity in developing a parallel algorithm for a problem and the difficulty in debugging such a

solution. Single-threaded programs, on the other hand, dominate the end-user market because of the

relative ease in developing such programs and simplicity indebugging the sequential program execution.

In this situation, we are also witnessing the ominous decline of performance improvements through micro-

architectural enhancements that end-users have been provided with every generation of processors. With

desktop systems already shipping with four processors [46,70,98,106,131,188], and many more processing

cores expected in the future, the question that system designers face is: How do we use the many cores to

improve performance of a sequential (single-threaded) program?

Speculative parallelization. Speculative parallelization is a class of proposals that attempts to use

the many processing cores by creating concurrency from a program but also maintaining the sequential

program order. Several proposals have been studied for a decade now, and it remains a subject of interest

in the research community [3, 40, 41, 45, 61, 81, 82, 125, 139,150–152, 177, 182, 196]. Proposals in this

category overcome the limitations of traditional parallelization by creating threads that are composed from

the program and speculatively executing them in parallel. Additional hardware support is used to determine
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threads that violate dependencies and squash them, and to enforce sequential program order of concurrently

executed speculative threads.

The performance benefits of these proposals greatly depend on several aspects which include, the

execution model defined by the composition of speculative threads, the ordering in which the threads are

forked for speculative execution, and the hardware and software support needed to implement such an

execution model. Among these, the execution model has focused on threads composed of specific regions of

program code, which are forked for speculative execution asthe hardware traverses through the control-flow

graph of the program. I broadly refer to these proposals as control-flow based speculative parallelization.

1.1 Overview of Program Demultiplexing

In this dissertation, I present Program Demultiplexing (PD, in short), an execution paradigm based on

speculative parallelization, for sequential programs. InPD, threads composed of methods (also, functions

or subroutines), are “demultiplexed” from the sequential order, decoupling the execution of a method from

the call site, which is where it is called in the program. In sequential execution, the call site of a method

represents the beginning of execution of that method, and happens on the same processing core as the

program. However, in PD, the execution of a method occurs on another available processing core, albeit

speculatively, before the call site is reached in the program. Several such speculative executions of methods

create concurrency in a program. The speculative executionis usually forked after the method is ready, i.e.,

after its data dependencies are satisfied for that executioninstance. Its results are committed, if they remain

valid, when the call site is reached by the non-speculative program.

Figure 1.1 illustrates the basic idea of PD. The figure on the left presents the sequential execution of

a program with methodsA, B, andD called by the program and methodC called byD. The methods are

executed in the same sequential order as they are called in the program. Parallelism between methods, even

if it may exist, is not exploited. On the right side of the figure is the illustration of PD based execution of the

same program. In the PD execution,C is forked for speculative execution first, followed byB, A, and finally

D; the forking order of a method determined by its dependencies with the program. Speculative execution

of D is (speculatively) used byC. Similarly, the program uses (commits) the speculative threads of methods

A, B, andD.
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Figure 1.1: Program Demultiplexing overview. The sequential execution on the left represents execution of
methodsA, B, andD. MethodC is called insideD. On the right side is the PD based execution. The methods
are spawned for speculative execution (represented by the gray shading over the method). Method D uses
the speculative execution of methodC. MethodsA, B, andD are committed when the call site in the program
is reached. The speculative executions do not violate any data dependencies and this is indicated by the tick
mark on the bottom right of the method’s box.

The highlights of PD are as follows.

No programmer support. Like other speculative parallelization proposals, the conceptual framework

of PD and the implementation discussed in this dissertationdo not rely on programmer support. The

implementation of PD in this dissertation requires automated software support from a compiler or a binary

postprocessor to instrument for profile information, and toprocess the profiles to generate the necessary

components for achieving PD based execution.

Suitable granularity of speculation for programs. Threads in PD are at the granularity of methods,

a fundamental programming abstraction in modern programs.They are used by programmers to often
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solve specific subtasks in a program and provide an interfacefor the rest of the program thus, acting as a

natural means of separation of tasks. Having several methods performing several subtasks in a program is

likely to expose parallelism between the methods that PD mayexploit. Even though there is no rule that

a method should solve a specific subtask, the advocacy of suchsoftware engineering guidelines is stricter

when developing large scale applications because of their benefits of easier reusability and maintainability

of program code.

Efficiently forking speculative threads. PD forks speculative threads for execution without the knowl-

edge of their order with respect to the program. I refer to this model as “unordered forking”. Previous

systems for speculative parallelization forked threads inprogram order [40, 41, 45, 61, 81, 82, 125, 139,

150–152, 177, 182, 196] (or hierarchical tree ordered, in case of nested speculative threads [3, 161]) by

speculatively traversing the control-flow graph. PD on the other hand, forks threads by also considering data

dependencies of the threads and determining suitable points in the program when they may begin execution,

thus more efficiently reaching distant parallelism than prior speculative parallelization proposals. The order

in which the threads will be used is unknown at the time they are forked for speculative execution.

1.2 Dissertation outline

In Chapter 2, I provide an overview of previous speculative parallelization proposals and other closely

related work. In Chapter 3, I introduce the concept of Program Demultiplexing, the reasoning behind the

choice of speculating on method granularity, the components to enable PD based execution and examples

of opportunities for PD in benchmark programs. In Chapter 4,I provide details of the software support

required for this dissertation’s implementation of PD. In Chapter 5, I describe the hardware support required

for such an implementation. In Chapter 6, I present the evaluation methodology and experimental results.

In Chapter 7, I present a summary of this dissertation, and discuss possible future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

Parallelism is one of the key means for improving the performance of computer systems, and Chapter

1 categorizes several means of exploiting it. Figure 2.1 is aspectrum chart of different proposals that

exploit parallelism at different granularities; the caption provides more details on their organization. This

dissertation is about speculative parallelization and expectedly, in this chapter, I first discuss this category of

proposals in detail. I then cover other non-traditional parallelization and parallel programming means. Even

though these developments are in the research areas of parallel programming and application design which

expect programmers to write correct parallel programs, I discuss them because of conceptual similarities in

the means of creating concurrency in a program.

2.1 Control-flow speculative parallelization

Speculative parallelization proposals can be categorizedbased on several criteria. Some of the key issues

that are considered are as follows:

1. Composition of speculative threads.What should the threads be? Past proposals have considered

loops, iterations of loops, continuations of methods (which is the program executed after the return of

a method), or generic tasks obtained by dividing the program.

2. Forking model of speculative threads.How are the speculative threads reached and when are they

forked for speculative execution? Past proposals have speculatively traversed control flow graph and

forked speculative threads in that order or hoisted speculative threads to be forked before they are

reached by the program.

3. Hardware and software support. This spans a large number of subtopics such as, software support

to generate a program with speculative threads, means to perform speculative execution, support to

store the speculative threads, ensure their correctness, and commit or invalidate them.
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Figure 2.1: Spectrum of proposals that exploit parallelismat different granularities. On the left side is
inorder processor that executes one instruction at a time and does not exploit parallelism in a sequential
program. On the right side is data-flow processor that exploits all the parallelism in a program by executing
instructions in data-flow order. In between the two are several proposals ranging from out-of-order processor
that can reach parallelism in a window of few hundred instructions to research proposals on instruction level
distributed processing systems such as RAW, ILDP, TRIPS, and WaveScalar, that further extend the reach
for parallelism. This is followed by speculative parallelization proposals such as TLS, Multiscalar, SpecMT,
and PD all of which have the ability to obtain parallelism thousands of instructions ahead although only at
the granularity of a speculative thread defined by the system. Multi-threaded programming models, placed
on the far right, could sustain parallel execution of several threads, depending on the application and its
developer.

The first two aspects mentioned in the above list define the execution model of a speculative paralleliza-

tion proposal, and the last aspect defines the implementation of the model. I will next describe several

speculative parallelization proposals and in particular,discuss the composition of speculative threads and

the forking model. I do not describe the differences (often,subtle) in the hardware support needed for the

following reasons:

1. Hardware support does not strictly adhere to a particularconcept or proposed execution model. Usu-

ally, hardware support for one model can be used to implementmany other speculative parallelization

models.

2. Hardware support for speculative parallelization has been covered in detail by many previous disser-

tations.

3. The aim of my thesis research was to identify and substantiate the limitations of reaching parallelism

in speculative parallelization proposals. The hardware support is notably not in depth in this disser-

tation for this particular reason. Discussing the concept of the previous proposals in detail will help

uncover the limitations and design new means for alleviating them.

In the following sections, I categorize speculative parallelization proposals into four categories. They

are: (i) the generic Multiscalar-based, (ii) loop-based, (iii) method-continuation based, and (iv) transaction
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System Focus Software Hardware
Multiscalar [68, 69, 177] Tasks Identifying and compiling tasks Special purpose hardware with processing units with fast

operand value communication
SPSM [62] Generic Explicit software based speculative parallelization and

analysis
Multiprocessor with instruction set extensions

TLS [182–184] Loops Profile based analysis Multiprocessors with support for speculative execution,
value prediction

DMT [3] Loops and method continuations. Hierarchi-
cal tree-ordered forking

- Multi-threaded hardware, support for speculative execu-
tion of threads, value prediction, and ordering

Superthreaded [196] Loops No data speculation in threads. Data values are sent to
consumers with explicit compiler insert instructions

Multiprocessor with instruction set extensions

Hydra [82] Loops and method continuations Profile Multiprocessor with speculative execution of threads
Zhang et al. [208] Loops - Multiprocessor with speculative execution of threads
MAJC [193, 194] Loops and method continuations VLIW compilation Support for speculative execution of threads
Cintra et al. [45] Loops Profile based analysis Hierarchical CMP hardware with support for speculative

execution of threads
Clustered SpecMT [122, 125] Generic - Based on clustered microarchitecture with support for

speculative execution of threads
Marcuello et al. [123, 124] Generic Profile based analysis to determine suitable regions and

forking points in program
Multiprocessor with speculative execution of threads

Module-level [200, 201] Method continuations Profiling Multiprocessor with speculative execution of threads
Jrpm [41] Loops Java-based with profiling support Multiprocessor with speculative execution of threads
IMT [144] Generic Identifying and compiling tasks Multithreaded hardware with speculative execution of

threads
Du [61] Loops Compilation framework for identifying spawning point Multiprocessor with speculative execution of threads
TCC [81] Generic, programmer specified Transactional compiler Transaction based multiprocessor hardware also used

speculative parallelization. Provides programmers with
specifying commit ordering

Pinot [138] Generic Compiler infrastructure to extract speculative threads
from programs

Speculative multi-threading processor that supports fast
operand value communication, low latency inter thread
communication with an update-based cache coherence
protocol and instructions for thread termination

Prabhu et al. [150, 151] Loops Analysis of hindrances and opportunities for speculative
parallelization

Hydra hardware for speculative execution of threads

Mitosis [152] Generic Elaborate compilation framework for speculative paral-
lelization and choosing program points for forking of
speculative threads

Multiprocessor with speculative execution of threads

OoO Spawn [161] Loops and method continuations. Hierarchi-
cal tree-ordered forking

- Hardware extensions to deal with ordered tree based
forking

Bulk [32] Loops and method continuations POSH compiler Hardware with speculative execution of threads, signa-
tures used for read and write sets

Subthreads [49] Generic - Multiprocessor with speculative execution of threads,
and support for dividing threads into multiple speculative
subthreads and checkpointing

PolyFlow [2] Generic - Multithreaded processor with speculative threads
spawned from immediate postdominators

IPOT [199] Generic PL support, profile driven detection of good candidate
for threads

Multiprocessor hardware like TCC

Table 2.1: Summary of speculative parallelization proposals
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Figure 2.2: Forking of speculative threads in Multiscalar.On the left is the sequential execution of a program
with four tasks, A, B, C, and D. On the right side of the figure isthe Multiscalar execution, with three
processing cores available for speculative execution of tasks. A, B, and C are scheduled one after another
with the tasks identified by means of a task predictor. Speculative data is communicated from an older task
to younger task. Tasks are committed by the program as they complete. The execution assumes no violation
of dependencies; no tasks are therefore, squashed. The grayshading around tasks indicates that they are
speculative. The tick symbol placed at the right side cornerof a task indicates that the task is valid and did
not violate any dependencies. This convention is followed throughout this dissertation.

based speculative parallelization. Table 2.1 lists all speculative parallelization proposals, the regions of

program code that are speculatively parallelized, and the hardware and software support needed for the

implementation.

2.1.1 Multiscalar-based speculative execution

Multiscalar [69,177] and other similar proposals [122,125,138] dealt with speculative parallelization of an

entire program. A Multiscalar system uses special purpose hardware with processing cores connected in a

ring topology. The hardware allows communication of register values from one processing core to another.

Many other proposals have a similar software model but instead use a typical multiprocessor or multicore

system.

The core of these proposals is a software subsystem consisting of a compiler that divides a sequential

program into tasks, a task ranging from few instructions to several basic blocks. The hardware steps from one

task to another in the sequential program, assigning each ofthese tasks to processing cores for speculative



13

execution. The motivation behind this approach is to capture local data dependencies between instructions

within a task, and to minimize data and control dependenciesbetween tasks closely coupled in program

order. To establish this, a compiler (or some other softwaresuch as a binary rewriter) uses program analysis

—static or dynamic with profile information— to choose suitable boundaries for tasks in the program to

maximize parallelism between them.

Figure 2.2 shows the Multiscalar execution model on a systemwith three processing cores. The figure

shows dynamic execution instances of tasks A, B, C, and D in a program on three processing cores. A task

is predicted and forked for execution on an available processing core by a task predictor. In the example,

B is predicted from A, C from B, and so on. If for some reason, B is not predictable, task A has to finish

execution in order for the control flow to resolve, to identify B. Since the execution model identifies and

assigns tasks for speculative execution based on sequential program order, the commit ordering of tasks is

the same as the fork order of tasks.

A task is speculatively executed and its speculative changes are committed if it reaches the head of the

task queue, or squashed if a dependency is violated. For example, task C may read from a location before

task B can write to that same location. Therefore, C has to be squashed and re-executed to ensure that

the right value is read by C. Data dependencies may exist between tasks, and executing tasks concurrently

may lead to violation of such dependencies especially because the tasks are scheduled only according to the

control flow. Many avenues were taken by Multiscalar and related proposals to alleviate this problem:

1. By allowing communication between speculative tasks, data values written by an older speculative

task is passed on to newer ones.

2. By value predicting data values, data dependencies between speculative threads are broken.

3. By dynamic insertion of synchronization primitives in speculative threads, to ensure that a newer

speculative task proceeds only after the older speculativetask has performed the store operation.

Multiscalar allowed multiple outstanding executions per processor, i.e., executions waiting to be com-

mitted or squashed, while other proposals required that a task commit or squash to begin executing the

next task on that processing core. Having only one active execution per processing core simplifies the

requirements of buffering speculative data in cache, unlike having multiple outstanding executions, which
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Figure 2.3: Loop-level parallelization. On the left side isthe sequential execution of several iterations of a
loop. The right side of the figure illustrates loop-level parallelization performed by a TLS-like system. Loop
iterations are assigned to processing cores for speculative execution. Dependencies that may exist between
iterations can be resolved with one or more of the means described in Multiscalar-like system.

requires cache references from different speculative threads to be identified. On the down side, it may lead

to holding up of a processing core until the task executed by that core is committed or squashed, an issue of

concern, if tasks in the system are not balanced.

2.1.2 Loop-based speculative execution

Many proposals specialize the Multiscalar-based approachand focus on specific regions of code such as

loops since significant portion of a program’s execution time is spent in loops [45,82,182,208]. An iteration

of a loop or the entire loop is treated as a speculative threadand concurrently executed with many other

speculative threads. Figure 2.3 illustrates the TLS system[182], which follows this approach to loop-based

speculative parallelization.

2.1.3 Hoisting of speculative threads

An alternate approach to speculative parallelization is the hoist-based speculative execution model com-

monly used when only selected regions of program code are chosen for speculative threads. The idea is

analogous to compilers hoisting a load instruction in the program to tolerate (or amortize) the many cycles

that may be taken to obtain the value depending on where the data may be located in the memory hierarchy.

Several proposals [61,117,124,152] take a similar approach of hoisting (albeit, speculatively) the forking of a
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thread before the thread’s head instruction is reached during program execution. When the program reaches

the thread’s head, it waits until the thread finishes execution, and commits the thread if no dependencies

were violated. The execution model is illustrated in Figure2.4.

Hoist-based speculative parallelization proposals use a profile driven approach to identify candidate

program code for speculative threads and the most suitable fork points. Since a thread is hoisted with

respect to the program execution, alternate means are necessary to provide the live-in register values that

may be accessed by the thread. The common approach is to use a value predictor to predict the live-ins.

Another approach is compute-based prediction, in which some instructions are executed to compute the

likely live-in values. These values are then provided to thespeculative thread. Before a speculative thread

can be committed, the used live-in values should match the values generated by the non-speculative program.

One such compute-based predictor is the “pslice” used in Mitosis [152]. A “pslice” for a speculative thread

is obtained by identifying the live-in registers and constructing a backward slice of instructions from the

head of speculative thread back to the fork point in the program. The producers of the live-in values and any

transitively dependent instructions compose the backwardslice.

The key assumption with the hoist-based speculative execution is that there are several data independent

instructions between the thread’s fork instruction and itshead instruction in the program. Therefore, it is

anticipated that the program will (partially) cover the cycles it takes to execute the pslice and the thread

speculatively, beginning at the fork point, before the thread’s head is reached.

2.1.4 Method-continuation speculative execution

Method-continuation level parallelization (MCLP), also called module-level parallelization is another spe-

cialized form of speculative parallelization. The proposals in this category [40,41,200] focus on speculating

past a method call, i.e., program that follows after a methodreturns, also called the method continuation.

It is a straightforward means of parallelization because ofthe near definite control flow reachability of the

continuation when the method is called (the rare case is whenprogrammer has arbitrary control flow in the

program that never returns from the method).

The parallelism that MCLP exploits is the plausible data independence of the method’s computation with

that of the method’s continuation. There are two forms of dependencies that may exist between the method
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Figure 2.4: Mitosis-based parallelization. On the left side of the figure is sequential execution of a program
with A representing loop or task in a program. On the right side is Mitosis-based execution achieved by
inserting fork instruction that spawns a speculative thread, pslice that is executed to provide the live-in
registers for the thread, followed by the speculative execution of A. The speculative execution is committed
when A is reached in the program assuming no dependencies were violated and the live-in registers were
computed correctly by pslice.

and its continuation: (i) the return value of the method thatmay be later used by the program, and (ii) the

side effects, i.e., modifications that a method may make to the program’s global state that may be accessed

by rest of the program. The former dependence can sometimes be circumvented since return values are

often discarded by the program, or speculated on, especially when it is highly predictable based on previous

values returned by that method.

Out-of-order Forking. One unique aspect of MCLP is the ordering in which speculative threads are

forked. In the simple case shown in Figure 2.5, there is only one speculative thread running until the

methodA finishes execution. The model, when extended to perform speculative execution for every method

encountered, may not fork threads in program order.

Consider the example in Figure 2.6 in which threads are forked by both the method and its speculative

continuation. The ordering in this model is hierarchical tree-based (also referred to as out-of-order based),

in which a speculative thread is ordered sequentially with respect to its parent speculative thread, if one

exists. The model is complex and can be detrimental to performance if method-continuations are forked
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Figure 2.5: Method-continuation level parallelization. The sequential execution shows methodA and the
rest of program marked as A-Cont. In MCLP, when the method begins execution, a speculative thread that
executes the continuation of the method is spawned. Assuming that there no violations of dependencies,
the continuation executes until the method returns back to the program. At this point, the results of the
speculative thread are committed, and the program continues execution from that point onwards in the
program.

indiscriminately for every method encountered [201]. Additional hardware support is also needed to support

this model [3,161].

2.1.5 Transactional memory

Transaction-based execution, a central idea in databases,has been proposed to overcome the difficulty

in achieving scalability and correct execution with the useof locks as synchronization primitive. The

key feature of a transaction is the notion of atomic execution, i.e., all program state changes made by a

transaction has to be either visible or not visible in its entirety to the rest of application. Multithreaded or

parallel programs typically use locks for synchronizationwhen multiple threads may conflict, for example,

to protect entry to a critical section. Locks serialize the multiple threads to eliminate conflicts—the order of

serialization is the order in which the threads acquire the lock. Transactional memory has been proposed to

overcome the impediments of locks as a synchronization primitive. While it has commonly been a software

implementation [84, 86, 133, 174, 205], more recently researchers have been considering hardware support

[7, 81, 83, 87, 128, 134, 153, 154] and hybrid approaches [55,107, 167] for transactional execution to reduce
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Figure 2.6: Nested forking in Method-continuation level parallelization systems. On the left side of the
figure is a snippet of a program. MethodM calls two methodsA andB. MethodB calls methodC during
its execution. The continuations are marked with X, Y, and Z.Partial executions of these continuations are
indicated as Xp, Yp, and Zp. During execution ofM, Xp is speculatively executed. Methods encountered in
M or Xp spawn more threads. In the example, Xp spawns Yp whenB is called, and Zp whenC is called by
B. WhenC finishes execution Zp is committed. Similarly, Yp is used/committed whenB finishes execution.

the overheads. The hardware support identifies conflicts with several concurrently running transactions.

Transactions that violate dependencies are squashed and re-executed serially by the hardware.

Transactional memory and Speculative parallelization. Transactional execution and speculative par-

allelization have similar requirements in terms of speculatively executing a set of instructions, determining

if any instruction violated dependencies, and acting accordingly. However, there are some dissimilarities.

Speculative parallelization deals with a sequential program in which the speculative threads are ordered.

On the other hand, transactional programming was introduced to deal with multi-threaded programs, and

therefore, the transactions from many threads do not have a predetermined order. Likewise, the process of

determining if a transaction violated any dependencies occurs only among other concurrently running trans-

actions. However, in speculative parallelization, the conflict detection for a given speculative thread is not

only with other concurrently running threads but with all the instructions being committed in the program.

Another important distinction between the two is the lack ofcommunication between concurrently running

transactions. In speculative parallelization, speculative values are commonly passed between threads.

Some transactional system proposals [32, 81] have extendedtheir systems to perform speculative par-

allelization. One such proposal is TCC [81] which, unlike other transaction-based systems, requires every
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instruction to be associated with a transaction. Programmers divide a sequential program into transactions,

and provide the ordering of transactions with two parameters: sequence and phase numbers. These numbers

control the ordering of transactions in a program and wait conditions before it can begin its execution; within

a given sequence number, transactions are committed in increasing phase order. This allows the programmer

to either achieve sequential ordering, completely unordered transactions, for example, when iterations of a

loop in a sequential program are independent, or more complex ordering specifications. Like the Multiscalar

based model, these transactional systems also spawn speculative threads in program order and commit in

that same order or another arbitrary order specified by the programmer.

2.1.6 Discussion

Potential benefits. The performance benefits of a speculative parallelization model depend on several

factors. Foremost, is the parallelism that exists in the program (as studied by Austin et al. [12] and Lam et

al. [108]) which depends on the characteristics of the program, the algorithm used, and the programming

implementation. The second factor is the execution model ofthe speculative parallelization system. It

includes the composition of the speculative threads to maximize performance potential [95, 96] and how

the threads are spawned for execution [161]. Finally, the implementation also plays a crucial factor. This

includes all the experimental parameters such as communication latencies, number of processing cores for

performing speculative execution, and any other resource constraints. The first factor is solely dependent

on what problem application developers are trying to solve with a computer program and how they solve

it. The second factor is the crucial aspect and determines how the hardware and software support can be

provided.

Limitations. An important assumption I have made in my discussion so far isthat the speculative threads

never violate dependencies and the system is assumed to haveno mis-speculations. In practice, this is

unlikely to be the case. The general principle in speculative parallelization is to traverse the control flow

graph of a program speculatively at the granularity of a taskor thread which can usually vary between a

few instructions to several basic blocks. This allows the execution model to encapsulate several control

flow decisions inside a task and reach parallelism in a program more distant than instruction-level parallel

processors. A key limitation of this approach, as illustrated in Figure 2.7, is that a mis-speculation in a
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Figure 2.7: Mis-speculations in Multiscalar-based speculative parallelization. Task B violated dependencies
and must be squashed. Tasks that follow B, for example, C may not have violated dependencies, but are still
squashed as per the execution model.

thread results in squashing that and all other threads that follow it. In addition to this, a thread is scheduled

only according to the speculative control flow and without any consideration of its data requirements. This

aspect limits the ability to reach “distant” parallelism because intermediate data dependencies may lead

to mis-speculations in threads, further increasing the chances of squashing the threads. The probability

of occurrence of these violations increases as the number ofinstructions considered for parallel execution

increases. This may result in the discarding of large amounts of (possibly independent) work and thereby,

delaying the reachability of a distant independent task even further. For example, indiscriminate usage of

method-continuation level parallelization has been shownto hurt performance as the speculative threads are

forked on reachability of control flow without any analysis of their data dependencies [201].

The speculative parallelization model has been quite successful in extracting reasonable amounts of

parallelism from applications. However, the limitations in the ability to reach “distant” parallelism must be

addressed as its exposure and exploitation is likely to be crucial in the future, especially, as the number of

processing cores increase.



21

2.2 Other related speculative execution models

Shadow processing. Shadow processing system introduced the notion of creatinga copy of an application

with additional code in it referred to as the “shadow” program [145]. This shadow program for example, can

be used to perform additional checks such as null pointer checks, initializing and freeing memory allocated,

and any other violations that may crash the program. To speedup the execution of the shadow program

the system communicates few key values from the main programto the shadow. This eliminates some

computation and minimizes the number of instructions in theshadow. Several proposals have enhanced

this execution model with different forms of main and shadowprograms, for different purposes. For

example, Sundaramoorthy et al. proposed the Slipstream system [185] (that originated from AR-SMT

[163], a hardware fault detection system), to improve the performance of the program. The main program

is speculatively optimized, and the shadow program obtainsvalues from the main program, fetches and

executes instructions more efficiently because of the hintsprovided, and/or verifies if the main program

execution was correct. The Master-slave speculative parallelization system [214] further enhances the

model, by parallelizing the execution of shadow program, and speculatively optimizing the main program.

The parallel shadow program ensures that the speculative main program executes correctly. Like Slipstream

execution, data values are passed from main to shadow program to enable parallel execution.

Pre-execution. There have been a number of research proposals investigating execution models that can

broadly be classified as speculative data-driven multithreading [36, 47, 48, 64, 101, 118, 135, 164–166, 178,

211,212] (also commonly referred to as pre-execution, helper, scout, or subordinate threads). This category

of schemes typically targets cache misses and branch mispredictions, two performance impediments in

processors. In this approach, a thread consisting of a pre-defined chain of dependent instructions leading up

to a load or branch instruction (i.e., a data-driven thread), is spawned from specific points in the program.

The set of load or branch instructions for which the threads are generated are usually identified by profiling

and are those that often miss in the cache or result in branch mispredictions. Each thread creates the

performance degrading event (cache miss or branch mispredict) earlier than it would have occurred in normal

program execution, thereby allowing its latency to be overlapped with other program instructions (that occur

prior to the event in the sequential program). An ensemble ofsuch threads, executing on multiple processing
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cores, can effectively overlap the latencies of multiple performance degrading events, thereby ameliorating

their performance impact. In order to reach the cache miss orbranch misprediction, pre-execution techniques

construct backward slices of dependent instructions from the problem causing instruction to the point where

the thread can be forked. Several proposals in this categorycover various hardware and software means of

identifying the problem instructions, generating the slice of instructions to execute, and support for executing

them in a system.

2.3 Data-flow machines

An alternative approach to von Neumann machines is data-flowmachines, an intuitively appealing data-

driven execution model, that have been studied extensivelyin the past several decades. Data-flow machines

[10, 56, 58, 76, 78, 103, 143, 168, 175] are fine-grained data parallelism machines that execute programs ex-

pressed as data-flow graphs. Since communication between execution units in the system is fast, scheduling

happens at the granularity of instructions. Control-flow iseliminated in programs and unlike von Neumann

machines, there is no synchronization required between control dependencies.

The dataflow execution model has many appealing properties,including the ability to expose and exploit

arbitrary granularities of parallelism. The parallelism in an application is constrained only by the data

dependences in the application, and not by arbitrary control dependences that are an artifact of the imperative

programming language. Despite the power and elegance of thedataflow execution model, it has not been

widely adopted. An important reason for this is the couplingof the execution model to the data-flow based

programming languages [10, 59, 129, 136]. Many of the applications that were easy to express parallelism

in such languages had significant inherent parallelism. This parallelism may also have been easily exploited

in imperative programming, and similar benefits may be achievable. The data-flow languages, unlike

imperative programming languages, were difficult to write alarge class of programs due to the lack of

available features. The other issue with the fine-grained data flow architectures is the enormous scheduling

and communication overhead. To handler this, Sarkar and Hennessy [170] and Iannucci [91] proposed

statically partitioning a data-flow program into subprograms and executing them in a data flow order;

subprograms by themselves were executed sequentially.
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The dataflow execution model also did not explore the notion of speculative execution, which is likely

to be the key to extracting parallelism from a wide range of applications. Despite the lack of commercial

success of the general dataflow execution model, we can make some observations about the impact of

dataflow execution concepts on other program execution paradigms. The ubiquitous dynamically scheduled

superscalar paradigm uses dataflow execution principles, coupled with speculation, for a small group of

instructions that have been extracted from a sequential program (written in an imperative programming

language). The WaveScalar system [187], an instruction level distributed processing system, executes

instructions whose firing rules are determined by the data-flow of instructions in a “wave” which represents

boundaries in a sequential program specified by a compiler. Similarly, the PD execution model borrows from

dataflow execution model. Like dynamically scheduled superscalar processor, it applies dataflow execution

principles, coupled with speculation, to programs writtenin imperative languages. Unlike dynamically

scheduled superscalar processor, it uses program methods rather than instructions as program units (i.e.,

nodes in the dataflow graph), and processing cores rather than functional units to execute the program units.

Moreover, the mechanics of how program units are launched for execution (on to processing cores) and how

their results are gathered and committed will be different.

2.4 Functional programming

In functional programming languages, computation is represented as a mathematical function. A program’s

execution is expressed in a functional manner: a function’sexecution is triggered when its inputs, which

denote other functions, are available. Functional programming languages have been very conducive for

parallel execution. There have been several projects in concurrently executing methods in purely functional

languages, as they do not have any side effects [74, 171]. MultiLisp supports evaluation of parameters in

parallel, and allows programmers to express explicitly theconcurrency of a method [162]. Knight presented

speculative parallelization of Lisp programs [104]; Lisp is not a purely functional language and hence the

need for speculative execution.
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2.5 Other relevant parallel programming models and languages

PD resembles message-passing based parallel programming paradigms such as the seminal Actors [88] and

Linda [31] models. In Actors, concurrent objects are spawned and communicate with each other solely via

messages, and allow concurrency even within a single actor.The execution model is message driven, thus

allowing latency tolerance. Charm [90] was an implementation of the Actors model. The Linda system does

not share messages like Actors. Instead, threads generate results as tuples that are held in the tuple space.

The tuples are not intended for a specified receiving thread.A live tuple, at some time during the execution,

fires, carries out some computation, and transforms to a dataobject tuple that can be accessed by another

receiving thread.

In the past, numerous parallel language constructs, language designs, and libraries have been proposed

for creating parallel programs. These include ABCL [207], Concurrent Smalltalk [54], CA language for J-

machine [42], pC++ [25,121], C** [110], a data parallel variant of C, Mentat, a concurrent C++ [77], pSather

for Eiffel [65], ESP-C++ that supports concurrent objects [112], transparent remote method invocation,

and blocking as well as non-blocking, future based messaging, CC++ that provides parallel constructs for

C++ [6, 33], POOL-T [93], Amber [38], OOMDC/C [43], Charm++ [97], and Cilk, a runtime system that

manages several threads consisting of Cilk procedures [24].

More recently, several proposals have been studied in the programming languages and applications

domain to exploit different forms of parallelism found in applications without any speculation. These include

software support to extract parallelism or libraries and/or new languages to express it. Some such proposals

are discussed next.

Martel et al. [126] present different parallelization strategies to exploit distant parallelism in the

SPECint95 suite. Time-shifted modules [213] is another software-based approach to execute modules which

have limited interaction with the program concurrently. The modules communicate by means of message

queues. DSWP or decoupled software pipelining [140] exploits fine-grain thread level parallelism in loop

bodies of programs. The execution of a single iteration of a loop is subdivided and spread across multiple

processing cores in a multicore system. When the compiler can create subdivisions that form an acyclic

dependence graph, each subpart can be independently executed forming a pipeline. DSWP allows better

utilization of cores and better latency tolerance when suchpipeline parallelism can be extracted from
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the program. Palatin et al. [142] convert some SPEC integer programs into better software engineered,

component based programs, which consist of tightly encapsulated components, each isolated from the rest.

Communication between components is explicitly performedin the program. They assume a simultaneous

multi-threaded hardware with support of very light-weightlocking support. Ranger et al. [157] evaluate

the MapReduce model [57], a model created by Google for application development on data-centers with

thousands of servers, for multi-core systems. The authors provide an API for efficiently writing code,

and using the runtime system for automatically creating threads, scheduling, and partitioning them across

processing nodes. Zhong et al. [209] propose Voltron, an architecture that exploits both instruction-level

parallelism and fine-grained thread level parallelism by extending multicore system with a low-latency

operand communication network between processing cores. The hardware exploits two different modes.

The coupled mode is the lock-step operation of a processing core with other cores. In this mode, compiler

orchestrated control flow is executed on many processing cores similar to a VLIW processor. In the

decoupled mode, cores operate independently on separate fine-grain threads. The threads are used to exploit

DSWP [140] and speculative execution of loop iterations.

In the programming languages domain, object-oriented managed languages such as Java and C# have

several constructs for creating light-weight threads in anapplication. The future primitive in Java [116]

used in conjunction with a method call, allows a program to spawn a light-weight thread that executes a

method, while the program continues to execute beyond the call. The programmer must probe and determine

whether the method’s execution has completed, and then access the return value or program state produced

by the method. The execution is conceptually similar to MCLPmodel discussed earlier; however, MCLP

executes the program along with the method speculatively toensure no dependencies are violated. The safe

futures [204] work achieves MCLP based execution but by means of software based speculative execution

within Java virtual machine. Like MCLP, the continuation ofthe method is executed, and any dependencies

violated by this code with the method results in the managed system rolling back all the changes made by

the method’s continuation. In C# language, the delegates primitive allows programmers to create several

tasks/methods, which are executed concurrently, with results of the threads used as and when needed [19,

20]. X10 [37] is an object-oriented programming language intended for creating high-performance parallel

programs capable of using several hundred cores in a multicore system. The stream programming model
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is based on defining kernel functions or operations which operate on each data element of a stream in a

pipelined fashion. The StreamIt [75] and Brook [27] languages are based on this programming model.

They are intended for easily writing parallel streaming applications (in particular, DSP, image, and video

processing applications), that can run efficiently on multicore systems.

2.6 Chapter summary

In this chapter, I discussed previous speculative parallelization proposals. They were classified into pro-

posals that speculatively parallelized: (i) entire program by dividing them into tasks, (ii) loops and loop

iterations, (iii) chosen regions of program code by hoisting their speculative execution and overlapping

them with the program, (iv) method continuations, and (iv) transactions specified by programmers. All of

these proposals spawned threads only in control flow order and/or did not consider data dependencies of a

thread to determine the most suitable point for execution.

I also discussed several parallel programming languages, constructs, primitives, and libraries that help

in parallelization of programs. Although these were not speculative techniques, and relied on programmers

or software (such as compiler) to express and extract parallelism from a program, many are conceptually

similar to PD.

The next chapter will discuss the Program Demultiplexing execution model in detail. It will cover the

evolution of programming methodologies and the role of methods in current programs, qualitatively arguing

that methods are suitable for speculative execution. It will then cover the execution model and the means to

achieve such an execution.
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CHAPTER 3

PROGRAM DEMULTIPLEXING M ODEL

Over the years, programming methodologies and styles have seen a dramatic change. Early computers

were programmed in assembly language, which gave way to programming in first-generation of high-level

languages such as FORTRAN and BASIC. FORTRAN has continued to remain a popular language for writ-

ing scientific applications because of the advancements in automatic parallelization. These languages were

followed by a more structured and modular procedural programming style such as C, which led to modular

development, the division of a complex application into multiple files with separate compilation. Recent

trends have moved towards object-oriented programming languages such as C++, which further emphasizes

modularity. Despite the overheads when compared to a procedural programming style, the object-oriented

style has gained popularity as it allows for a streamlined development of large-scale applications. This has

helped in cutting down the chances of bugs, ease of maintaining large-scale programs, and facilitating the

reuse of code across different applications. The most recent development in programming languages has

been the prolific use of managed object-oriented languages such as Java and C#. These languages have been

gaining significance because of their object-oriented programming style, and benefits such as automatic

garbage collection of allocated but unused memory, and typesafety checks obtained from being executed

on a runtime system. Any proposed parallel execution model should be suited for the emerging multicore

systems and for contemporary programming style and languages. It should match the characteristics of

those styles, as programming practices determine the practicality of a parallel execution model.

PD leverages the programming style of encapsulating related computation as a method, to perform

speculative execution at that granularity. The focus of this chapter is further discussion of this choice for

speculative execution and the framework of PD. This chapteris organized as follows. I present background

material on methods, their semantics and memory state, and compilation into a sequential program. I then

provide reasoning behind the choice of methods for speculative execution in PD. Then, I discuss the PD
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execution framework, implementation sketch, and present some examples of the execution model from

benchmark programs.

3.1 Methods

A method, also referred to as a function, procedure, or a subroutine, is a portion of code written to perform

subtasks within a larger program. In this dissertation, I will use “method” to denote any of these variants

written in any programming language even though the different synonyms have subtle, but not strict differ-

ences in connotations depending on the programming language used. The general interpretation of the terms

is described next.

Subroutine, commonly used in BASIC, is the most generic term. Aprocedureis used to represent a

subtask that does not return any value back to the program, and a function is a procedure that returns a

value back to the program. Both the definitions are commonly associated with the Pascal programming

language. Amethod, commonly used in object-oriented languages, has a stricter definition, and denotes the

implementation of a subtask for a given “object” in the program. The purpose of a method is to provide

a mechanism for accessing and modifying the private data stored in an object, an instantiation of a class.

A method accesses private data of its object in a way consistent with the intended behavior of the object.

Rather than thinking of a method as a “sequence of commands” like in subroutines, a programmer using an

object-oriented programming language will consider a method to be an “object’s way of providing service”.

3.1.1 Benefits of methods

A program is written as several methods, with each method separately defined in the program. The methods

can be called one or more times in the program and can be sharedwith other programs through libraries and

packages. Methods avoid the undesirable situation of repeating code that performs the same computation in

multiple places in the program. This saves space and allows for faster loading of the program into memory

and better use of cache space available in the hardware. Methods also form a logical segmentation of the

entire problem, enable easier visualization of the structure of a large and complex program, make it easier

to debug and maintain, and can (often) be used by people otherthan the programmer who constructed the

method.
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(a) C program code (b) Compiled assembly code

Figure 3.1: Compilation of methodsqsort andquick sortwritten in C, into assembly code. The figure
illustratesquick sort passing the three parametersa, 0, andn to the methodqsort, qsort accessing
them, andqsort declaring/using local variables in stack.

3.1.2 Program state of a method

Computation in a method can access and modify two kinds of program state:local and global. I next

describe the typical use and implementation of these two in programs.

Local state The local state is the program data that is not visible outside the method, and is commonly

implemented using a stack. The stack is a FILO (first in last out) structure and is a specially reserved part

in memory. A stack is used for local variables within a methodand sometimes for passing parameters to

the method from a program. Every time a method is invoked, it gets a new “frame” on the stack with a new

place to store its local variables. The variables are alwaysat the same offset within the frame, but the frame

can be at different starting addresses within the stack. When the method exits, the frame is removed from

the stack. This deallocates all local variables making cleanup of memory used very easy. One common way

for the program to provide parameters to a method is achievedby the caller method writing the parameter

values to its stack frame, and the callee accessing them fromthe caller’s frame.

Figure 3.1 illustrates the compilation of a snippet of C program into assembly code.1 Figure 3.1(a) is

the C source code, in which variablesi andm are local toqsort, as they are declared inside the method

qsort. Variablei is initialized immediately after the declaration. The second method in the program code

1The dissertation will present assembly code and stack layout based on the Intel x86 instruction set architecture to match the
simulated machine used for evaluation.
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is quick sort and it calls methodqsortwith three parametersa, the value0, andn. In Figure 3.1(b), I

present the code compiled into assembly language with the GNU gcc compiler and-O2 optimization flag.

The line numbers with respect to the original source code (not shown in the figure) are on the left side of the

assembly lines. First, line 435 calls the methodqsort from the methodquick sort. The parameters are

written in lines 431, 432, and 434 at different offsets in thequick sort’s stack frame.2 In qsort, the

parameters are accessed in lines 332, 333, and 334 and are stored in registers. Note that the register used for

addressing now is theebp register. In line 327, theebp register is assigned the value of theesp register,

and the methodqsort reserves its stack frame by subtracting 32 out of the stack pointeresp (stack grows

downwards) (line 331). Theebp register is used byqsort to access the parameters. During the call from

quick sort to qsort, the oldebp andeip pointers are saved in the stack. The stack layout during the

call and the frame semantics is shown in Figure 3.2. Therefore, the parameters ofqsort accessed by that

method are at offsets 8, 12, and 16 from the base pointerebp. The instruction pointer prior to the call to

qsort is located at offset 4 fromebp, and this value is used when the return instruction is executed by

qsort.

Global state The global state, also referred to as the program state, is visible to all program entities, but

may be semantically limited according to the specificationsof a programming language, for example, in

object-oriented languages. The global state is often accessed by a method by means of variables declared in

the global name space or by means of pointers passed to a method as parameters. Typically, it is used for

data structures that are needed by several parts of the program rather than temporarily by the method.

The global state is usually implemented in a memory structure known as the heap. The heap is a block

of memory that is managed by the heap allocator often implemented in system libraries and operating

systems. The heap allocator routines such asmalloc and free (and the object oriented equivalents

new anddelete) operate on the heap memory (such as requesting or releasingmemory blocks) as per

the semantics of the heap, keeping it consistent. A program must explicitly use these routines to acquire

memory as and when needed for its computation, and deallocate memory after use. For example, when

memory blocks of a certain size are requested by the program,the allocator finds a free memory segment,

2This dissertation presents assembly code in AT&T syntax. Source operand appears first, followed by the destination operand
of an instruction.
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updates its book keeping structures, and returns the memorylocation(s) of the allocated memory back to the

program. The heap allocator is responsible for allocating memory in a consistent manner to all programs

running in the system, and achieves it in such a way that a minimum of memory is wasted.

The global program state modified by a method represents the side effects of a method. During a

method’s execution, the side effects are specified by the write set, and the global data accessed are specified

by the read set. The nature of these sets is defined by the programming language. For example, many

procedural languages usually allow methods to access and make changes to the entire program state. There-

fore, after the execution of a method, its changes could be visible to the remainder of the program. In

object-oriented languages, side effects of methods are often more limited as object-oriented programs tend

to be more structured, written to access or make changes to anobject with which they are associated with.

Managed object-oriented languages such as Java and C# placeeven more restrictions on the memory that

can be referenced by the program for guaranteeing the safetyof data accessed (type safety) and maintaining

compatibility across many architectures.

3.1.3 Semantics and calling conventions of a method

A method can be called from different parts of the program andthe location from where it is called by the

calleeis referred to as thecall site. The method may be called with one or more parameters, which are often

used to specialize the computation in the method. A method may return a value back to the program (the

caller) and the program continues its execution with the returned value, using it if needed.

Additional instruction(s) need to be placed in the program and the method to transfer control between the

program and the method. The call instruction saves procedure linking information on the stack (specifically,

the eip and ebp registers) and jumps to the method (program counter) specified with the destination

operand. The return instruction, the last instruction encountered when executing the method, returns the

control flow back to the program by popping the contents (eip andebp pointers) saved on the stack. The

return address is placed on the top of the stack, and the control is returned to the instruction that follows the

call instruction in the program.
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Figure 3.2: Stack layout. The active frame is guarded by theesp andebp pointers. The frame space is used
for storing local variables (shown local var #1 and #2) and saving registers during the method’s execution.
The parameters are saved by the caller on its stack frame before the call is made. After the call, the callee
method accesses the parameters from the caller’s stack withtheebp pointer. During the call,ebp andeip
pointers are saved. They are restored (popped from the stack) when the called method returns.

Parameters

The parameters of a method, if any, need to be passed to it by the program before the computation can

begin. Depending on the compilation model and the architecture of the hardware, different conventions are

followed for this purpose. In general, there are two common means of passing arguments to a method. They

are:

1. Parameter values are written to registers by the program,which are then accessed by the method. This

is an efficient means of passing parameters, as memory reads and memory writes are not necessary.

However, it is limited by the number of registers available for this purpose. For example, in the SPARC

architecture, which has a register file window of 32 registers, the caller can write the parameters to

eight “out” registers. On executing a call instruction to a method, the register window points to a

new set of registers but with the overlap of “out” registers of the callee with the “in” registers of the
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caller. Therefore, the method can access the parameters passed from the “in” registers. On the Intel

x86 architecture, registers are rarely used for passing parameters because of their limited number.

Recent versions of GNU C and C++ compilers for the Intel x86 architecture, perform register based

parameter transfer as an optimization, often only within a compilation unit (a program source file).

2. The default approach in case enough registers are not available for passing all the parameters or if the

register based convention is not followed, is to use the stack. The compiler generates code that writes

the parameters to specific locations in the stack. The methodcan then access its parameters from the

locations on the caller’s stack frame. Figure 3.2 illustrates the mechanics of frames in the stack, the

locations of the parameters, and the local variables in the stack.

Return value

Almost all architectures pass the return value of a method through a reserved register. For example, in the

Intel x86 architecture, the return value is often stored in areserved register such as the accumulator register

(eax). Some compilers perform special optimizations within a compilation unit (a program source file), to

use multiple registers to pass values between methods.

3.2 Role of methods in a program

Speculative threads in PD are composed of methods. To lay themotivation behind this choice, I first begin

by describing the commonly prescribed steps for writing programs and composing methods.

Methods allow programmers to decompose a problem into several subtasks and enable them to write a

complex and lengthy program. The decomposition process itself is a matter of programmer’s choice and

may require experience and skill acquired over time. Algorithms, programming languages, and software

engineering textbooks recommend pursuing a set of steps to aid in the process of choosing methods. For

example, in the bookArt of Programming[105], Knuth elaborately describes his recommendations for

developing methods and writing a program for a given problem. I briefly describe this next.

The whole program is divided into small number of pieces. Each of these pieces may be

considered as methods, even though they may be called only once. These pieces can be
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successively refined into smaller and smaller parts, havingcorrespondingly simpler jobs to do.

Whenever some computational task arises that is already occurring elsewhere, the programmer

may replace the occurrences with a call to a method, and perform the computation task in that

method. All methods constructed can be studied again to determine if any need to be enlarged,

for example, computation that is always performed just before or after the use of the method.

Similarly, several methods may need to be merged if they are called only once.

With programming languages such as C++, the above recommendations are further supplemented with

object-oriented principles, which state that a program should be comprised of individual components or

“objects” that coexist and act on each other. Objects are composed of data and methods; methods access

the data associated with the object, and any other speciallymentioned objects, according to their semantics.

(An important exception are static methods that are associated with a class.)

3.3 Role of methods in PD

The above description strongly suggests that methods are anapt choice for speculative execution as they

provide an intuitive means for programmers to hold dependent computations. PD’s goal is to create concur-

rency in a sequential program’s execution by speculativelyexecuting methods in the program in parallel. The

execution of a method in a program is dependent upon another method’s execution if a memory location in

its read set is directly in the write set of the other method. Dependences between methods result in ordering

between methods, and this partial ordering should determine the execution order. However, a compiler,

inspite of any parallelism that may be available between methods, cannot automatically parallelize a program

into multiple threads because of side effects (i.e., the write set) of methods that are not always identifiable

or ambiguous. Since static analysis of a method’s side effects (or, lack thereof) is not possible, the compiler

assumes that all methods might have side effects and that a method could be dependent upon any prior

method. This implies that the methods should be executed in the total order in which they are arranged by

the programmer in the sequential program.

In PD, methods in a sequential program are “demultiplexed” from the total sequential order, and exe-

cuted according to their data dependencies specified by the partial ordering between the methods. However,

since the partial ordering is not guaranteed to be correct, and to ensure the sequential program order, the



35

methods are executed speculatively. The process of demultiplexing is to decouple a given method’s call site

and its execution. In sequential execution, the call site ofa method represents the beginning of execution of

that method, while the execution of a method in PD occurs speculatively on another processing core, usually

after it is ready, which is expected to be well before the callsite in the program.

3.4 Motivating examples

Chapter 1 provided an overview of PD based execution model, and this chapter, thus far, has discussed the

reasoning behind the choice of methods for speculative execution. I now present some potential opportuni-

ties for PD based execution of methods in an application.

A software application is composed of many layers, each layer presents possibilities for PD based

execution. Examples include: (i) library operations on file, I/O, network, and memory buffering, (ii) man-

aged system utilities (depending on the programming language) such as garbage collection, (iii) application

modules such as data structure packages, software templates, and (iv) the actual application. Many of these

are equally amenable for software based parallelization. In fact, managed runtime system features such as

garbage collectors are parallelized. Similarly, Java and C# packages that provide abstract data structures

such as linked lists, hash tables, maps, queues, heaps, are often very efficient implementations, which

support concurrent execution when invoked by multiple threads. However, as the integration of methods

becomes tighter in an application, the process of creating software threads becomes more difficult because

parallelism is neither easily identifiable nor readily available. The notion of speculation and speculative

parallelization is an important feature that can create concurrency from programs not easily achievable by

other means.

I begin with a simple example of a random number generator from twolf benchmark in Listing

3.1. The program data that the random number generator method Yacm random accesses areseed

andrandVarS, locations that are never touched by the program. The memoryreferences are therefore,

clearly partitioned between the application andYacm random method. For correctness, it is necessary

that memory operations to a given address are performed in sequential program order. Therefore, the

Yacm random method can speculatively execute, and provide (i.e., commit) the results of the execution

when it is called by the program (as shown in Figure 3.3).
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001 static int randVarS ; /∗ random number ∗/
002
003 #define A RAND 16807L /∗ good generator multiplier ∗/
004 #define M RAND 2147483647L /∗ 2 ∗ 31 - 1 ∗/
005 #define Q RAND 127773L /∗ m / a ∗/
006 #define R RAND 2836L /∗ m mod a ∗/
007 #define ABS(value) ( (value)>=0 ? (value) : -(value) )
008
009 /∗
010 M RANDD may have to be changed on different systems. On ultrix
011 it is as below.
012 #define M RANDD (double) 1.0 / 2147483647.0
013 ∗/
014 #define M RANDD 4.65661287524579690000000000000000e-10
015
016 /∗ returns a random number in [0..2∗31 - 1] ∗/
017 int Yacm random()
018 {
019 register int k rand ;
020
021 k rand = randVarS / Q RAND ;
022 randVarS = A RAND ∗ (randVarS - k rand ∗ Q RAND) - (k rand ∗ R RAND) ;
023 if( randVarS < 0 ){
024 randVarS += M RAND ;
025 }
026 return( randVarS ) ;
027
028 } /∗ end acm random ∗/
029
030 Yset random seed( seed )
031 int seed ;
032 {
033 seed = ABS(seed) ;
034 if( seed == 0 ){
035 seed++ ;
036 }
037 randVarS = seed ;
038 } /∗ end set random seed ∗/
039

040

Listing 3.1: Speculative thread for the methodYacm random in twolf

Library operations such as dynamic memory management, network, file buffer, input stream manipu-

lation operations are all opportunities for PD. In Figure 3.4, I present an example of program performing

memory allocations and deallocations in the program. Memory management is an integral part of any

program as it enables using the heap memory space for storingprogram data of an application. The memory

allocator itself has bookkeeping state to keep track of the heap memory that is separate from the application’s

program state. Execution of these methods rarely interferes with the program except for the parameters

(which could create dependencies with the program and limitconcurrency) and the value returned by the

method. For example,malloc’s ordering with other memory allocator calls (such asfree, resize, and



37

Figure 3.3: On the left is a sequential program with calls toYacm random in benchmarktwolf. On the
right is a PD based program with calls toYacm random separated and executed speculatively. The gray
box denotes speculative execution.

other methods that modify bookkeeping structures of memoryallocator) is the only requirement for correct

execution.

Examples from SPEC CPU2000 integer suite I now provide some examples from integer programs

in the SPEC CPU2000 suite.gap implements a language and library for computing in group theory. In

the following example, I consider the methodNewBag for PD. The method has over 500 call sites in the

program, and contributes 17% of the total run time (when run with train inputs) – 7% fromNewBag, and

10% from theCollectGarb method that is executed withinNewBag. NewBag takes two parameters,

thetype of bag to be created and itssize. Thetype parameter can take 30 possible types but is limited

to very few depending on the method that callsNewBag. Thesize parameter can also be easily identified

depending on thetype. For example, thesize is always four whentype = T LIST. In executions with

train inputs, the method was invoked 6.8 million times and for 99% of the calls the parameters used were the

same as that of a previous call.NewBag is likely to be a good candidate for PD based execution because of

easily identifiable parameters, frequent invocations, andthe task of mostly creating and initializing structures

for the program, that are unlikely to conflict with the rest ofthe program.
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Figure 3.4: On the left is a sequential program with calls to the memory allocator methods. On the right is
a PD based program with calls tomalloc andfree separated and executed speculatively.

mcf spends 22% of its run time in methodsbea compute red cost and

bea is dual infeasiblewith the average number of instructions executed in the methods being 9 and

12, respectively (Listing 3.2). The methods are invoked around 93 million times each in an execution with

train inputs (lines 016, 017, 024, and 025).bea compute red cost computes the cost (an arithmetic

expression on the benchmark’s data structure arc) and feedsit to bea is dual infeasible, which

returns a boolean value based on an expression (lines 001 to 009). bea compute red cost is dependent

on the arcs and its potential which is updated by the methodrefresh potential and sometimes by

update tree. With PD, the methodsbea compute red cost and

bea is dual infeasible can be triggered when an arc (or its potential) is updated; the two methods

can concurrently execute for different updated arcs. Data analysis indicates that the distance (measured in

the number of dynamic instructions executed) betweenrefresh potential andupdate tree, to the

call sites of these methods in the program, is three times more than the number of instructions the methods

execute. Suitably forked, their speculative executions could be overlapped with the program, as illustrated

in Figure 3.5(b).
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001 cost t bea compute red cost (arc) {
002 return arc->cost - arc->tail->potential + arc->head->potential;
003 }
004
005
006 int bea is dual infeasible ( arc, red cost ) {
007 return ( (red cost < 0 && arc->ident == AT LOWER)
008 || (red cost > 0 && arc->ident == AT UPPER) )
009 }
010
011 arc t ∗primal bea mpp( m, arcs, stop arcs, red cost of bea ) {
012 if( initialize ) { . . . } else {
013 else {
014 for( i = 2, next = 0; i <= B && i <= basket size; i++ ) {
015 arc = perm[i]->a;
016 red cost = bea compute red cost( arc );
017 if ( bea is dual infeasible ( arc, red cost ) ) {
018 . . .
019 }
020 }
021 . . .
022 for( ; arc < stop arcs; arc += nr group ) {
023 if( arc->ident > BASIC ) {
024 red cost = bea compute red cost( arc );
025 if( bea is dual infeasible( arc, red cost ) ) {
026 . . .
027 }
028 }

030

Listing 3.2: Speculative threads for methodsbea compute red cost and
bea is dual infeasible in mcf.

vpr is a FPGA placement and routing application. It spends 86% ofits run time in operations on

its heap data structures. 7% of its run time is fromalloc heap data (Listing 3.3), a method to al-

locate memory in the heap structure. The program spends the rest of the 86% inget heap head,

expand neighbours, node to heap, andadd to heap with its routing inputs. The application

calls these methods to alter the value of elements in the heap, get the head of heap, and insert a new

node onto the heap, respectively. I illustrate PD, in Figure3.6(a), with the simple example of method

alloc heap data, shown in line 003 in Listing 3.3. The method allocates a chunk of data if

heap free head is not set; otherwise, it recycles the recently freed chunk of memory by the method

free heap data, as shown in lines 013 to 021. Therefore, speculative execution ofalloc heap data

can be forked when the call site ofheap free head or the call site ofalloc heap data during the

previous invocation are reached.

crafty is a computer chess program. Since it is an automated game playing application, it spends its

execution time evaluating the chessboard, planning its moves, and eventually making them. A number of
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(a) Speculative threads MakeMove and
UnmakeMove in crafty

(b) Speculative threadsbea compute red cost and bea is dual infeasible in
mcf

Figure 3.5: Illustrations of PD based speculative executions of methods from benchmark programs,crafty
andmcf

001
002 static void node to heap () {
003 hptr = alloc heap data ();
004 . . .
005 add to heap (hptr);
006 }
007
008 static void free heap data (hptr) {
009 hptr->u.next = heap free head;
010 heap free head = hptr;
011 }
012
013 static struct s heap ∗alloc heap data (void) {
014 if (heap free head == NULL) {
015 /∗ No elements on the free list ∗/
016 heap free head = my malloc (NCHUNK ∗ sizeof (struct s heap));
017 . . .
018 }
019 temp ptr = heap free head;
020 heap free head = heap free head->u.next;
021 return (temp ptr);
022 }

025

Listing 3.3: Speculative thread for methodalloc heap data in benchmarkvpr



41

001 BITBOARD AttacksTo(square) {
002 register BITBOARD attacks;
003 . . .
004 attacks=And(w pawn attacks[square],BlackPawns);
005 attacks=Or(attacks,And(b pawn attacks[square],WhitePawns));
006 attacks=Or(attacks,And(knight attacks[square],Or(BlackKnights,
007 WhiteKnights)));
008 attacks=Or(attacks,And(AttacksBishop(square),BishopsQueens));
009 attacks=Or(attacks,And(AttacksRook(square),RooksQueens));
010 attacks=Or(attacks,And(king attacks[square],Or(BlackKing,
011 WhiteKing))); . . . . . .
012 return(attacks);
013 }
014
015 int ValidMove (ply, wtm, move) {
016 . . .
017 . . .
018 case king:
019 if (abs(From(move)-To(move)) == 2) {
020 . . . if ((!(WhiteCastle(ply)&2)) ||
021 And(Occupied,Shiftr(mask 3,1)) ||
022 And(AttacksTo(2),BlackPieces) ||
023 And(AttacksTo(3),BlackPieces) ||
024 And(AttacksTo(4),BlackPieces)) . . .
025 else if . . .
026 And(Occupied,Shiftr(mask 2,5)) ||
027 And(AttacksTo(4),BlackPieces) ||
028 And(AttacksTo(5),BlackPieces) ||
029 And(AttacksTo(6),BlackPieces)) . . .
030 . . .
031 And(Occupied,Shiftr(mask 3,57)) ||
032 And(AttacksTo(58),WhitePieces) ||
033 And(AttacksTo(59),WhitePieces) ||
034 And(AttacksTo(60),WhitePieces)) . . .
035 . . .
036 And(Occupied,Shiftr(mask 2,61)) ||
037 And(AttacksTo(60),WhitePieces) ||
038 And(AttacksTo(61),WhitePieces) ||
039 And(AttacksTo(62),WhitePieces)). . .
040 }

042

Listing 3.4: Speculative thread for methodAttacksTo in benchmarkcrafty

methods can benefit from PD of whichAttacksTo is a method where the application spends 6% of its

execution time (Listing 3.4, call sites in lines 022 to 039).TheAttacksTo method, used to produce a

map of all squares that directly attack the specified square (lines 001 to 012), is called by several methods in

the program with easily identifiable parameters;ValidMove, which is used to verify that a move is valid,

is one of them. The speculative execution ofAttacksTo can, therefore, be forked at the beginning of

execution ofValidMovemethod (illustrated in Figure 3.5(a)).

Listing 3.5 presents another example incrafty. Search is a recursive method to implement the

minimax search (lines 001 to 014). The method first checks itsmove, then calls theMakeMove method
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(a) Speculative threadalloc heap data in vpr (b) Speculative threadAttacksTo in crafty

Figure 3.6: Illustrations of PD based speculative executions of methods from benchmark programs,vpr
andcrafty

(line 016), and then in some cases decides to undo by callingUnmakeMovemethod (line 026). This method

accounts for 10% of the application’s execution time and is called at several other points in the program;

the example in Listing 3.5 is one call site. The parameters for MakeMove andUnmakeMove, as well as

its dependencies, are satisfied at the beginning of theSearch method. Suitably forked, the speculative

executions can be overlapped with the program code executedin lines 002 to 015 (as illustrated in Figure

3.6(b)).

3.5 Program Demultiplexing framework

In this section, I provide a sketch of an implementation of PDthat will be further discussed and evaluated

in this dissertation. The PD framework is illustrated in Figure 3.7. Suppose, a methodA at a given call

site has been chosen for speculative execution. Thetrigger, a component of PD which, when “fired”, i.e.,

its conditions satisfied, forks a speculative thread for thecall site ofA. In order to begin the speculative

execution ofA, the parameters, if any, are generated by speculatively executing another component of PD,

the handler. The handler may then invokeA with these parameters depending on its control flow. The

parameters are recorded,A speculatively executes, while the read and write sets of thespeculative execution

are monitored and gathered at the end of the execution. Several speculative executions may be ongoing on

different processing cores. A speculative execution is held until it is used or invalidated. It is invalidated
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001 int Search (alpha, beta, wtm, depth, ply, do null) {
002 . . .
003 while ((current phase[ply]=(in check[ply]) ? NextEvasion(ply,wtm) :
004 NextMove(ply,wtm))) {
005 extensions=(threat) ? 0 : -INCREMENT PLY;
006 if (Captured(current move[ply]) && Captured(current move[ply-1]) &&
007 . . .
008 )) {
009 if (Piece(current move[ply])==pawn &&
010 ((wtm && To(current move[ply])>H5 && TotalBlackPieces<16 &&
011 . . .
012 p values[Captured(current move[ply])+7]) {
013 . . .
014 }
015
016 MakeMove (ply, current move[ply], wtm);
017 if (first move) {
018 if (last[ply]-last[ply-1] == 1) {
019 extended reason[ply]|=one reply extension;
020 one reply extensions done++;
021 if (extensions < 0) extensions+=ONE REPLY TO CHECK;
022 }
023 value=-ABSearch(-beta,-alpha,ChangeSide(wtm),
024 depth+extensions,ply+1,DO NULL);
025 if (abort search) {
026 UnMakeMove(ply,current move[ply],wtm);

028

Listing 3.5: Speculative threads for methodsMakeMove andUnMakeMove in benchmarkcrafty

if the program commits to a location that is in the read set.3 Outstanding speculative executions available

are searched when a PD marked call site is reached by the program or by another speculative thread (called

the requestor in this dissertation). Instead of executing the method then at the call site, the results of the

execution are used if they have not already been invalidated, and if the parameters that were used for the

execution match the ones at the call site. If a speculative execution ofA is in progress, the requestor may

decide to wait for the execution to complete, or abort the speculative thread and instead execute the method.

For an illustration, see Figure 3.8. Next, I enumerate the implementation support that is needed, each of

which will be discussed in more detail in the following sections.

1. Choosing methods and the respective call sites for performing PD based execution.

2. Generating handler(s) for a chosen call site so that the handler can set up the speculative thread and

provide parameters for the speculative execution of the method that it may call.

3This description assumes that the write set is maintained ata byte granularity. However, a practical implementation can only
collect the write set at a block level (for example, an entirecache line) and must therefore invalidate a speculative thread if a
committed store is in a block that is in the read set and also inthe write set.
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Figure 3.7: Program Demultiplexing framework. The framework illustrates PD based execution of a call
site for methodA in the program. On the left side is the sequential execution of a program with the call site
of A and its execution shown. On the right is the PD based execution with the speculative execution ofA
when the corresponding trigger is fired, and the call site ofA used to commit the speculative execution.

3. Generating trigger(s) for a chosen call site, which is usually set to fire when the dependencies of the

handler and the method are satisfied.

4. Determining hardware support to perform speculative executions on processing cores, storing the re-

sults of speculative threads, ensuring their correctness,and finally committing the speculative threads.

3.5.1 Methods for PD

Suitable methods and their call sites need to be chosen for PDbased execution. It is desirable to speculatively

execute all methods in a program. However, this is not alwaysachievable due to two reasons. First, the

program may have limited parallelism between methods either because of the characteristics of the problem

being solved or because of programming practices. In the latter case, a program may spend significant

execution time in a few methods; speculative execution of large methods4 increases the probability of

violating dependencies resulting in wasted executions. Secondly, hardware resources needed for speculative

4The size of a method is measured by the number of dynamic instructions executed.
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Figure 3.8: Program Demultiplexing illustration in which the program waits for the speculative thread to
finish execution before the thread can be committed. The program may instead abort the speculative thread
and execute the method at the call site.

execution, such as limited processing cores and cache resources, restricts the extent of speculation that may

be performed.

3.5.2 Handler

In sequential execution, a method is invoked at a call site inthe program. Any parameters needed for the

method are communicated by the callee through the stack, registers, or other alternate means. With PD,

a method is speculatively executed when the corresponding trigger fires. Therefore, some other means is

necessary to provide the parameters. The handler consists of program code generated specifically for PD

with means to generate the parameters and to call the method with the parameters. The speculative thread is

said to have completed when the end of the handler is reached.

3.5.3 Trigger

A trigger is used to begin the speculative execution of the associated handler and is chosen to indicate the

readiness of a speculative thread. The separation of the trigger site from the call site determines how much of
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the speculative execution can be overlapped with the program and the extent of performance benefits. In this

dissertation, the trigger is specified as conditions based on the program counters of committed instructions.

For this reason, speculative threads can be forked only by the non-speculative program and not by other

speculative threads.

3.5.4 Handling speculative threads

When a trigger fires, a free processing core is found, and the speculative execution of the handler begins.

Depending on the code (and the control flow) in the handler, itmay invoke the method, and begin the specu-

lative execution of the method. Hardware support is used to perform speculative execution, which involves

monitoring accesses made during the execution and ensuringthat the architected state of the program is not

modified. This prevents the execution of instructions that modify privileged state or instructions that may

have unspecified side-effects in the speculative thread. During the speculative execution of a method, the

read and write sets are tracked. Speculative threads do not communicate data values with each other. Finally,

at the end of the execution, the read set, write set and data, have to be identified and retrieved, and stored

along with the parameters and stack pointer used, for futureuse and to ensure that the speculative thread has

not violated any dependencies. Additional hardware structures are needed to store the speculative threads,

and to determine any conflicts. The program, or any other speculative thread, on reaching a PD marked

call site, searches for available speculative executions for that call site. The results (write set and return

value) are committed if requested by the program, or integrated into the speculative state of the requesting

speculative thread.

3.6 Chapter summary

This chapter provided an overview on the PD based execution model. First, I presented background on the

role of methods in programs, the semantics of compiling a method, and the motivation behind the choice

of methods for speculative execution. I then presented several examples and opportunities for creating

concurrency with PD in benchmark programs. Finally, I presented an implementation overview of PD,

describing the software and hardware support needed for it.The next two chapters will focus on the

implementation of PD.
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CHAPTER 4

AN I MPLEMENTATION OF PROGRAM DEMULTIPLEXING

A key factor that must be considered in order to construct an implementation of PD is to decide the

division of work between hardware and software. While some aspects of the implementation, such as

profile generation and creation of handlers and triggers, are practical with software support, others such as

speculative execution of methods may require hardware support because of lower overheads. In addition,

several tradeoffs such as the complexity and cost of hardware implementation versus the benefits of such an

implementation must be considered.

Implementations of PD can span several permutations of hardware and software support requirements,

each with advantages and disadvantages. For example, a software only implementation of PD can be

deployed with no hardware support, in comparison to a hardware-software implementation that requires

non-trivial extensions to the current generation of multicore systems. In addition, a hardware-software

implementation cannot always achieve the generality of software implementation. It can implement only

specific common cases, and may leave the rest for the softwareto handle gracefully. On the other hand, the

benefits achievable from software only approach may be limited due to the potentially prohibitive cost of

software based speculative execution. A hardware-software implementation may be able to achieve greater

benefits with reasonable implementation cost and complexity.

This dissertation describes a hardware-software implementation of PD that I have chosen. It was chosen

not only because of its practicality, but also because of my lack of experience (and perhaps, the lack of

evaluation tools) in a software-only approach. The experience and insights gained from the hardware-

software implementation may be used to refine the PD execution model and applied to other implementations

(such as the software-only approach). With that, this chapter covers the software support needed for the

implementation, and is organized as follows. First, I discuss the assumptions made for the implementation.

The profiling support needed for the implementation, and thesteps to be carried out for generating a PD

based application are discussed next. Finally, several examples from benchmark programs are provided.
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4.1 Software support

I assume the software support for the implementation of PD isbuilt on top of a binary rewriter or postpro-

cessor. The toolset operates on precompiled binary of the application, and no part of the program code is

altered, rewritten, or restructured for PD. A compiler may also be used, but this would require access to the

source code which may not be available for some applications. A discussion of the pros and cons of this

approach is deferred for later discussion (Section 6.2). Due to the binary-level implementation, the software

support has to consider the compilation model of the program. For this purpose, I limit the dissertation to

the compilation model used by the GNU gcc compiler for C programs. Due to simplicity of implementation,

I also assume that all parameters are passed through the stack; a common case in the Intel x86 architecture

due to limited availability of registers. With these assumptions, the following aspects of the implementation

are performed by software. First, suitable methods and their call sites for PD based execution are identified.

Then, handlers and triggers are generated for these identified call sites. Program analysis, both in the static

form as performed by the compiler, and dynamic form by means of profile data (offline and/or online), are

crucial for accomplishing the tasks.

4.2 Profile information

The software support for the implementation relies on profile information. In this section, I describe the

different types of profile data used. I have broadly classified them as: (i) execution time profile, (ii) memory

profile, (iii) branch profile, and (iv) call profile. Details of these profiles are discussed next.

Execution profile. The execution profile, collected at a method granularity, consists of a method’s

runtime, instruction count, execution cycles, and the different call sites that invoke the method. It is used

to determine the run time contribution of a method’s execution to the total execution time of a program,

and for identifying suitable candidates for PD. A tuple in this profile has the method’s program counter—

the program counter of the first instruction in the method to which the control is transferred when the call

instruction is executed by the program, the program counterof the call site, the number of instructions

executed dynamically, and the execution time spent in the method. The tuple may also have debugging
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information such as the method’s name, the call site’s line number, source file name and other debugging

information. The list of entries in a tuple has the following:

Call Site PC
Method PC
Execution Time Cycles
Number of Instructions Executed
Call Site Info (source file name and line number)

Memory profile. The memory profile consists of a set of tuples, each tuple consisting of the program

counter of a load or store instruction, the type of instruction, i.e., load or store instruction to heap or stack

location, address of the read or write operation, and the number of bytes. It is collected for the entire

program. A tuple in this profile would therefore have:

Program Counter
Instruction Type
Read or Write Address
Number of Bytes

The read set of a method’s execution is aggregated from this profile which is then used to determine the

trigger points for the call site. The profile is also used to establish memory dependence between instructions,

especially for those that reference the stack as they are needed for handler generation.

Creating a profile with tuples collected for the run of the program is likely to consume significant storage

space and offline processing time. On-the-fly memory profiling, where a profile is created in memory and

processed for the desired information at run time of the program, is preferred. This may be easily achieved

by instrumenting the program to create the profile, as well asto process the profile. A practical way of doing

it is through libraries such as Pin [119] or DynamoRIO [26]. This dissertation uses a similar implementation.

More details are presented in Chapter 6.

Branch profile. The branch profile, also collected for the entire program, consists of the program counter

of a branch instruction, the number of times the branch is executed, and the number of times it is taken or not-

taken during execution. The profile also carries the branch targets of indirect branches and calls encountered



50

during program’s execution. These targets are used in placeof the address computation operand in the

indirect branch during generation of handlers. A tuple consists of:

Program Counter
Target Program Counter (for indirect branches)
Number of times Taken
Number of times Executed

This profile is used for handler generation to partly aid in determining whether a branch has to be included.

It is also used to determine the chances of control flow mis-speculation between the trigger site and the call

site.

Dynamic call graph. A dynamic call graph is a graph with nodes consisting of methods in a program,

in which a methodM is connected by the set of methods that callM during their execution. A dynamic

call graph, unlike a static call graph, has only the set of methods that call a method during the execution

observed. This information, along with execution time profile of methods, is used determine the call sites

of a method for which handlers and triggers need to be generated for PD based execution. The dynamic call

graph is also used along with the control flow graph for the construction of handler.

4.3 Static information

Besides relying on profile information, some key compilation structures are also needed for the implemen-

tation. These are:

Control Flow Graph. A control flow graph is a graph consisting of basic blocks and arcs representing

flow of control between basic blocks. It is used for the generation of handlers and triggers.

Data Dependence Graph. The data dependence graph, specifically the post dominator tree, is required

to determine if the call sites chosen for PD are control dependent on any branches between the trigger and

call site, and for the generation of triggers.
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As a side note, some profiling data used in the implementationmay be substituted with compiler based

static analysis. For example, memory dependence between instructions is required only for instructions that

reference the stack. Stack references are usually not ambiguous and, therefore, the compiler may be used

to determine dependent instructions without the need for memory profile information. In addition, precise

analysis is not required from the compiler because of the speculative nature of PD. For example, memory

profiling may be combined with ‘may be’ dependence analysis from static alias analysis to determine

suitable triggers.

4.4 Overview of the implementation: the different phases

The rest of this chapter will describe the software support for the implementation of PD which comprises of

three essential steps: (i) choosing methods for PD, (ii) generating handlers for the chosen call sites, and (iii)

generating triggers for the chosen call sites. These three operations are not independent, but are inter-related,

as will be evident in the following sections. For example, due to implementation issues with generation of

handlers and triggers, or due to lack of performance benefitswith speculative execution, some call sites may

not be suitable for PD execution. They may be eliminated as candidates for future PD based execution runs.

Similarly, determining the suitable handler for a call sitewill depend on the location of the trigger which,

in turn, depends on the read sets of both the handler and the method. To accomplish this, steps (ii) and (iii),

i.e., generation of handlers and triggers for the chosen call sites, are iterated twice (for convergence). The

second iteration is used to perform some subtasks in a step that requires feedback from other steps, and vice

versa. The details are given in the discussion of the generation of handlers and triggers in Sections 4.6 and

4.7.

4.5 Choosing methods for PD

Not all methods in an application are suitable for speculative execution. First, the execution profile is used

to determine methods that contribute significantly to the program’s total execution time. Then, the profile

is used to determine the frequently executed call sites of the chosen candidate methods. The intention is

not to consider call sites that are rarely invoked for speculative execution, as they may not contribute to

performance improvements. The list of methods and call sites provides an initial list of methods for the rest
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of the implementation. The set of call sites for PD based execution may be refined during each step in the

implementation, and finally, when benefits of PD for the chosen call sites are available from execution runs

(for example, through hardware performance counters). Some call sites may not be suitable for PD due to

the following reasons:

1. The generated handlers and triggers for a given call site may not be able to achieve significant

separation between the trigger site and call site, thus limiting concurrency between the speculative

execution(s) and the program. This could be due to limitations in the handler implementation or due

to hardware restrictions on speculative execution. It may also be because of the program code as

written by the programmer and/or the execution model’s inability to extract parallelism.

2. The probability of the program reaching the call site while at trigger site may not be high. This may

result in speculative executions being discarded, thus wasting execution resources.

3. Hardware resource constraints, such as storage limitations in holding the write set of a speculative

thread, and the presence of privileged system calls inside amethod, may prevent speculative execution

of a method.

4. The method called at a given call site may have limited parallelism due to dependencies with the rest

of the program.

Several operations may need to be initiated by the hardware when a call site is reached. For example,

the non-speculative program or a speculative thread may need to determine if there are any outstanding

speculative threads when it reaches a call site. These operations may be performed on encountering every

call instruction. Since it is unlikely that every method in the program (including user and system library

functions) is going to be chosen for PD, a marker instructionpdcall is placed before the call site of a

candidate method chosen for PD. Thepdcall instruction has the upper and lower bound stack addresses

of parameters (or equivalently, the number of bytes occupied by parameters) as operands. As shown in the

following example, thepdcall instruction indicates that there may be speculative threadoutstanding for

the methodfree heap data, called by the followingcall instruction.

movl %eax, (%esp)
pdcall 0x4
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call free_heap_data

The marker instructions are inserted statically to a binaryand therefore, are conservative. The presence

of pdcall indicates that the call sitemayhave outstanding speculative threads. The hardware on executing

apdcall may trigger micro-code that initiates the search for an outstanding speculative thread.

4.6 Generating handlers

A handler is speculatively executed when its associated trigger is fired. The primary purpose of a handler

for a given call site is to predict if the program’s control flow would reach the call site, when the program is

at the trigger site and, if so, invoke the speculative execution of a method with its parameters. The handler

which is not considered as part of the program, therefore, decouples the the method’s execution from its call

site.

There are several ways for achieving the task of a handler. Toevaluate the reachability of the control

flow to the call site, the handler may evaluate branches that it predicts will also be executed by the program

between the trigger and call site. Another approach would beto use a task predictor, similar to Multiscalar.

To provide parameters for the method’s speculative execution, the following approaches may be taken:

(i) value-based prediction, (ii) programmer-specified prediction, and (iii) computation-based prediction. All

of the three means are predictive because the execution of a handler is speculative. Therefore, the values

generated by the handler must be verified with the actual parameters provided at the call site. I next describe

these three means.

Value-based prediction. Parameter values for a method’s execution can sometimes be highly correlated

with values used for invoking that method in previous executions. A value-based predictor may be used

to collect the history of previous values and used to predictthe parameters for the method’s speculative

execution.

Programmer-specified prediction. Since programmers have the best idea of the program code in the

application, it may be effective to let programmers providethe handlers. Programmer-specified handler

requires that the application writer provide alternate means of generating the parameters that can be executed



54

at the trigger site. This approach would require programmersupport and possible language extensions to

introduce handlers in the program.

Computation-based prediction. Instead of predicting the parameter values or requiring programmers to

specify them, a computation-based predictor obtains the values by extracting some instructions “automati-

cally” from the program and executing that code. The instructions extracted from the program deals only

with the computation of the parameter values and, therefore, do not include any independent computation

that may be present in the program. The common means of generating this type of a handler is by the process

of backward slicing of dependent instructions that providethe parameter values at the call site.

Unlike value-based prediction, computation-based prediction involves recomputing parameters, i.e., per-

forming computation that is also performed by the program, and may have higher overheads because of its

execution. The backward slice to generate a predictor may also introduce additional dependencies with the

program, which may limit the parallelism. However, value-based prediction is only effective for certain call

sites with parameters that are repeatable across multiple invocations. Programmer-specified handlers are also

beyond the scope of this work and require altering the program code of the benchmarks used for evaluation.

I choose computation-based handlers for the implementation, as it is a generic approach applicable to any

call site assuming handlers can be generated to deal with different programming constructs. In the following

subsection, I discuss the process of generating handlers bymeans of backward slicing. I will present the

heuristic choices, handling different programming constructs, optional optimizations, and integrating them

to an application binary.

4.6.1 Backward slicing

Formally, the backward slice at a program pointp is the program subset that may affectp. It is a commonly

used technique for understanding, restructuring, and debugging programs, and has been extensively studied

in the programming languages community [22, 191, 202, 203].The goal of this work is to obtain handlers

for call sites through backward slicing of the program; the algorithm is not optimized to minimize space and

time overheads but merely designed for functionality.
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001 main:
002 pushl %ebp
003 movl %esp, %ebp
004 subl $24, %esp
005 andl $-16, %esp
006 leal -4(%ebp), %eax
007 subl $16, %esp
008 movl %eax, 4(%esp)
009 movl $.LC1, (%esp)
010 call scanf
011 movl -4(%ebp), %eax
012 movl %eax, (%esp)
013 call m
014 leave
015 ret

016 m:
017 pushl %ebp
018 movl %esp, %ebp
019 subl $8, %esp
020 movl $.LC0, (%esp)
021 movl 8(%ebp), %eax
022 movl %eax, 4(%esp)
023 call printf
024 leave
025 ret

Listing 4.6: Assembly listing of a simple program that readsa value from the user and passes the value as a
parameter to methodm.

A collection of backward slices obtained from the program isused as a handler and acts as a computation-

based predictor of parameter values. Each slice is used to recompute a parameter value, and the first step is

to write the generated parameter value to the stack. (Note that the operation is performed backwards starting

from the call site and, therefore, writing a parameter valueto the stack is the first step.) The parameter values

must be written at the same locations as the call site will write them, as the method will have to access the

values from these locations irrespective of whether they are speculatively executed in PD or executed from

a sequential program. In the example shown in Listing 4.6, this results in the inclusion of line 012 in the

slice of the parameter for methodm (which is called in line 013). Methodm is shown to access the parameter

value in line 021. The algorithm proceeds as follows.

The source registers for each of the stack writes of parameter values form the elements of the

live-in set for the backward slicing algorithm. For the example in Listing 4.6, it begins with

registereax.

For every register or condition code in the live-in set, the corresponding instruction(s) that
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writes to the register or condition code is determined; theyare included in the slice, along with

any branches that the instruction(s) is/are control dependent upon.

For every instruction in the slice, depending on its type, the source register, scale, and index

registers, if any, are included as elements in the live-in set. In case of a branch instruction, the

condition code that is used to determine the decision of the branch is included in the live-in set.

In case of a memory load instruction, the address, if in the stack, is included in the live-in set;

otherwise, the algorithm terminates.

For every memory address in the live-in set, which can only bea stack location, the corre-

sponding store instruction that writes to that memory address is determined; the instruction is

included in the slice.

The goal is to terminate the backward slice of every live-in value with a load instruction to some heap

location. If the computation terminates with a load to a stack location, the search continues for a store

operation that writes to that address, and so on. The above set of heuristics will produce a handler that

may have stack references in it, but will not have any computation involving the heap. This choice is

made because stack references are short lived compared to the data in heap, and are usually associated with

computations whose results are consumed immediately. In the second iteration, this generated handler is

suitably adjusted according to the location of the trigger.This process is discussed later in this section.

Several aspects of the program code need to be dealt with during the backward slicing process. They

include: (i) identifying memory handling instructions that are dependent, (ii) handling constant values,

(iii) handling branches, (iii) handling other control flow structures such as loops, and (iv) handling inter-

procedural dependencies. These issues are discussed next.

Establishing memory dependencies

It is necessary to establish memory dependences between load and store instructions so that they can be

analyzed by the algorithm. Of particular importance to the slicing algorithm are instructions that reference

the stack. Memory addresses for load and store instructionscan be ambiguous at compile time, and available

only during execution. The memory profile is used to determine memory dependence between load and store

instructions. In some cases, this may not be accurate, as it is difficult to establish dependencies especially
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001 movl 0x1, (%esp)
002 call m

Listing 4.7: Assembly listing of a simple program that callsmethodm with constant value1

with changing input sets and phase behavior in an application. However, in this implementation, since

the handler generation algorithm deals only with dependencies between instructions that reference stack

locations, ambiguity is not an issue. Stack references are rarely ambiguous because they often deal with

local variables and the allocation is performed by the compiler, which can easily establish the dependencies.

Constants

The simplest case in the slice generation is handling constants. Listing 4.7 illustrates an example in which

a live-in register’s source is a constant value. The listingpresents a call to methodm with constant value1.

The slice will terminate with the inclusion line 001.

Branches

Instructions in a backward slice may be control dependent onone or more branches in the program. This

control dependence can be divided into two cases. The first case deals with the reachability of the call site

from the trigger site. Consider Figure 4.1 that illustratesspeculative execution for a call site. The trigger fires

during the execution of the program, forking the speculative thread. Meanwhile, the program may execute

several branches and may or may not reach the call site, eventually not using the speculative execution that

was fired. To minimize the number of such wasted speculative threads, branches that the call site is control

dependent upon, and instructions that compute those branches are included in the handler. For example, in

Figure 4.2 the call site forM in block B3 is dependent on the branch evaluated in block B1 and, therefore, is

included in the handler.

The second case is the control dependence of an instruction (besides the call) included in a slice. To

illustrate this case, consider the example shown in Figure 4.3. The parameter value itself is dependent on

the branch in block B1. Depending on the path taken, the valueof x may ben or m. Both paths and the

branch are therefore, included in the handler.
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Figure 4.1: Reachability of the call site from the trigger site. Shown in the figure is the dynamic control
graph (hence, not a straight line of committed instructions, but branches and loops taken in the program).
The reachability of the call site will depend on the intermediate branches executed between the trigger site
and the call site.

Loops

Branches may introduce loops in a program. A loop must be specially handled because instructions in a

loop body may have cyclic dependencies. In this implementation, handlers do not have loops but instead,

include instructions obtained by unrolling the loop in the program.

During the first iteration, a handler for a call site is generated without any knowledge of the trigger points

for that call site. In the second iteration, with the knowledge of the location of trigger points, the code in the

handler is adjusted. There are three possibilities for the location of the trigger points (refer to Figure 4.4 for

the control flow graph). They may be: (i) located outside the loop when the method has no dependencies

with the rest of loop body, (ii) located inside the loop when the method has loop carried dependencies,

and finally, (iii) located inside the loop because of method’s dependence on loop body. Of these, case

(iii) is the simplest and requires no special handling. Case(i) can have many implementations, and the
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(a) Control flow graph (b) Layout of the program (c) Layout of the handler

Figure 4.2: A call site for methodM in basic block B3 that is control dependent on the branch in block B1.
The control flow graph, the layout of the program, and the layout of the handler in the binary are shown in
the figure.

Figure 4.3: A call site for methodM that takes one parameterx. The value ofx is dependent on the branch
in blockB1.

discussion is postponed to the end. Case (ii) may result in a handler that steps forward several iterations and

then speculatively calls the method. Note that due to the algorithm’s restriction on not including any store
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Figure 4.4: Illustration of handler generation for loops. The call site for methodA is located basic block B3.
The trigger point for the call site is in basic block B2.

instructions to the heap, unrolling is not performed if the iterator is a heap location (the same is true if the

iterator is register allocated).

To further explain case (i), consider a simple example of random number generator being invoked

inside a loop, which is independent of the computation in theloop body. The best means to capture this

parallelism is to speculatively execute several calls to the method in parallel. This may be done by placing

several triggers, explicitly or implicitly, by means of a dummy loop, that forks speculative executions of

the method. An alternate way is to include the loop in the handler and substitute the call instruction with

an “asynchronous call” to the method, which invokes the calland continues with the rest of the code.

This implementation takes a simpler approach and does not execute the method in parallel, but invokes in

sequential order.

Interprocedural

Two types of interprocedural dependencies may be introduced during the generation of a slice. In the first

case, the producer for an element in the live-in set may be thereturn value of another method invoked by the

caller. In the example shown in Listing 4.8, methodm is called with parameterx, which is the return value



61

int g () {
// do some computation

return 1;
}

void f () {

x = g ();

...
m (x);

}

void m (int x) {
...

}

Listing 4.8: Example code for interprocedural dependencies when generating handler for methodm. The
parameter valuex is produced by another methodg.

001 m:
002 ...
003 movl 8(%ebp), %eax
004 ...
005 ret
006 g:
007 ...
008 movl $1, %eax
009 ret
010 f:
011 ...
016 call g
017 movl %eax, (%esp)
018 call m
019 ...

Listing 4.9: Example handler for code shown in Figure 4.8. The PD call site is in line 018.g (which will be
copied during relayout) returns the value 1 which is provided as the parameter form.

of another methodg, called by the caller methodf. Slicing may proceed to include instructions in method

g. In the given example, the return value is not dependent withthe rest ofg. The instructions that are part of

the handler are shown in Listing 4.9. (The call targets must be adjusted and this process is discussed later.)

If slicing of the dependence is not possible, the algorithm terminates at the point of return value dependence

and the trigger site for the execution will be set at this point in the program.

In the second case, the producer for an element in the live-inset may be a parameter value. In the

example shown in Listing 4.10, the handler is generated for methodm, called by the caller methodg. The

caller methodg is also called with the same parameterx by another methodh. Slicing may further extend

to all the call sites for the caller method by replicating thehandler code for every dynamic call site, and
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void m (int x) {

// compute with x
... = x ...

}

void g (int x) {

// ... some computation

m (x);
}

void h () {
x =

// ...
g (x);

}

Listing 4.10: Example code for interprocedural dependencies when generating handler for methodm.
Methodh calls methodg with parameterx which is passed on to methodm.

continuing the operation for each one of them. This would produce multiple handlers for the given PD call

site. Otherwise, slicing terminates at the head of the caller method and the trigger is set to begin speculative

execution from this point.

4.6.2 Termination

An important decision in the generation of the backward slice is determining when to terminate the opera-

tion. The factors that need to be considered in the heuristicfor termination are the length of the handler, in

terms of the number of dynamic instructions, its contribution to the speculative execution, and the separation

that can be achieved between the speculative execution and the call site of the method in program. More

computation in the handler increases the number of instructions in it. This increases the overheads of

speculative execution, but may also further the separationof trigger site and call site and improve the extent

of parallelism.

One other aspect that must be considered during slicing is toensure that a slice does not extend beyond

the trigger point for a call site. Figure 4.5 illustrates an example in which a method’s read set consists of

memory locationX. LocationX is written to by the program along the path of the backward slice. After the

trigger points for a method’s call site are identified, it is clear that the method cannot begin execution before
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Figure 4.5: Dynamic control flow graph of a program is shown and backward slicing process for a call site
of methodM is marked. MethodM during its execution reads from heap locationX, which is written outside
of the method by the program and in the path of the handler. Thetrigger point for the call site ofM can occur
no earlier than the assignment toX and the slicing process may be terminated here.

the write toX. Therefore, in the second iteration, the handler generatedin the first iteration is trimmed to

ensure that head of all the slices in the handler do not extendpast the corresponding trigger points.

4.6.3 Optimizations

Numerous opportunities exist for choosing the code for the handler; they were briefly discussed earlier in

this chapter. In this subsection, I discuss some optimizations to the handler. (None of these are implemented

in this dissertation.)

Multiple call sites. The compute-based handler discussed in this dissertation may have high execution

overheads, especially if considerable separation (in terms of execution cycles) is needed between the trigger

site and the call site to overlap the execution of a speculative thread. The overheads of executing a handler

may be amortized if multiple call sites that share similar computation due to their proximity in program use

the same handler. For example, consider a hammock with two call sites for methodM as shown in Figure
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Figure 4.6: MethodM invoked in bothif andelse part of a condition. The implementation generates two
handlers for the two call sites.

4.6. In the implementation discussed in this dissertation,two different handlers are generated for the two

call sites in blocks B2 and B3. Both evaluate the branch in B1 to determine whether to callM. Instead, the

two handlers may be combined and the branch speculatively evaluated only once.

Infrequent paths. The handler may be speculatively optimized, such as by elimination of infrequently

executed branches and substitution of dependent chains of instructions with the result. Several other op-

timizations, proposed by other speculative parallelization proposals [61, 152, 210], can also be applied to

handlers. In general, these optimizations may affect the accuracy of correctly computing the parameters.

Global data dependencies. The scope of handlers may be expanded and can be used to eliminate some

data dependencies (besides parameters) between the methodand the program. For example, as shown in

Listing 4.11, assume methodm reads from variableg, a global variable written before the method is called

by the program. By expanding the scope of handler to include writes to the heap, and by capturing backward

slices of not just the parameters but also heap memory locations accessed by the method, the extent for

parallelism for PD may be further improved.
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001 void f () {
002
003 g = val;
004 ...
005 m ();
006 }
007
008 void m () {
009 int temp;
010
011 ...
012 temp = g;
013 ...
014
015 }

018

Listing 4.11: Global variableg is written before methodm is called. Methodm accesses the variableg
during its execution.

4.6.4 Incorporating handlers into program

Once the handlers are generated, they are incorporated intothe binary. The program counters of the head

instruction of the handlers are associated with the triggers. The handlers and triggers are laid out in separate

segments in the binary (see Figure 4.7). For comparison of parameters generated by the handler and at the

call site,pdcall instructions along with parameter bounds are inserted before the the call to the method

in the handler. Instructions that do not alter the control flow are incorporated in the handler without any

alterations. Branch targets are altered to jump to locations within the handler and not back to the program.

An example is shown in Figure 4.2, in the form of control flow graph. The branch in block B1 is included in

the handler and, therefore, its target is changed from B3 to B3’. If the branch is not taken, the handler falls

through to a dummy block (the handler does not have any instructions for the corresponding block B2), and

terminates.

Another example in Listing 4.12 illustrates the handler formethodm in Listing 4.8. Since the handler

includes instructions from another methodg, a dummy methodg-t is created in the handler. The code in

g-t is the subset of code fromg in the program. Note that all stack pointer manipulating instructions (lines

002 to 005) are also included from the methodg to ensure that any stack references ing-t (all of which

obtained fromg) are not altered. It is necessary that the handler execute the call tog-t ensure that theret

instruction included ing-t is matched. A handler is terminated with ahend instruction.
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Figure 4.7: Layout of the program with triggers and handlers. Call sites chosen for PD are prepended with
pdcall instructions in the program code. The handler segment consists of all handlers laid out. Control
is transferred to the program only by a call instruction thatinitiates the speculative execution of a method.
The trigger segment has the evaluate and register portions of all the triggers. A trigger is linked to its
corresponding handler.

001 g-t:
002 pushl %ebp
003 movl %esp, %ebp
004 subl $24, %esp
005 leave
006 movl $1, %eax
007 ret

008 handler_head:
009 call g-t
010 movl %eax, (%esp)
011 call m

Listing 4.12: Layout of the handler in the presence of a call for the code presented in Listing 4.8. A dummy
callg-t returns the value1which is saved to the stack, and is passed to the speculative execution ofm. Note
that all instructions that manipulate the stack pointer ing are includedg-t to ensure that the references are
to the same location.
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4.7 Generating triggers

The notion of a trigger allows initiating the speculative execution of a method at a point in the program

different from the call site. The separation of the call and trigger sites provides the capability to break from

sequential ordering, execute one or more methods out of program order concurrently, and later use the call

sites to determine when the speculative executions of methods, if valid, should be committed. The executions

have to be speculative and committed in program order to provide the notion of sequential execution, and

because triggers are only indicative of when speculative executions may begin, not definitive. If this had

been the case, the compiler could have parallelized the program statically.

A trigger in PD is an expression composed of a set of conditions, formally, predicates. A predicate

is constructed from program counter of an instruction with equality and inequality operators. A set of

conditions may be logically operated on byand operators to create the expression for a trigger. The

expression, when evaluated to true, indicates that the trigger has “fired”. An example of a simple trigger is,

(PC = 0x1234578)

In the example, the trigger fires when instruction at programcounter 0x12345678 commits.

(PC = 0x8495423 and previous PCs != 0x8593251)

In this example, the trigger fires when instruction with PC 0x8495423 commits, and the program did not

commit instruction with program counter 0x8593251 during its execution. (The instructions that are used

to match the != condition is dependent on the software micro-code generated for the trigger. This is further

described in Section 4.7.4.) One or more triggers are created for a call site of a method in the program

that is a candidate for PD based execution. A trigger is used to indicate the “readiness” of a method. The

expression of a trigger is constructed to fire when the associated handler, and subsequently the method can

begin speculative execution and usually not violate any data dependencies. Choosing the expression for a

trigger is one of the key factors that determines the extent of useful speculation that may be performed for

the corresponding call site.

Conceptually, triggers for a call site can be derived from the summary, i.e., data requirements of the

method, during its executions. Method summaries are commonly used in scientific program parallelization

by compilers to analyze and achieve parallel execution. Because PD has to deal with programs with

unstructured and ambiguous memory references, summaries cannot be easily generated by a compiler
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through static analysis. For this, the implementation relies on dynamic profile information. Even though

ambiguous memory references, i.e., pointer references in aprogram, can access any part of the program

state, in reality, programs exhibit bounds in addresses referenced. This aspect either creates stable read

sets or stable producer code across several executions of a method. It is also likely to have methods with

unrealizable triggers in this implementation.

The steps involved in the generation of trigger for a given call site of a candidate method chosen for

PD will be covered in the rest of this section. This process must be repeated for every call site chosen for

speculative execution in the program.

4.7.1 Identifying trigger points

The first step in determining the trigger for a call site is to determine what the trigger points are. A trigger

point, specified for every execution of a given method’s callsite, represents the point or instance in the

sequential execution of a program when the read set (i.e, data required) for the execution of the method and

its handler is available. If the speculative execution begins at this point, the method will be able to execute

speculatively without being invalidated for dependence violations. The handler is also included in the read

set, and in determining the trigger point, because a method cannot speculatively execute without it.

To determine the trigger point for a given call site’s execution, the memory profile is used to collect the

read set of the execution of the method and its handler. This summarizes the method’s data requirements for

speculative execution. The read set is the set of all memory locations that are accessed during execution and

are not provided by the execution. Therefore, if in an execution, location X is written first, and then accessed

later, that location is not part of the read set. With similarreasoning, the read set will never have a memory

location that belongs to the local stack frame. On the other hand, the read set may have references to the

caller’s stack, due to: (i) passing of a stack pointer as a parameter, (ii) passing a parameter by reference to

the method’s execution or, (iii) handler’s dependencies. The dependence to the caller’s stack in cases (i) and

(ii) are unavoidable in this implementation, while case (iii) depends on the generated handler.

Having obtained the read set, the memory profile is again usedto determine when it is available during

the program’s execution. The last write that completes the read set’s requirements is thetrigger pointfor that

execution. Figure 4.8 reviews the steps discussed for the generic case when the read set has no references
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Figure 4.8: Identifying trigger point for an execution of methodA. The trigger point is found by collecting
the read set of the execution of the method and its handler anddetermining when the read set is ready during
the sequential execution.

Figure 4.9: Identifying trigger point for an execution of methodAwhich, along with its handler, is dependent
on a value in the caller’s stack frame (caller methodC shaded gray). The trigger point cannot be any earlier
than the creation of that value in the stack frame.
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to the caller’s stack. The trigger point for the execution ofA and its corresponding handler is identified

and shown in the figure. Figure 4.9 is a similar example, but illustrates trigger point in the case of stack

dependence in the read set. Assume that the stack reference is to the caller’s stack (the caller is shown with

gray shading in the figure), the trigger point cannot be placed earlier than the creation of the dependent value

in that stack frame.

4.7.2 Collecting trigger points

From the program’s execution, several trigger points are collected for the chosen call site. The goal is not

to observe all executions of that call site, but to achieve good coverage by collecting a large set of trigger

points. The trigger points may not always be unique due to tworeasons. First, executions of the call site

may have varying read set requirements depending on the parameters passed and the program state accessed.

Second, the program may exercise different control flow paths to reach the call site. The set of trigger points

will depend on the application, its characteristics, and its behavior to different input sets.

4.7.3 Specifying triggers

The final step is to take the set of trigger points from the previous step and produce triggers for the call

site. The goal is to ensure that the trigger for a call site fires in a timely fashion, i.e., speculatively execute

a method before its call site, but also without violating anydependencies of the program. The burden

of choosing call sites for PD and determining suitable triggers for useful speculation is on the software

implementation.

One of the first requirements that will determine whether a candidate call site can be chosen for PD is

the cardinality of the trigger points set. Smaller cardinality implies lesser hardware requirements and easier

implementation, and is practical when a method has a stable read set due to control flow convergence and/or

stability in program code that produces the read set for the method’s execution. Experimental results for the

benchmark programs evaluated in this dissertation indicate that methods that are small to medium (relative

to the benchmark program’s largest method, measured in terms of dynamic instructions executed), and tend

to have a small set of trigger points (under three). In addition, the cardinality can be significantly reduced

with optimizations that are not studied in this dissertation, but some of which described later.
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Another requirement that determines the suitability of a call site for PD is the path taken by the program

after the trigger has fired. A low probability of the non-speculative program reaching the call site implies

wasted speculative executions.

The trigger points are converted into triggers for a call site that passes the above tests. Before this

process, trigger points must be adjusted. First, to simplify the implementation, the program counter of a

trigger point is transformed into the program counter of thelast instruction in its corresponding basic block.

Second, the program counter of a trigger point that is insideanother method chosen for PD based execution

is moved out of that method and replaced with the program counter immediately after the call site. This is

performed because speculative threads can only be forked from the non-speculative program in the current

implementation. To maximize benefits, trigger points that are only inside methods that are definitely going

to speculatively executed must be promoted outside of the method. This may be achieved by conservatively

promoting the trigger points outside of the method, and thenbased on the feedback from a PD execution,

adjusting if necessary.

After the transformations, every element in the trigger point set is converted to a trigger. The trigger for

a given trigger point is the ‘logical and’ of its equality, and the negation of all other trigger points which

dominate it. This ensures that multiple triggers do not fire for a given call site and fork many speculative

threads. Two examples of this issue are shown in Figure 4.10 and Figure 4.11. Figure 4.10 shows a call

graph; methodsA andB call C, which callsM. The trigger point forM is T1 when the program takes the path

A→ C→ M, and T2 when the path isB→ C→ M. Both T1 and T2 should not fire when the program takes

the pathA→ C→ M. Similarly, Figure 4.11 shows trigger points T1 and T2 located in basic blocks B3 and

B4. Again, both T1 and T2 should not fire when the program executes basic-blocks B1, B3, B4, and B5.

Only T2 should fire; otherwise, the speculative thread forked from T1 is unused.

4.7.4 Incorporating triggers in a program

Having generated the triggers for many call sites, the next step is to specify these triggers and incorporate

them in a PD based binary. There are two approaches for performing this, the static and the dynamic

approach. I discuss these options next.
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Figure 4.10: Dynamic call graph, in which methodA andB call C, which callsM. T1 represents the trigger
point in the path ofA to C to M, and T2 represents the trigger point ofB to C to M.

Figure 4.11: Illustration of two trigger pointsT1 andT2 in basic blocks B3 and B4 for a call site (not
shown).
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Static approach

In the static approach, as the name indicates, the triggers are specified statically, i.e., placed directly into the

binary. During program’s execution, when an instructionpdfork handler pc is committed, it indi-

cates that a speculative thread has to be forked with execution beginning at program counterhandler pc.

The trigger is specified by the compiler, but the location maybe altered if the application is executed on a

managed runtime system such as Java [116], C# VMs, or LLVM [1,111] or a dynamic code modification

system such as DynamoRIO [14, 26]. ISA extension to implement the pdfork instruction is the only

hardware support that is needed.

Since the static approach specifies a trigger by incorporating it directly into the application, it is most

useful for a call site that has only one trigger site. A call site that has more than one trigger points requires

the support for generalized expressions constructed by theprocess described in the previous subsection. To

support this, the dynamic approach, described next, is implemented in this dissertation.

Dynamic approach

The dynamic approach is a generic way to support and evaluatetriggers. Any form of expression may be

specified for a trigger and evaluated with hardware support.

Unlike the static approach that incorporatespdfork instructions into a PD based program binary, in

this approach, triggers are implemented as micro-code snippets provided by software and evaluated with

hardware support. Micro-code of the triggers in a program are laid out in the binary in a separate segment

as shown in Figure 4.7. The micro-code is a representation ofthe trigger’s expression in a form that can be

executed by the hardware for evaluation. The result of the evaluation will determine if the trigger has been

fired.

To support this approach, the fundamental requirements from hardware are: (i) storage for holding the

results of the predicates, called trigger condition code registers, (ii) logical operators and access/modify in-

structions extended or new instructions, to operate on the trigger condition code registers, and (iii) execution

resources to evaluate the micro-code by means of execution.

The storage for results of predicates are provided with trigger condition code registers, bit-level storage

similar to condition code registers in Intel x86 architecture [92]. The first piece of the micro-code snippet for
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tsetpc X t0
tsetpc Y t1

Listing 4.13:tsetpc registers a program counter (first operand) and a trigger condition code register with
the hardware. The register is set when the program commits the instruction at the specified program counter.

cmpb $1, %t1
je L1
testb %t0, %t0
jne L2

L1:
tend

L2:
xor %t0, %t0
xor %t1, %t1
pdfork handler_pc
jmp L1

Listing 4.14: evaluate portion for evaluating a trigger. The code checks ift0 is 1, andt1 is 0. If true, the
trigger condition code registers are reset, and a speculative thread is forked to begin from program counter
handler pc. If false, the trigger ends withtend.

a trigger is theregisterportion. It deals with registering the program counters of interest with the hardware,

so that the corresponding trigger condition code register may be set for further use. For example, assume that

the trigger isPC = X and previous PCs != Y; the program counters of interest areX andY used

in the two predicates. Each of these are registered with the hardware usingtsetpc instructions (shown

in Listing 4.13), that instruct the hardware to set condition codet1 when program counterX is committed,

andt2 whenY is committed. The working of these instructions is similar to watchpoints implemented in

hardware [92, 94, 180] and used to interrupt the execution ofthe program when it reaches a specified point

(for example, to transfer control to a debugger so that the programmer can examine the state of the program

and debug).

The second piece of the micro-code for a trigger is theevaluateportion, which evaluates the trigger

when one of the associated trigger condition code registersare set. For the example, the evaluate portion

must determine ift0 is one andt1 is zero, and the micro-code is shown in Listing 4.14. If the result of the

evaluation is true, a speculative thread is forked which begins execution from the corresponding handler’s

program counter. Additionally, the evaluate portion must deal with resetting trigger condition code registers,

which is usually after the trigger’s condition is satisfied.

Similar to the static approach, a managed application will be able to remove triggers for a call site if
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the speculative executions are not beneficial, alter them toreduce mis-speculations or increase parallelism,

or insert new triggers for additional call sites. These features can also help an implementation take into

account phase changes which may alter the trigger points and/or add new methods to the hot path, or limit the

hardware resource requirements by removing some triggers and inserting new optimized ones. All of these

may be performed during the execution of a PD based program based on the feedback from the speculative

threads, similar to hot path optimizations commonly performed in Java based managed applications [8, 9,

11,14,30,44].

4.7.5 Optimizations

The implementation thus far described is a first-cut means for deriving triggers for PD. Optimizations can

improve the efficiency of the execution model by minimizing the number of trigger points for a given call

site, thus allowing a static approach for the implementation or minimizing the hardware support that may be

needed for the dynamic approach.

One form of optimization is to minimize the number of triggers by identifying two or more call sites

(same or different methods) that have the same or similar trigger expressions. Such call sites may share the

same trigger which, when fired would invoke speculative executions of multiple handlers.

The other form of optimization is to minimize the number of trigger points and optimize the predicates

in a trigger. This may be achieved through several means. Oneor more trigger points for a call site may

be eliminated and replaced with a trigger point in the control flow convergent point. The extent of parallel

execution, and in turn performance benefits, may be sacrificed with this optimization. Figure 4.11 provides

an example in which a call site has two trigger pointsT1 andT2 in the program. Instead of specifying two

triggers for the call site’s two trigger points, the triggercan be simplified by just specifying a single trigger

at the control flow convergent point blockB4. Note thatT1 is altered and is no longer the earliest point in

program when the read set of the method and handler is available.

Another way to minimize trigger points is to use other forms of instruction attributes such as memory

read and write addresses in predicates used in the expression of a trigger. In the illustration shown in Figure

4.12, a call site has two trigger pointsT1 andT2 at instructions that are modifying the same memory

locationX. These trigger points can be alternately specified by a single predicate based on memory write
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Figure 4.12: Illustration of two trigger pointsT1 andT2 at a memory write instruction to variableX for a
call site.

address(MEMWR == X). (It is assumed that no other part of the program modifies the memory locationX

in this example.)

4.8 Examples

Having discussed the details of the software implementation, I provide examples of triggers and handlers

for some call sites chosen for PD based execution in SPEC CPU2000 integer benchmarks. Each example

consists of two parts. The first part presents source code listing with line numbers from the program source

file. The second part is the handler generated for a call site identified in the first listing. Triggers for the call

site will also be discussed.

Consider the example from benchmarktwolf in Listing 4.15. The handler generated for method

term newpos a, called at line 96, is shown in Listing 4.16. The handler listing contains the program

counter from the compiled binary, the method name, file name,and line number of the instruction included

in the handler, and finally, the disassembled instructions.Besides having the call instruction to the method,

and writing the parameter values to the stack, the handler includes the branch evaluation in line 95 as the call

site is control dependent on it. The handler then performs all the computation necessary for generating the
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13 ucxx2( )
14 {
15
32 delta vert cost = 0 ;
33
34 acellptr = carray[ a ] ;
35 axcenter = acellptr->cxcenter ;
36 aycenter = acellptr->cycenter ;
37 aorient = acellptr->corient ;
38 atileptr = acellptr->tileptr ;
39 aleft = atileptr->left ;
40 aright = atileptr->right ;
41 atermptr = atileptr->termsptr ;
42
43 bcellptr = carray[ b ] ;
44 bxcenter = bcellptr->cxcenter ;
45 bycenter = bcellptr->cycenter ;
46 borient = bcellptr->corient ;
47 btileptr = bcellptr->tileptr ;
48 bleft = btileptr->left ;
49 bright = btileptr->right ;
50 btermptr = btileptr->termsptr ;
51
52 newbinpenal = binpenal ;
53 newrowpenal = rowpenal ;
54 newpenal = penalty ;
55
56 new old( bright-bleft-aright+aleft ) ;
57
58 find new pos() ;
59
60 a1LoBin = SetBin( startxa1 = axcenter + aleft ) ;
61 a1HiBin = SetBin( endxa1 = axcenter + aright ) ;
62 b1LoBin = SetBin( startxb1 = bxcenter + bleft ) ;
63 b1HiBin = SetBin( endxb1 = bxcenter + bright ) ;
64 a2LoBin = SetBin( startxa2 = anxcenter + aleft ) ;
65 a2HiBin = SetBin( endxa2 = anxcenter + aright ) ;
66 b2LoBin = SetBin( startxb2 = bnxcenter + bleft ) ;
67 b2HiBin = SetBin( endxb2 = bnxcenter + bright ) ;
68
69 old assgnto new2( a1LoBin , a1HiBin , b1LoBin , b1HiBin ,
70 a2LoBin , a2HiBin , b2LoBin , b2HiBin ) ;
71
72 a = sub penal( startxa1 , endxa1 , ablock , a1LoBin , a1HiBin ) ;
73 b = sub penal( startxb1 , endxb1 , bblock , b1LoBin , b1HiBin ) ;
74 c = add penal( startxa2 , endxa2 , bblock , a2LoBin , a2HiBin ) ;
75 d = add penal( startxb2 , endxb2 , ablock , b2LoBin , b2HiBin ) ;
76
77 newbinpenal += a + b + c + d;
78
79 binpen chg = newbinpenal - binpenal ;
80 rowpen chg = newrowpenal - rowpenal ;
81 newpenal = (int)( roLenCon ∗ (double) newrowpenal +
82 binpenCon ∗ (double) newbinpenal ) ;
83
94
95 if( ablock != bblock ) {
96 term newpos a( atermptr , anxcenter , bycenter , aorient ) ;
97 term newpos b( btermptr , bnxcenter , aycenter , borient ) ;
98 } else {
99 term newpos( atermptr , anxcenter , bycenter , aorient ) ;

100 term newpos( btermptr , bnxcenter , aycenter , borient ) ;
101 }

Listing 4.15: Program code from benchmarktwolf. PD call siteterm newpos a, line 96 and
sub penal, line 72.
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0x8069603 ucxx2 ucxx2.c 34 mov 0x80ea94c,%edx
0x8069610 ucxx2 ucxx2.c 34 mov 0x80eaa54,%eax
0x8069623 ucxx2 ucxx2.c 34 mov (%edx,%eax,4),%eax
0x806962d ucxx2 ucxx2.c 34 mov %eax,0xffffffd8(%ebp)
0x8069633 ucxx2 ucxx2.c 36 mov 0xffffffd8(%ebp),%ecx
0x8069643 ucxx2 ucxx2.c 37 movsbl 0x4(%ecx),%eax
0x8069647 ucxx2 ucxx2.c 37 mov %eax,0xffffffc4(%ebp)
0x806964a ucxx2 ucxx2.c 38 mov 0x20(%ecx),%eax
0x8069654 ucxx2 ucxx2.c 41 mov 0x8(%eax),%eax
0x806965d ucxx2 ucxx2.c 41 mov %eax,0xffffffd0(%ebp)
0x8069a02 ucxx2 ucxx2.c 95 mov 0x80eaa18,%eax
0x8069a07 ucxx2 ucxx2.c 95 cmp %eax,0x80eaa4c
0x8069a0d ucxx2 ucxx2.c 95 je 8069e30 <.LBB14>
0x8069a13 ucxx2 ucxx2.c 96 mov 0x80ea9c4,%eax
0x8069a18 ucxx2 ucxx2.c 96 mov 0xffffffc4(%ebp),%edx
0x8069a1b ucxx2 ucxx2.c 96 mov 0xffffffd0(%ebp),%ecx
0x8069a1e ucxx2 ucxx2.c 96 mov %eax,0x8(%esp,1)
0x8069a22 ucxx2 ucxx2.c 96 mov 0x80ea9f4,%eax
0x8069a27 ucxx2 ucxx2.c 96 mov %edx,0xc(%esp,1)
0x8069a2b ucxx2 ucxx2.c 96 mov %ecx,(%esp,1)
0x8069a2e ucxx2 ucxx2.c 96 mov %eax,0x4(%esp,1)
0x8069a32 ucxx2 ucxx2.c 96 call 8050b80 <term_newpos_a>

Listing 4.16: Handler forterm newpos a in benchmarktwolf. For program code, see Listing 4.15.

0x80696d8 ucxx2 ucxx2.c 60 mov 0x80ea694,%ecx
0x80696e9 ucxx2 ucxx2.c 60 mov 0x80ea6e8,%ebx
0x8069751 ucxx2 ucxx2.c 62 mov 0x80ea9b0,%eax
0x8069756 ucxx2 ucxx2.c 62 mov 0x80eaa04,%esi
0x8069762 ucxx2 ucxx2.c 62 add %esi,%eax
0x8069764 ucxx2 ucxx2.c 62 mov %eax,0xffffff8c(%ebp)
0x8069767 ucxx2 ucxx2.c 62 sub %ebx,%eax
0x8069769 ucxx2 ucxx2.c 62 cltd
0x806976a ucxx2 ucxx2.c 62 idiv %ecx
0x806976c ucxx2 ucxx2.c 62 test %eax,%eax
0x8069773 ucxx2 ucxx2.c 62 js 8069ee0 <.LBE14+0x60>
0x8069779 ucxx2 ucxx2.c 62 mov %eax,0xffffffb4(%ebp)
0x8069789 ucxx2 ucxx2.c 63 mov 0x80eaa00,%edi
0x806978f ucxx2 ucxx2.c 63 add %edi,%esi
0x8069791 ucxx2 ucxx2.c 63 mov %esi,%eax
0x8069793 ucxx2 ucxx2.c 63 mov %esi,0xffffff88(%ebp)
0x8069796 ucxx2 ucxx2.c 63 sub %ebx,%eax
0x8069798 ucxx2 ucxx2.c 63 cltd
0x8069799 ucxx2 ucxx2.c 63 idiv %ecx
0x806979b ucxx2 ucxx2.c 63 test %eax,%eax
0x80697a2 ucxx2 ucxx2.c 63 js 8069ed0 <.LBE14+0x50>
0x80697a8 ucxx2 ucxx2.c 63 mov %eax,0xffffffb0(%ebp)
0x80698dd ucxx2 ucxx2.c 73 mov 0xffffffb4(%ebp),%ecx
0x80698e2 ucxx2 ucxx2.c 73 mov 0xffffffb0(%ebp),%edx
0x80698e5 ucxx2 ucxx2.c 73 mov %ecx,0xc(%esp,1)
0x80698e9 ucxx2 ucxx2.c 73 mov 0x80eaa18,%eax
0x80698ee ucxx2 ucxx2.c 73 mov %edx,0x10(%esp,1)
0x80698f2 ucxx2 ucxx2.c 73 mov 0xffffff8c(%ebp),%edx
0x80698f5 ucxx2 ucxx2.c 73 mov %eax,0x8(%esp,1)
0x80698f9 ucxx2 ucxx2.c 73 mov 0xffffff88(%ebp),%eax
0x80698fc ucxx2 ucxx2.c 73 mov %edx,(%esp,1)
0x80698ff ucxx2 ucxx2.c 73 mov %eax,0x4(%esp,1)
0x8069903 ucxx2 ucxx2.c 73 call 8049950 <sub_penal>
0x8069ed0 ucxx2 ucxx2.c 91 movl $0x0,0xffffffb0(%ebp)
0x8069ed7 ucxx2 ucxx2.c 91 jmp 80697b8 <.LCFI5+0x1ba>
0x8069edc ucxx2 ucxx2.c 91 lea 0x0(%esi,1),%esi
0x8069ee0 ucxx2 ucxx2.c 91 movl $0x0,0xffffffb4(%ebp)
0x8069ee7 ucxx2 ucxx2.c 91 jmp 8069789 <.LCFI5+0x18b>
0x8069eec ucxx2 ucxx2.c 91 lea 0x0(%esi,1),%esi

Listing 4.17: Handler forsub penal in benchmarktwolf. For program code, see Listing 4.15.
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parameters and terminates at line 34. All live values in the handler are terminated with accesses to the heap,

as per the handler generation algorithm. Therefore, speculative execution of the handler and the method (if

called), will only consist of heap locations in the read and write set. The handler presented in Listing 4.16

is before it has been laid out; branch targets copied from theprogram binary must be remapped to targets

within the handler. For example, line 95 in the handler is pointing to a target back in the program. The

target is modified and set to the end of the handler, which is the instructionhend placed immediately after

the call toterm newpos a. The method has four parametersatermptr,anxcenter,bycenter, and

aorient. To provideatermptr, the handler includes code in line 41, which in turn depends on line 38,

and line 34.anxcenter is a heap location with no computation in the program code shown. bycenter

is computed in line 45, but is not included in the handler becausebycenter is allocated on the heap. The

handler generation heuristic forbids store instruction tothe heap.aorient is computed in line 37 which is

in turn computed in line 34. The trigger for the call site in the example will depend on the data needed for

the handler and the method.

Listing 4.17 presents the handler for call site in line 72, methodsub penal. Lines 62 and 63 in the code

are macros and they are included in the handler. The handler terminates at line 60. After studying the trigger

points, the execution ofsub penal is found to conflict with an instruction insideold assgnto new2

that is called in line 69. Therefore, the trigger is placed immediately after line 69, and the handler is adjusted

accordingly. (It will just have the instructions associated with line 73.)

Program code from benchmarkparser is shown in Listing 4.18. The handler for call site

form match list in line 510 is presented in Listing 4.19. After considering the trigger points for this

call site, the method’s executions are found to have dependencies within the loop body. The handler,

therefore, increments the iterator twice (line 509) (determined by the trigger points), and then calls the

methodform match list. Note that in this example, the trigger is set to line 510, with the handler

accessing data from the stack frame to perform its computation.

A similar example from benchmarkcrafty is shown in Listing 4.20. The handler for call site

UnMakeMove, line 134, which is inside a loop, is shown in Listing 4.21. The jump target in line 126 will

be altered to jump tohend during relayout. The trigger is placed immediately after line 127. Line 127 is
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509 for (w=start word; w <= end word; w++) {
510 m1 = m = form match list(w, le, lw, re, rw);
511 for (; m!=NULL; m=m->next) {
512 d = m->d;
513 mark cost++;
514 /∗ in the following expressions we use the fact that 0=FALSE. Could eliminate
515 by always saying "region valid(...) != 0" ∗/
516 left valid = (((le != NULL) && (d->left != NULL) && prune match(le, d->left)) &&
517 ((region valid(lw, w, le->next, d->left->next)) ||
518 ((le->multi) && region valid(lw, w, le, d->left->next)) ||
519 ((d->left->multi) && region valid(lw, w, le->next, d->left)) ||
520 ((le->multi && d->left->multi) && region valid(lw, w, le, d->left))));
521 if (left valid && region valid(w, rw, d->right, re)) {
522 found = 1;
523 break;
524 }
525 right valid = (((d->right != NULL) && (re != NULL) && prune match(d->right, re)) &&
526 ((region valid(w, rw, d->right->next,re->next)) ||
527 ((d->right->multi) && region valid(w,rw,d->right,re->next)) ||
528 ((re->multi) && region valid(w, rw, d->right->next, re)) ||
529 ((d->right->multi && re->multi) && region valid(w, rw, d->right, re))));
530 if ((left valid && right valid) || (right valid && region valid(lw, w, le, d->left)))
{
531 found = 1;
532 break;
533 }
534 }
535 put match list(m1);
536 if (found != 0) break;
537 }

Listing 4.18: Program code fromparser. PD call siteform match list (), line 510.

0x8052eea region_valid parse.c 509 incl 0xffffffe4(%ebp)
0x8052eea region_valid parse.c 509 incl 0xffffffe4(%ebp)
0x8052e40 region_valid parse.c 510 mov 0xc(%ebp),%eax
0x8052e43 region_valid parse.c 510 mov 0x14(%ebp),%edx
0x8052e46 region_valid parse.c 510 mov 0x8(%ebp),%ecx
0x8052e49 region_valid parse.c 510 mov %eax,0x10(%esp,1)
0x8052e4d region_valid parse.c 510 mov 0x10(%ebp),%eax
0x8052e50 region_valid parse.c 510 mov %edx,0xc(%esp,1)
0x8052e54 region_valid parse.c 510 mov 0xffffffe4(%ebp),%edx
0x8052e57 region_valid parse.c 510 mov %ecx,0x8(%esp,1)
0x8052e5b region_valid parse.c 510 mov %eax,0x4(%esp,1)
0x8052e5f region_valid parse.c 510 mov %edx,(%esp,1)
0x8052e62 region_valid parse.c 510 call 804d900 <form_match_list>

Listing 4.19: Handler forform match list () in benchmarkparser. For program code, see Listing
4.18.

126 while (moves--) {
127 current move[ply]=∗(next move++);
128 #if !defined(FAST)
129 if (ply <= trace level)
130 SearchTrace(ply,0,wtm,alpha,beta,"quiesce",CAPTURE MOVES);
131 #endif
132 MakeMove(ply,current move[ply],wtm);
133 value=-Quiesce(-beta,-alpha,ChangeSide(wtm),ply+1);
134 UnMakeMove(ply,current move[ply],wtm);
135 if (value > alpha) {
136 if(value >= beta) return(value);
137 alpha=value;
138 }
139 }

Listing 4.20: Program code from benchmarkcrafty. PD call siteUnMakeMove (), line 134.
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0x8067d3e Quiesce quiesce.c 126 cmpl $0xffffffff,0xffffffe4(%ebp)
0x8067d49 Quiesce quiesce.c 126 je 8067dfd <.LBE4+0xc5>
0x8067dbc Quiesce quiesce.c 134 mov 0x14(%ebp),%edx
0x8067dc1 Quiesce quiesce.c 134 mov 0x10(%ebp),%ecx
0x8067dc4 Quiesce quiesce.c 134 mov %edx,(%esp,1)
0x8067dc7 Quiesce quiesce.c 134 mov 0x8141660(,%edx,4),%eax
0x8067dd0 Quiesce quiesce.c 134 mov %ecx,0x8(%esp,1)
0x8067dd4 Quiesce quiesce.c 134 mov %eax,0x4(%esp,1)
0x8067dd8 Quiesce quiesce.c 134 call 806bc80 <UnMakeMove>

Listing 4.21: Handler forUnMakeMove () in benchmarkcrafty. For program code, see Listing 4.20.

143 boolean TmGetObject (tokentype ∗Token,
144 ft F,lt Z,zz ∗Status, addrtype ∗Object)
145 {
146 dbheader ∗CoreDb = NullPtr;
147
148 if (TmFetchCoreDb (Token, McStat, &CoreDb))
149 if (Normal(∗Status))
150 HmFetchDbObject (CoreDb, Token->Handle, McStat, Object);
151
152 if (∗Status == Hm ObjectNotPaired)
153 ∗Status = Tm ObjectNotPaired;
154
155 TRACK(TrackBak,"TmGetObject\n");
156 return (STAT);
157 }

743 boolean HmFetchDbObject (dbheader ∗CoreDb, handletype Handle,
744 ft F,lt Z,zz ∗Status, addrtype ∗Object)
745 {
746 ∗Object = NullPtr;
747
748 if (Normal(∗Status))
749 if (HmGetObjectAddr (CoreDb, Handle, McStat, Object))
750 if (∗Object == NullPtr)
751 {
752 ∗Status = Hm ObjectNotPaired;
753 }
754
755 TRACK(TrackBak,"HmFetchDbObject\n");
756 return (STAT);
757 }
758

743.2 boolean MemGetAddr (numtype Chunk, indextype Index,
744.2 ft F,lt Z,zz ∗Status, addrtype ∗Addr)
745.2 {
746.2 addrtype ChunkSlotAddr = NullPtr;
747.2
748.2
749.2 if (ChkGetChunk (Chunk, Index, sizeof(addrtype), McStat))
750.2 if (∗Status != Set EndOfSet)
751.2 {
752.2 ∗Addr = ∗(((addrtype ∗)(Chunk Addr(Chunk))) + Index);
753.2 ChunkSlotAddr = (addrtype )((char ∗)Chunk Addr(Chunk) + Index);
754.2 }
755.2
756.2 TRACK(TrackBak,"MemGetAddr\n");
757.2 return(STAT);
758.2 }

Listing 4.22: Program code from benchmarkvortex. PD call siteChkGetChunk, line 749.

not included in the handler because of the write to a heap location, current move. (Heap writes in the

handler are not allowed in the implementation.)
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0x80a793c TmGetObject tm.c 145 mov 0x14(%ebp),%ebx
0x80a7970 TmGetObject tm.c 149 mov (%ebx),%eax
0x80a7972 TmGetObject tm.c 149 test %eax,%eax
0x80a7974 TmGetObject tm.c 149 je 80a79c0 <.LCFI29+0x7e>
0x80a79c0 TmGetObject tm.c 150 mov %ebx,0x10(%esp,1)
0x80a79c4 TmGetObject tm.c 150 mov 0x18(%ebp),%eax
0x80a79c7 TmGetObject tm.c 150 movl $0x0,0xc(%esp,1)
0x80a79cf TmGetObject tm.c 150 movl $0x0,0x8(%esp,1)
0x80a79d7 TmGetObject tm.c 150 mov %eax,0x14(%esp,1)
0x80a79db TmGetObject tm.c 150 mov (%esi),%eax
0x80a79dd TmGetObject tm.c 150 mov %eax,0x4(%esp,1)
0x80a79e1 TmGetObject tm.c 150 mov 0xfffffff4(%ebp),%eax
0x80a79e4 TmGetObject tm.c 150 mov %eax,(%esp,1)
0x80a79e7 TmGetObject tm.c 150 call 8072fa0 <Hm_FetchDbObject>
0x8072fa0 Hm_FetchDbObject hm.c 745 push %ebp
0x8072fa1 Hm_FetchDbObject hm.c 745 mov %esp,%ebp
0x8072fa3 Hm_FetchDbObject hm.c 745 sub $0x28,%esp
0x8072fa6 Hm_FetchDbObject hm.c 745 mov %esi,0xfffffffc(%ebp)
0x8072fa9 Hm_FetchDbObject hm.c 745 mov 0x18(%ebp),%esi
0x8072fac Hm_FetchDbObject hm.c 745 mov %ebx,0xfffffff8(%ebp)
0x8072faf Hm_FetchDbObject hm.c 745 mov 0x1c(%ebp),%ebx
0x8072fb2 Hm_FetchDbObject hm.c 748 mov (%esi),%eax
0x8072fb4 Hm_FetchDbObject hm.c 746 movl $0x0,(%ebx)
0x8072fba Hm_FetchDbObject hm.c 748 test %eax,%eax
0x8072fbc Hm_FetchDbObject hm.c 748 jne 8073007 <.LCFI47+0x58>
0x8072fbe Hm_FetchDbObject hm.c 749 mov %ebx,0x14(%esp,1)
0x8072fc2 Hm_FetchDbObject hm.c 749 mov 0xc(%ebp),%eax
0x8072fc5 Hm_FetchDbObject hm.c 749 mov %esi,0x10(%esp,1)
0x8072fc9 Hm_FetchDbObject hm.c 749 movl $0x0,0xc(%esp,1)
0x8072fd1 Hm_FetchDbObject hm.c 749 mov %eax,0x4(%esp,1)
0x8072fd5 Hm_FetchDbObject hm.c 749 mov 0x8(%ebp),%eax
0x8072fd8 Hm_FetchDbObject hm.c 749 movl $0x0,0x8(%esp,1)
0x8072fe0 Hm_FetchDbObject hm.c 749 mov 0x878(%eax),%eax
0x8072fe6 Hm_FetchDbObject hm.c 749 mov %eax,(%esp,1)
0x8072fe9 Hm_FetchDbObject hm.c 749 call 8082180 <Mem_GetAddr>
0x8082189 Mem_GetAddr mem10.c 745.2 mov 0x18(%ebp),%ebx
0x808218f Mem_GetAddr mem10.c 745.2 mov 0x8(%ebp),%esi
0x8082195 Mem_GetAddr mem10.c 745.2 mov 0xc(%ebp),%edi
0x8082198 Mem_GetAddr mem10.c 749.2 mov %ebx,0x14(%esp,1)
0x808219c Mem_GetAddr mem10.c 749.2 movl $0x0,0x10(%esp,1)
0x80821a4 Mem_GetAddr mem10.c 749.2 movl $0x0,0xc(%esp,1)
0x80821ac Mem_GetAddr mem10.c 749.2 movl $0x4,0x8(%esp,1)
0x80821b4 Mem_GetAddr mem10.c 749.2 mov %edi,0x4(%esp,1)
0x80821b8 Mem_GetAddr mem10.c 749.2 mov %esi,(%esp,1)
0x80821bb Mem_GetAddr mem10.c 749.2 call 807f960 <Chunk_ChkGetChunk>

Listing 4.23: Handler forChkGetChunk from benchmarkvortex. For program code, see Listing 4.22.

Consider program code from benchmarkvortex in Listing 4.22. The handler forChkGetChunk,

called in line 749.2, is shown in Listing 4.23. After analysis of the trigger points, it is determined that

the execution is dependent on line 148. Therefore, the trigger for the call site is placed at this point

in the program. The handler first starts with code fromTmGetObject. The branch in line 149 is

evaluated. During layout, ajmp instruction to the targethend is placed after theje instruction. The

handler then callsHmFetchDbObject (shown asHm FetchDbObject because of macro), which then

calls HmGetObjectAddr (which is MemGetAddr because of macro), which finally calls the PD call

siteChkGetChunk. The handler includes all stack pointer manipulating instructions to ensure that stack

offsets in the instructions are still valid. The targets of the call instructions in lines 150 and 749 are corrected
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40 switch (next status[ply].phase) {
50 case HASH MOVE:
51 last[ply]=GenerateCheckEvasions(ply, wtm, last[ply-1]);
61 if (hash move[ply]) {
62 next status[ply].phase=SORT ALL MOVES;
63 current move[ply]=hash move[ply];
64 if (ValidMove(ply,wtm,current move[ply])) return(HASH MOVE);
65 else printf("bad move from hash table, ply=%d\n",ply);
66 }

Listing 4.24: Program code from benchmarkcrafty. PD call site forValidMove(), line 64.

0x805f439 NextEvasion nexte.c 40 mov 0x8(%ebp),%edx
0x805f43c NextEvasion nexte.c 40 lea (%edx,%edx,2),%eax
0x805f43f NextEvasion nexte.c 40 lea 0x0(,%eax,4),%esi
0x805f446 NextEvasion nexte.c 40 mov 0x80f0660(%esi),%eax
0x805f451 NextEvasion nexte.c 40 cmp $0x7,%eax
0x805f45b NextEvasion nexte.c 40 je 805f486 <.LCFI5+0x4d>
0x805f4a5 NextEvasion nexte.c 51 mov 0x8(%ebp),%edx
0x805f4ab NextEvasion nexte.c 61 mov 0x8179620(,%edx,4),%eax
0x805f4b2 NextEvasion nexte.c 61 test %eax,%eax
0x805f4b4 NextEvasion nexte.c 61 jne 805f6c9 <.LCFI5+0x290>
0x805f6d0 NextEvasion nexte.c 64 mov 0xc(%ebp),%ecx
0x805f6d8 NextEvasion nexte.c 64 mov %edx,(%esp,1)
0x805f6e1 NextEvasion nexte.c 64 mov %eax,0x8(%esp,1)
0x805f6e5 NextEvasion nexte.c 64 mov %ecx,0x4(%esp,1)
0x805f6e9 NextEvasion nexte.c 64 call 8070df0 <ValidMove>

Listing 4.25: Handler forValidMove in benchmarkcrafty. For program code, see Listing 4.24.

during relayout. Their targets are instructions immediately following the call. Executing the call instruction,

ensures that the stack operations performed by the speculative thread are identical to the operations that will

be performed by the program. Return instructions are not required as the handler terminates immediately

after the speculative call toChunk ChkGetChunk.

Finally, another example from benchmarkcrafty that illustrates more complex control flow is shown

in Listing 4.24. The handler for call siteValidMove, in line 64, is presented in Listing 4.25. Analysis

of trigger points indicates that the trigger can be set at thebeginning of the method that the call site is

located in (not shown). The handler includes the branch in line 61 and the switch evaluation in line 40. The

jump targets are altered during layout, and in the fall through case, jump instructions are inserted tohend

instruction.

4.9 Chapter summary

This chapter discussed the software support for the implementation of PD. Three inter-dependent steps

were covered, namely, identification of call sites suitablefor PD based execution, generation of handlers,
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and generation of triggers for the identified call sites. These steps are performed with the use of profile

information and other program analysis data structures. The chapter concluded with several implementation

examples from the benchmark programs. In the next chapter, Ipresent the hardware support required for the

implementation. The implementation is evaluated in Chapter 6.
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CHAPTER 5

HARDWARE SUPPORT FOR PD IMPLEMENTATION

This chapter describes the hardware support for the implementation of PD and concludes the discussion

on implementation. First, I outline the hardware support needed for the implementation, and then expand

on each of them further in this chapter.

Speculative execution. The major aspect of hardware support is the speculative execution of threads. In

particular, extensions to the processing cores are needed to speculatively execute load and store instructions.

Changes performed by stores cannot modify architected state, but must be observed and held separately, so

that they can be later used or discarded. Similarly, load instructions must be monitored and provided with

speculative data created by prior stores. Private caches inthe processing cores are commonly used for this

purpose.

Support for handlers. The handlers are generated by the software and incorporatedinto the application

binary. Hardware support is needed to speculatively execute the handler with additional support to deal with

any changes made by the handler depending on the code in it.

Holding executions. Each speculative thread consists of the read set, write set and data, return value,

parameter values, and stack and base pointers. The hardwaremust provide some storage structure that holds

the speculative threads until they are invalidated in violation of a dependency, or used by the program or

another speculative thread. Private caches, commonly usedin speculative parallelization systems for this

purpose, may be used. Alternately, the threads may be placedin auxiliary storage structures.

Validating executions. Speculative executions must maintain sequential program order and, therefore, a

thread that violates a dependency must be invalidated. For this purpose, the read set of a thread must be held

along with the results of that speculative thread. If a storeto a location by the non-speculative program is
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Figure 5.1: Model hardware with four processors connected to two levels of private caches (shown with
only one box C), and a shared cache connected to memory.

present in the read and write sets of a speculative thread, that thread is invalidated. Another essential step in

the process of validating executions is to determine if the parameters used for speculative execution of the

method match the ones provided by the non-speculative program at the call site.

Using executions. The final step of a hardware implementation is to commit or usea valid speculative

thread. First, the stack frame of the speculative thread is adjusted to match the stack pointer of the requestor

(i.e., program or another speculative thread which is goingto use an execution). Then, if the thread

is requested by the non-speculative program, the write set data and return value are committed to the

architected state. If requested by another speculative thread, the results and the read set are integrated

into the speculative state of the requesting thread.

Support and evaluation of triggers. The triggers are generated with software support and incorporated

into the binary. Two means, static and dynamic, were discussed in Section 4.7.4, each requiring different

hardware and software support. For the generic dynamic case, the hardware must provide suitable register

storage for predicates, extensions to the instruction set architecture to access and modify the registers, and

evaluate the conditions in triggers efficiently.

5.1 Model hardware

The hardware support for PD can be implemented for any scale of architecture with support for paral-

lel threads such as simultaneous multithreaded processors, chip multiprocessors, and in general, shared-

memory multiprocessors. I assume a multicore system with one or more levels of private caches, with a
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shared cache connecting all processing cores (refer Figure5.1). The evaluation deals with a limited, up to

eight, number of processors. The caches are kept coherent bymeans of a snoopy protocol, and the private

caches are assumed to be writeback.

5.2 Performing speculative execution

This section deals with the foremost requirement for PD’s execution model, which is performing the specu-

lative execution. Speculative execution of threads in PD (and in other speculative parallelization systems),

though conceptually similar to speculative execution of instructions in instruction-level parallel processing

systems, requires different hardware implementation. In ILP systems, speculative execution is performed

within a processing core; an instruction is held in a reorderbuffer, executed with results held in some non-

architected storage, such as the physical register file and/or store queue. It is eventually squashed, or when

it reaches the head of the reorder buffer, committed. This results in discarding the instruction’s changes, or

applying them to the architected state.

In speculative parallelization systems (PD, inclusive), speculative thread execution is achieved across

several processing cores. For simplicity, assume that the system is only running the program of interest.

The processing core running this sequential program guarantees its correctness. Speculative threads are

executed on other processing cores and are held until they are squashed when a dependency with the

program is violated, or committed/used when they are requested by the (non-speculative) program or by

other (speculative) threads. Speculative execution of a thread in a processing core is achieved by readying the

live-in registers that may be needed, executing the instructions in the thread, but ensuring that the architected

memory is unaltered by the execution. This is achieved by holding the changes made by stores separately,

usually in the private cache of the processing core, and providing them to dependent loads. Program

locations accessed and modified by the thread are tagged intowrite and read sets, respectively, along with

the modified architected registers. These are held in private caches or auxiliary storage structure(s) until the

speculative thread is invalidated or committed. The speculative thread is squashed and its data discarded, if

it had referenced a location during its execution that is modified by the program, as it indicates violation of

data dependencies.
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In PD, a speculative thread consists of a method with parameters representing the explicit live-in values.

The private cache(s) of the processing core used for speculative execution holds the speculative store data. A

peripheral structure, called Speculative Tag Unit or STU, tracks the read and write sets during the execution.

A speculative thread is aborted when a speculative cache line in the last level private cache is evicted or

when the STU is full, as references may no longer be tracked. On completion of speculative execution, the

data of a speculative thread is stored in an auxiliary set of storage structures, collectively referred to as the

Execution Buffer Pool.

The accesses and changes made by a speculative thread can be tracked at the granularity of a byte to

the entire cache line. Finer granularity requires more state bits to keep track of, increases overheads, but

prevents false sharing, and invalidation of speculative data that fall in the same cache line but access different

addresses. In this implementation, four writers are supported by dividing a cache line into four sub-blocks.

Every sub-block in a cache line has a dirty state bit, and additionally a “speculative access” bit which is used

to identify if a sub-block is accessed during the speculative execution (Figure 5.2). The propagation of a

speculative access bit across the private cache hierarchy is similar to that of a valid bit in a cache line.

During speculative execution, cache sub-blocks accessed by the method, but not the handler, set the

corresponding speculative access bit. Since speculative threads do not communicate data values in the

implementation, cache misses obtain data from the memory orfrom the cache of the processing core running

the non-speculative program. Of these, misses due to loads from the method (but not the handler) are

recorded in the STU. A store does not request for exclusive access or send invalidate requests to other

processing cores for the cache line it is to modify. If the store is to a sub-block that was not previously dirty,

and is performed by the method (but not the handler), it is recorded in the STU with the corresponding W bit

set. Stores performed by the processing core running the program represents the sequential program order,

and sends invalidate messages, as usual, over the bus. A processing core that is running a speculative thread

applies the following filtering rules to the invalidation requests: (i) it does not respond to any requests when

it is executing a handler and, (ii) it does not respond to requests with addresses in the stack segment that

are below the stack pointer communicated at the beginning ofspeculative execution. An unfiltered request

aborts the speculative thread if it invalidates a sub-blockwith its “speculative access” bit or dirty bit set.

The speculative thread begins with the execution of the handler. An available processing core for



89

Figure 5.2: Extensions to the cache for speculative execution include four sub-blocks per cache line with
each sub-block having a speculative access bit. The speculative tag unit is used to track the read and write
sets of a speculative thread.

speculative execution is found. All speculative access bits are cleared in the private caches to indicate

that no cache line has been accessed yet. The processing coreswitches to speculative mode, and receives

the call site’s program counter, handler’s program counter, the stack and base pointers. These are saved

in the processing core’s special PD state registers, with the values of the handler’s program counter, stack

and base pointers copied toeip, esp, andebp registers respectively. The speculative execution beginsat

the handler’s program counter. At the execution ofpdcall instruction, which is followed by thecall

instruction that begins speculative execution of the method, the parameter bounds are available. The bounds

are saved in the PD state registers, the dirty bits set in the sub-blocks of the private caches are all cleared

(they may be flash cleared), but remain valid. Note that the speculative access bits are not set during the

execution of the handler.

At the end of the method’s speculative execution, the read and write sets are collected from the cache.

This is achieved by processing the entries in the STU (the write set entries have W bits set in STU). Dirty

lines in the cache are all cleared, and the processing core returns to normal mode of operation. Sub-blocks

in the write set that belong to the local stack frame (addresses below the stack pointer) are marked. The

parameter sub-blocks are also included in the write set and marked. Along with the read set, write set and
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Figure 5.3: Methods table holds all speculative threads. Anentry consists of the speculative thread identifier,
call site program counter, addresses of the parameters, return value and stack base pointer used.

its data, the return value register, the parameter bounds and its values, the stack and base pointers, the call

site’s program counter are all collected and form the data associated with the speculative thread.

5.3 Execution buffer pool structures

A speculative thread after its execution may be held in the private cache, like previous speculative paral-

lelization systems, or in an auxiliary cache storage structure. Outstanding speculative threads (i.e., threads

that have completed execution waiting to be used or squashed) held in cache might place undue pressure

on it. Therefore, this implementation uses auxiliary cachestorage, called the Execution Buffer Pool, to

eliminate the contention of conflicting accesses from otherthreads on that processing core.

The data of a speculative thread upon completion is moved into the Execution Buffer Pool. The

execution buffer pool consists of the four structures: (i) The root structure is the Methods Table which

holds the list of speculative threads outstanding (Figure 5.3). (ii) The Write Set Table holds the write sets

of all speculative threads, and their parameters (Figure 5.4(a)). (iii) The Read Set Table holds the read sets

of all speculative threads (Figure 5.4(b)). (iv) The Invalidation Cache holds the read and write set tags of

all speculative threads for efficient invalidation of speculative threads (Figure 5.5). The implementation in

this dissertation assumes a centralized execution buffer pool. For multicore systems with a large number of

processing cores, the execution buffer pool may be distributed for a collection of (one to four) processing

cores.
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(a) Write set table (b) Read set table

Figure 5.4: Write (shown on the left) and read set tables holding the write and read sets of speculative
threads. The write set in addition holds parameter values, specifically marked, so that the addresses are not
considered for invalidation.

The data of a speculative thread is placed in the methods table and tagged with a thread identifier

tid. Every entry in the methods table consists of the method’s call site program counter, parameter values

specified by the upper and lower bound addresses, the return value register, and the stack/base pointers. The

methods table is used to search for outstanding execution for a given call site’s program counter. Allocation

and deallocation of entries is performed for a given identifier. Assume the number of entries in the table to

beN for the rest of this discussion. Every entry requireslog N bits for an identifier, 32 bits for call site’s

program counter, 32 bits each for return value, stack pointer and base pointers, and 64 bits for parameter

bounds.

The read and write set tables are indexed by the thread identifier tid. Every entry in the write set

consists of the thread identifier, the sub-block address, the data, and local stack frame and parameter sub-

block markers. Every entry in the read set consists of the thread identifier and the sub-block address.log N

bits are used for identifier, 28-bits for sub-block address,and 16-bytes for data for a sub-block of a 64-byte

cache line. Allocation and deallocation of entries is performed for a given thread identifier. The hardware

for these tables may be organized asN banks with a fixed number of entries for holding the read and write

set, so that they may be efficiently accessed with latencies equivalent to accessing the level two cache.

The number of entries may be determined based on the hardwarecomplexity, access cycle constraints, and
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Figure 5.5: Invalidation cache is m-way set associative with address tag, andN bitvector for representing
the speculative threads. The last entry of a set is designated as overflow, with the bitvector used as a counter.

studying benchmark programs that will be executed with PD. Aspeculative thread whose read and write sets

do not entirely fit in these tables may be placed in an overflow table, a less efficient resource as it will hold

the overflows for all speculative threads and must be associatively searched, but is typically less commonly

accessed.

The invalidation cache is a separate set-associative cache-like structure that is used to efficiently deter-

mine if an address is in the read or write sets of a speculativethread that is stored in the execution buffer

pool. Without the invalidation cache, an address must be searched in the entire read and write set tables

of all speculative threads to determine a match. Every line in the cache consists of the sub-block tag to

represent an entry in the read or write set, and data consisting of N bits representing the thread identifiers

(known as the bitvector). A set in the cache ism-way associative, with them-th entry’s data block used

as an “overflow” counter. The invalidation cache may also be separately maintained for the read and write

sets and/or distributed for every processing core. Accesses to the invalidation cache are not critical to

performance, and may be accessed with latencies equivalentto accessing level two cache.

The operations to allocate and deallocate a speculative thread and the operations on the invalidation

cache are described next.

To allocate a speculative thread, an entry in the methods table is allocated (if available, otherwise, the

thread must be aborted) and the thread identifier is obtained. The read and write sets are placed in the
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corresponding tables. If the number of entries in the read and write set tables are fixed, entries that overflow

must be placed in the overflow table. Every entry in the read set, and an entry in the write set that is not

specially marked (as parameter or local stack frame sub-block), is passed to the invalidation cache. The set

for the sub-block address is determined, and all lines are searched for the address. If the sub-block address

is found, the bit that represents the speculative thread identifier in the bitvector is set. If the address is not

found, and if an entry besides the reserved overflow entry is available in the set, the tag is installed and the

bitvector corresponding to the thread identifier is set. If afree entry is not available, the overflow counter of

that set is incremented if the value is less than the maximum,i.e.,2N
− 1; otherwise, the speculative thread

is aborted (deallocated).

To deallocate entries associated with a given thread identifier, which is performed when a speculative

thread is squashed or committed, the corresponding entry isinvalidated from the methods table. Then every

entry in the read and write set tables for the given thread identifier is invalidated, and the sub-block address

is sent to the invalidation cache. For every such address, the invalidation cache determines the set, and if an

entry is found in the set, the bitvector is modified and the corresponding thread identifier is reset, marking

the line invalid if the entire bitvector is zero. If an entry is not found, the overflow counter for the set is

decremented.

5.4 Invalidating executions

One of the essential aspects of speculative parallelization is to maintain the validity of the results of the

executions. The implementation in this dissertation uses “eager” invalidation, which sends all committed

stores performed by the program to the invalidation cache, and as usual to other processing cores. Every

address received by the invalidation cache is searched in the corresponding set. If an entry is found, every

bit set in the bitvector represents the thread identifier of the speculative thread that violated dependencies,

and must be squashed. (The deallocation process was described earlier.) If an entry is not found in the set,

the search for a violating speculative thread continues, ifand only if, the overflow entry for that set is greater

than zero. In such a worst case, entries in the read set table and entries not specially marked in the write set

table are searched to determine which speculative thread, if any, accessed the address. If an entry is found,

that speculative thread is squashed.
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An invalidate request will abort an ongoing speculative thread on a processing core, if the address is not

filtered (discussed in Section 5.2) and is found in the private cache with speculative access bit set. System

events such as timer and device interrupts also terminate speculative threads.

5.5 Committing and using executions

When the program or a speculative thread (referred to as the requestor) reaches a call site that is annotated

with pdcall instruction, the call site program counter is sent to the methods table and to other processing

cores. The methods table is searched for any matching entries, choosing the oldest one, if more than one

entry is found. If no entries are found, and if a speculative thread is ongoing in a processing core, the

requestor may stall until the execution completes. (Performance counters that indicate the usefulness of a

speculative thread may be used by the requestor to determinewhether to abort the speculative thread, and

instead, execute the method at the call site on the its processing core.)

Once a speculative thread is found, using or committing the threads proceeds as follows. Data for a

completed speculative thread is obtained from the write settable, or from the processing core executing

the thread if the thread’s execution is ongoing. First, by obtaining the parameter bounds at the requestor’s

call site (available in thepdcall instruction inserted before the call site), and from the speculative thread,

values passed by the program and the handler are compared. Ifthe values do not match, the thread is aborted,

and the requestor must execute the method.

If the parameters used by the speculative thread and the values provided by the requestor match, the

next step is to retag the local stack frame sub-blocks in the write set to the requestor’s stack pointer. To hide

the latency of all of the above operations, they may be initiated when apdcall instruction is fetched by

the front end of the processing core (with the help of some predecoding) and performed concurrently as the

pdcall and the subsequentcall instructions move through the pipeline and are committed. Operations

performed by the requestor to use a speculative thread afterthecall instruction is committed are in the

requestor’s critical path.

Finally, the entire write set data for the speculative thread is integrated through the private cache of the

requestor. If the requestor is the program, the write set data is non-speculative and committed. This will

result in actions that are performed when a store is committed by the program, such as sending invalidate
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messages to other processing cores and the invalidation cache. If the requestor is a speculative thread, the

data is integrated as part of its speculative write set. The read set is also be integrated to the requestor’s read

set.

The integration process must be implemented by stalling therequestor for as few cycles as possible. One

way to implement this is to stall the requestor until the write set tags (and the read set tags if the requestor is

a speculative thread) are transferred. The requestor can proceed with the execution while the data sub-blocks

of the write set are transferred. Load and store operations performed by the requestor during this transfer

that conflict with the requestee’s tags stall the requestor.

Another implementation is to let the requestor continue execution while the tags and data sub-blocks of

the write set (and the read set tags if the requestor is a speculative thread) are being transferred. If a conflict is

detected between the data of the speculative thread that is used and the instructions that are executed during

the transfer by the requestor, the processor’s rollback mechanism, which is used for speculative execution,

may be used to squash and re-execute the instructions after the call site.

5.6 Supporting triggers

In the last chapter, two means of implementing triggers werediscussed. The static approach inserted

pdfork instructions to fork speculative threads directly into thebinary. The hardware support needed is the

instruction set extension to supportpdfork. The generic dynamic approach requires hardware support for:

(i) trigger condition code registers, which are used to evaluate predicates and store a true or false boolean

value, (ii) instruction set extensions, to access and modify trigger condition code registers and perform

logical operations on them, and finally, (iii) support for executing the microcode and determining if a trigger

has fired.

To support the register part of a trigger (refer Section 4.7.4 for more details on the software implemen-

tation of triggers), whentsetpc is executed, an entry consisting of the predicate’s programcounter, the

trigger condition code register, and the location of the evaluate part of the trigger is placed in the Trigger

Evaluation Unit. The program counter of the predicate is registered with BF, a Bloom filter [23] (shown

in Figure 5.6). The BF has a 1-bit hash bucket with some predefined hash function. During program’s

execution, all program counters of committed instructionsare passed through BF. If the hash bucket for
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Figure 5.6: Program counters of committed instructions pass through a Bloom filter to determine if Trigger
Evaluation Unit must be searched. The Trigger Evaluation Unit holds all program counters used in predicates
of triggers, their trigger condition code registers, and program counters of evaluate parts of triggers.

the program counter is not set, the program counter is not part of any trigger’s expression. Otherwise, the

program counter is sent to the trigger evaluation unit whereall entries are searched for a match. If one is

found, the corresponding trigger condition code register is set, and the trigger evaluated by executing the

evaluate part of the micro-code. The evaluate micro-code isexecuted either on free thread contexts on the

processing core running the program (similar to SSMT [35]),or off-loaded to some other processing core,

provided the trigger condition code registers are accessible to it.

The BF is accessed for every committed instruction and, therefore, may be accessed by one or more

committed instructions per cycle. A buffering structure may be inserted between the committed instructions

and the BF, especially if the BF is not accessible every cycle. The trigger evaluation unit entries are searched

only during a hit to the BF, which is typically very infrequent and, therefore, need not be optimized for fast

access.
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5.7 Discussion of other implementation aspects

In this section, I discuss implementation aspects of Program Demultiplexing that are not considered in this

dissertation.

Scheduling of threads

When triggered, speculative threads are scheduled on available processing cores on a first-come first-serve

basis. More complex scheduling policies may be able to manage the processing unit resources better.

For example, a speculative thread may be more critical to thecomputation that follows the program and,

therefore, may speed up the program more than other threads.Such a speculative thread should be scheduled

as soon as the trigger is fired, even if it requires aborting another less critical thread, to free up resources.

Complex scheduling policies will only be practical if operations such as choosing a processing core for

speculative execution are performed by software.

Storing speculative executions in cache

Private caches may be used to hold the data of speculative threads instead of using the invalidation cache

and read/write set tables. No additional hardware storage structure is needed and a speculative thread can

be easily committed as the dirty data of the thread is held in the cache. However, the disadvantage is that

the cache is used to hold read and write sets of all speculative threads that are outstanding on a processing

core. Any thread that causes a speculative cache line (accessed or modified) to be evicted must be squashed.

Next, I describe the requirements for using private caches for holding speculative threads.

The methods table is required to hold the list of outstandingspeculative threads. Each sub-block in the

cache is extended with the thread identifier bitvector, so that the cache can serve as both the invalidation

cache and read/write set tables. The mechanics for speculative execution are altered from this dissertation’s

implementation as follows. First, at the beginning of a speculative thread, cache lines are not invalidated.

Second, when a speculative thread accesses or writes to sub-blocks, the corresponding thread identifier bit

in the bitvector is set. Finally, if a speculative thread writes or accesses a dirty sub-block, or if a cache line

that has a “speculatively accessed” sub-block must be evicted, that thread is aborted. The third requirement
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prevents a speculative thread from accessing or modifying asub-block after it is modified by an outstanding

thread. Multiple speculative threads are, however, allowed to access a clean sub-block.

Invalidation and commitment of speculative threads can be achieved by extensions to the coherence

protocol as suggested by Steffan [181]. When a speculative thread is invalidated (committed), all dirty

references of that thread must be evicted (committed) from the cache. This may be achieved by searching

all cache lines and identifying dirty sub-blocks with corresponding thread identifier bitvector set. A more

efficient approach would be to supplement this scheme with the write set table for holding just the write

set tags of a speculative thread, and populating it with the entries from STU at the end of its execution.

The write set table for a given thread identifier may be used todetermine the cache sub-blocks that must be

evicted (committed).

In order for a speculative thread (requestor) to use the results of another thread (requestee), if the

requestor is running on the same processing core as the requestor, the dirty lines of the requestee must

be identified (by means discussed in the previous paragraph), and the thread identifier bitvector adjusted by

setting the requestor’s bit, and resetting the requestee’sbit. If on the other hand, the requestor and requestee

are on different processing cores, dirty sub-blocks must beretrieved from the requestor’s cache, invalidated,

and written to the requestee’s cache.

Other hardware choices

Program Demultiplexing can be implemented on several othermulticore and multithreaded hardware. Each

of these choices presents benefits and disadvantages. I discuss some hardware choices next.

An asymmetric multicore system consists of cores with different computational power. Several asym-

metric cores have been proposed due to their ability to provide good serial performance by having few high

performance (say, out-of-order) cores and good throughputby having many (say, inorder) cores, in a power

efficient manner. For PD, asymmetric systems are a good choice because speculative threads may not always

need powerful processing cores because of the concurrency that PD may generate. In addition, parallelism

may also provide the ability to tolerate long latencies instead of hiding it with out-of-order execution.

Shared memory multiprocessors may not be very suitable for PD because of the costly communication
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latencies between processing cores. In typical applications, we may not have parallelism that is suitable for

executing on processing cores with hundreds of cycles for communication.

Fine-grained multithreading and simultaneous multithreading hardware are techniques that are com-

monly used. Fine-grained multithreading time-shares several threads on a processing core and may be

used to tolerate long latency events such as cache misses. Every thread executes for a given number

of cycles or until an event such as cache miss occurs. On the other hand, simultaneous multithreading

shares processing core resources among several threads simultaneously, to better utilize wasted resources.

Therefore, instructions from several threads may coexist in a processing core’s pipeline. In both these cases,

threads scheduled on different thread contexts can share the private cache hierarchy, and benefit from the

short communication latencies. The PD implementation must, however, be extended to differentiate multiple

threads’ contents in the cache, which can be achieved by marking cache lines or sub-blocks with speculative

thread identifiers.

5.8 Chapter summary

This chapter discussed the hardware implementation for PD.First, the support required for speculatively

executing a thread, much of which already covered in severaldissertations on speculative parallelization

systems, was discussed. Then, the means of storing, invalidating, and committing speculative threads, by

the use of methods table, invalidation cache, and read and write set tables, was described. Finally, I covered

the support needed for evaluating the triggers that are provided by the software.
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CHAPTER 6

EVALUATION

In this chapter, I present an evaluation of the implementation of PD. The first part of this chapter will

describe the hardware simulation infrastructure, software toolchain support for PD, and the benchmarks

that are used for the evaluation. The second part of the chapter will present experimental results for the

implementation of PD.

6.1 Hardware simulator

I evaluate the implementation with a simulation based machine model. The simulation infrastructure is

based on Virtutech Simics [120], a functional, system levelsimulator that can simulate multiple processors

along with the appropriate chipset and motherboard, and anyperipherals or devices attached to the system.

The simulated system can boot an unmodified operating systemand run software installed on the disks of a

simulated system. My implementation uses a system based on the Intel x86 instruction set architecture with

Pentium 4 processors on an Intel 875P chipset with IDE disks.The system is configured to run the Linux

operating system with kernel 2.6.8.

Simics does not model the processor micro-architecture or the memory hierarchy in the system. How-

ever, it allows user-written modules to be attached to it. Inaddition, it provides a micro-architectural

programming interface that allows the capability to control the functional simulator inside of Simics. Every

instruction executed by Simics is divided into five stages: fetch, decode, execute, memory operation, and

commit. Any instruction can be inserted by the user module into the functional simulator and can be stepped

through these five stages to eventually commit the instruction, or to squash the instruction and rollback the

changes made by the instruction. Several instructions can be inserted into Simics, concurrently stepped

through the stages, and may be executed out-of-order according to their data dependencies or before memory

dependencies are resolved.
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System Virtutech Simics 2.0. Multiprocessor system with eight Intel Pentium 4
processors on an 875P chipset with IDE disks running Debian Linux (Kernel
2.6.8).

Processor Core 3-GHz out-of-order 4-wide superscalar processor with 7 pipeline stages. No
cracking of instructions to micro-ops. 64-entry reorder buffer. 1024-entry
YAGS branch predictor, 64-entry return address stack. Loadinstruction issues
only after all prior stores are resolved.

Memory System Level-1 private instruction cache is 32-KB, direct mapped, with a 1-cycle hit
latency and with fetch buffer that prefetches the next line.Level-1 private
data cache is 32-KB, 2-way with a 2-cycle hit latency, write-back and write-
allocate. Level-2 private, inclusive, and unified cache is 1-MB, 4-way, with
a 10-cycle hit latency. Level-3 is a shared cache, 4-MB with a40-cycle hit
latency. Line size is 64 bytes for all caches with four sub-blocks (16 bytes
each) and MSI states for cache coherence. Cache-to-cache transfers take 12-
cycles. Main memory is 512 MB DRAM with a 400 cycle access latency.

Table 6.1: Details of the simulated hardware

The architectural simulator uses this micro-architectural programming interface. The base processor

core is a 3-GHz out-of-order 4-wide superscalar processor with seven pipeline stages. The instructions are

not cracked to micro operations but executed as CISC instructions. The micro-architecture has a 64-entry

reorder buffer with 32-entries for the load and store queues. A 1024-entry YAGS based branch predictor,

and a 64-entry return address stack. Load instructions in the pipeline can issue only after all prior stores

in the pipeline have been resolved. Each processing core has32KB level one private instruction and data

caches, followed by a 1MB level two private unified cache, anda level three unified 4MB cache. All levels

are inclusive and write-back. More details are provided in Table 6.1.

The experimental infrastructure discussed does not reflecta commercially available chip multiprocessor.

The level of details that can be simulated has to be deliberated carefully since it contributes to simulation

time, which already is very expensive. A reasonable level ofcomplexity is sufficient for exploring the

benefits of PD, specifically to study the importance of ordering, i.e., unordered forking of speculative threads

over the control flow based approaches of prior speculative parallelization systems. Complete modeling of

the entire system is unlikely to change the insights obtained from this evaluation. It nevertheless, may affect

the extent of performance achieved.
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Memory profile A window of 50 previously executed methods with respect to the call site is
used to determine the trigger point for an execution of the call site. References
are collected at 16-byte granularity and processed online for identification of
trigger points.

Execution profile Collected with train inputs for the entirerun of the benchmark program using
GNU gprof.

Overheads All profiling information is collected and processed online for trigger and
handler generation. The benchmark programs consume 800 MB to 1.2 GB
of memory for profiling data, and is processed for handlers and triggers which
takes under 5 seconds on an Intel Pentium 4 machine.

Table 6.2: Details of the PD profiling system

6.2 Software toolset and implementation

The software implementation is provided with a compiled binary of the program. First, debugging informa-

tion such as the source file name and line number for all instructions in the application binary is extracted.

The binary is then fed to the software tool chain that is builtfrom Diablo [198], an open source program

that is capable of reading Intel x86 program binaries and reconstructing compiler data structures. From this

tool, the control flow and program dependence graphs are obtained.

The generation of handlers and triggers for the chosen call sites relies extensively on profile informa-

tion. One approach is to generate all the profile informationthrough instrumentation and then process

the profile information offline to generate the handlers and triggers. An alternate approach that is used

in this dissertation is online generation and processing ofprofile information. The simulator discussed in

the previous section, besides performing its core task of simulating the hardware architecture, also collects

the necessary profile information. This, along with compiler data structures (control flow and program

dependence graphs), are used to generate the handlers and triggers for the list of call sites provided to the

simulator. I generated the list of call sites by studying theexecution profile of the benchmark programs.

Details on the profiling system are listed in Table 6.2.

Using program binaries for constructing the software support for PD, instead of using the program

source code or intermediate compiler representation, has its advantages and disadvantages. The primary

advantages are that the implementation does not require a compiler infrastructure and can be applied to

program binaries without access to source code. The disadvantage is the complexity of dealing with the

Intel x86 instruction set architecture and its esoteric features, for example, the stack based access of floating
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Benchmark Description Input Input sets used
bzip2 Data compression utility Train
crafty Chess program Train
gap Computational group theory Train
gcc C compiler Train
gzip Data compression utility Train
mcf Minimum cost network flow solver Train
parser Natural language processing Train
perl Perl Train Three runs for scrabble, perfect, and diff
twolf Place and route simulator Train
vortex Object oriented database Ref lendian2.raw
vpr FPGA circuit placement and routingTrain Two runs for place and route

Table 6.3: Benchmarks simulated from the integer suite of SPEC CPU2000 and input sets used

point registers. With the availability of source code and suitable compiler infrastructure, software support

for PD may be implemented in the middle phases of the compilerwhere an intermediate representation of

the program is available. In the middle phases, the intermediate representation usually has semantics as

rich as the program itself and hence can be used to identify a loop, switch statement, and other control flow

constructs easily. This can be useful in the generation of handlers and triggers.

6.3 Benchmarks

I use the integer programs in SPEC CPU2000 benchmark suite compiled for the Intel x86 architecture using

the GNU gcc compiler version 3.3.3 for evaluation. The PD based program is compiled with optimization

flags -O2 -mregparm=0 -fno-inline -fno-optimize-sibling-calls, and the sequential program, which is used

for performance evaluation, is compiled with -O2 -mregparm=0.5 The benchmarks are wrapped with

additional libraries along with minor additions to programcode to enable speculative execution in the

presence of the operating system and system events. This is discussed in the next section. The benchmarks

are run for 200 million instructions after the initialization phase, except for the run to collect execution

5Intel x86 program binaries commonly use the stack for passing parameters. GNU gcc provides a flag -mregparm=N that allows
using N registers for this purpose instead. However, it requires recompilation of the entire system (including, libraries) with the
same flag. This is beyond the scope of this dissertation. Another flag -funit-at-a-time has been introduced since GNU gcc 3.4. This
flag, among other optimizations, uses registers for passingparameters only within a compilation unit (i.e., source file) of functions.
The gcc task force has documented that this flag improves performance by 1% SPEC CPU2000. This flag is also not used for
compiling the benchmark programs in this dissertation.
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profile, which is performed for the entire run with profile data collected using GNU gprof. The benchmarks

evaluated and input sets used are listed in Table 6.36.

The SPECCPU2000 integer programs were chosen because they are commonly used in speculative

parallelization publications and, therefore, facilitatecomparison of opportunities across different proposals.

The benefits with these programs could be significantly less than what we might see in future applications

due to the following reasons. First, many of the benchmarks are tightly coupled and perform one specific

task. Realistic applications may be significantly larger and may perform several tasks. For example, even

the new SPEC CPU2006 has 30 times more source code than the SPEC CPU2000 programs. Second, the

benchmark programs are written without any serious consideration of good software engineering principles.

Several applications spend significant fraction of execution time on a few, very large methods. Others have

an esoteric programming style that hinders the opportunities for parallelism. On the other hand, large scale

applications are built with the use of software packages, libraries, and significant reuse of code. All of these

indicate modular development and superior software engineering, which means that the opportunities for

PD style of execution are expected to be higher.

Floating point programs are also not considered for the evaluation because they tend to exhibit structured

parallelism and, therefore, are easily parallelizable with software libraries, for example, OpenMP. The

floating point programs in SPEC CPU2000 in particular, have been successfully parallelized with minimal

programmer effort, as in the SPEC OMP suite.

6.4 Creating speculative threads

An important aspect of this work is implementing speculative threads on a full-system simulator. While

such an evaluation is not needed for PD and can astronomically increase the execution time of simulating

the target multicore system, the issues in implementing speculative parallelization in the presence of an

operating system must be studied. This section briefly discusses these issues.

The Linux operating system running on the simulated multicore system tries to use the available process-

ing cores for scheduling other processes in the system or at least, to run the idle loop. Hiding the processing

6eon is a C++ program in the SPEC CPU2000 integer suite that is not evaluated since my software tool chain does not support
C++ programs.
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001
002 void t1 (void) {
003 unsigned long mask = 2;
004 if (sched setaffinity (0, sizeof (unsigned long), &mask) != 0)
005 printf ("sched setaffinity (): t1 failed\n");
006 label1:
007 goto label1;
008 }
010 void t2 (void) {
011 unsigned long mask = 4;
012 if (sched setaffinity (0, sizeof (unsigned long), &mask) != 0)
013 printf ("sched setaffinity (): t2 failed\n");
014 label2:
015 goto label2;
016 }
018 void main () {
019 pthread t thread1, thread2;
020 pthread attr t t1 attr, t2 attr;
021 unsigned long mask = 1;
022
023 pthread attr init (&t1 attr);
024 pthread attr init (&t2 attr);
025
026 if (pthread create (&thread1, &t1 attr, (void ∗) &t1, 0) != 0)
027 printf ("pthread create (t1): failed\n");
028
029 if (pthread create (&thread2, &t2 attr, (void ∗) &t2, 0) != 0)
030 printf ("pthread create (t2): failed\n");
031
032 // ... have as many pthread create’s as number of processors ...
033
034 if (sched setaffinity (0, sizeof (unsigned long), &mask) != 0)
035 printf ("sched setaffinity (): failed\n");
036 ...
037 }

038

Listing 6.26: Use of pthreads to create wrapper threads thatrun idle loops usually, and are hijacked to run
speculative threads.

cores or speculative threads running on them from the operating system is not a realistic system solution for

the following reasons:

1. The processing core on receiving a timer or device interrupt that is intermittently delivered by the

operating system invokes a service handler to process it. A scheduler determines which processing

core gets to service the interrupt, and that is determined based on the system load. If a speculative

thread is not visible to the operating system, the operatingsystem may deliver the interrupts to the

processing cores that are executing speculative threads, since the OS believes the processors are idle.

This interrupts the speculative thread and aborts it.
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2. A speculative thread may incur misses to the TLB during itsexecution. The Intel Pentium 4 architec-

ture services some TLB misses (those that do not require querying page tables) without any support

needed from the software. However, if the speculative threads and/or the processing cores they run on

are invisible to the operating system, the global segment registers are not initialized by the operating

system. The hardware, therefore, will not know the process generating the TLB misses on the hidden

processing cores. This affects the operating system, whichwill panic and crash, instead of servicing

the misses.

On the other hand, running speculative threads on OS-visible processors without the operating system’s

knowledge is catastrophic to the system; the OS may panic andcrash. For example, the OS may try to

schedule a process on a processing core, which may be alreadyrunning a speculative thread. To deal with

these issues, this dissertation transforms a single-threaded program into a multi-threaded program, with one

thread running the SPEC integer application, and several other threads running a dummy idle loop, inserted

into the program source code. This is shown in Listing 6.26. Lines 026 to 030 in the example creates two

dummy threads executing methodst1 andt2. Each of these threads executessched setaffinity to

set its affinity and attach to a processing core (cores 2 and 3,in this example), and then executes the idle

loop. A speculative thread hijacks a processing core that isrunning the idle loop, for its execution. The

processing core, after finishing the speculative execution, returns to its idle loop. In addition to this, to

prevent speculative threads from being interrupted from device timers, disk timers, and other intermittent

events in the system, the IRQ load balancer’s affinity is altered to prefer a processing core in a system that

does not have an idle thread attached.

6.5 Evaluation

Several aspects of the implementation are presented in thissection. They are broadly divided into the

following categories, and expanded in the following subsections.

1. Methods and call sites chosen for PD based execution.

2. Potential for performance improvements with the chosen call sites with PD.

3. Results on handlers generated for the call sites.
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4. Results on triggers generated for the call sites, and the hardware implementation results on the trigger

evaluation unit.

5. PD implementation data which include, speculative execution overheads, results on the methods table,

read and write sets, and invalidate cache, processing core utilization for speculative execution, cycles

wasted, and the effect on private caches during speculativeexecution.

6. Performance improvements with PD including evaluation with latencies modeled between execution

buffer pool and processing cores, hardware resource limitations, and a restricted program ordered

forking model.

6.5.1 Methods

Table 6.4 presents the execution profile of the benchmarks7. For every benchmark evaluated, the table

presents the methods that execute for more than one percent of the program’s execution time. The first

column presents the run time contribution of a method, the second lists the number of times it is called, and

the third, the name of the method.

The methods in the table are used to obtain the initial set of candidate methods that PD can focus

on because speculative execution of these methods, if achievable, may improve program’s performance.

I choose the frequently called methods as the candidate methods for PD. Examples includeEvaluate,

EvaluatePawns in crafty, bea compute red cost in mcf; these methods are called tens of

thousands to millions of times by the program. They are usually hundred to thousands of instructions,

making them ideal opportunities for speculative execution. Methods infrequently called, such assortIt

in bzip2 anddeflate in gzip, are not chosen due to their large size (they can be inferred to be large,

otherwise, they will not be in the execution profile table), which makes speculative execution unlikely due

to limited speculative storage, and dependencies with the rest of the program, which limits parallelism.

Studying the tables, benchmark programsbzip2 andgzip have very few opportunities for PD, whereas,

benchmarks such ascrafty, gap, perl, parser, andvortex have many.

The number of methods and their call sites chosen for PD are listed in Table 6.5, rows 1 and 3. For

comparison, the second row presents the total number of methods, including libraries, in the program. Only

7The results presented in this subsection are for entire runson GNU gprof. For more details, see Section 6.2.
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Figure 6.1: The number of dynamic instructions executed in the methods considered for PD

0.2 to 8% of methods are chosen for speculative execution with PD. The percentage execution time that the

program spends in the call sites selected is listed in row 5. This execution time provides the upper bound

on the percentage of program’s execution time that can be concurrently executed with the program and,

therefore, the maximum attainable performance improvements.

The methods selected are then provided as inputs to the software tool chain (See Section 6.2). By means

of profile information, handlers and triggers for the call sites of the methods are generated. The total number

of call sites that the software tool chain selected is listedin row 4 of the table. Some call sites are eliminated

from the initial list due to implementation issues when generating handlers and triggers.

I conclude this subsection by presenting the number of dynamic instructions executed by the methods

selected for PD in Figure 6.1. The bars represent the mean, standard deviation, 90-th percentile, and maxi-

mum of the method sizes. For the two compression programs,bzip2 andgzip, none of the infrequently

called (large) methods were included for PD, and the frequently called methods in them are typically less

than a hundred instructions. The number of times they are invoked contributes to a large percentage of the

program’s execution time. The rest of the benchmark programs has average method sizes in fifties to several

hundreds of instructions. Benchmarkgcc is the exception with method sizes usually in the thousands of

instructions. The performance results later presented indicate that the large size of the methods ingcc
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bzip2 % Exec. Calls Name
30.75 24204832 fullGtU
18.07 31 sortIt
14.40 22 generateMTFValues
12.99 22 getAndMoveToFrontDecode
9.19 22 undoReversibleTransformationfast
4.11 22 sendMTFValues
2.16 46709960 specgetc
1.71 30004816 specputc
1.58 840223 simpleSort
1.30 17549524 bsW
1.10 16705144 getRLEpair

crafty % Exec. Calls Name
19.41 12255414 Evaluate
8.78 4594853 EvaluatePawns
7.10 4413628 GenerateCaptures
6.93 11954229 MakeMove
6.88 119382079 FirstOne
6.71 19750559 Attacked
6.20 94568670 PopCnt
4.95 11954225 UnMakeMove
4.86 1272 Search
4.17 7709098 Swap
3.74 8610885 Quiesce
3.61 9233312 NextMove
3.57 8659517 AttacksTo
2.67 12063583 SwapXray
2.32 27302935 LastOne
2.19 2493056 LookUp
1.42 315353 GenerateCheckEvasions
1.42 281116 GenerateNonCaptures

gap % Exec. Calls Name
9.15 4 CollectGarb
8.94 42974935 EvVar
6.24 6860751 NewBag
4.57 7251117 EvElmList
4.16 3431400 EvFunccall
3.53 1863720 ChangeEnv
3.12 6113342 ExitKernel
3.12 204565 DiffVecFFEVecFFE
2.70 2304118 EvRecElm
2.49 3167288 LtPP
2.49 314194 EvFor
2.29 3108312 EvIf
2.29 2154630 EvAssList
2.08 3711457 EvVarAss
2.08 2811377 Ne
2.08 2372634 EqFFE
2.08 1350063 ProdInt
2.08 215030 ProdFFEVecFFE
1.87 2791812 Diff
1.66 1333693 Prod
1.66 344475 FunAppend
1.46 1759148 EvAnd
1.46 904183 Resize
1.46 174946 QuoIP
1.25 298978 FunIsBound
1.04 6113342 EnterKernel
1.04 430753 MakeList

gcc % Exec. Calls Name
20.10 25313 propagateblock
19.52 26454 newbasicblock
9.30 25064 scheduleblock
4.26 28 lifeanalysis
3.29 56 threadjumps
3.10 215 forcemovables
2.52 memset
2.42 44161 recordone conflict
2.08 114066 schedanalyzeinsn
1.69 215 countloop regsset
1.21 5960 findreg

gzip % Exec. Calls Name
33.63 82599334 longestmatch
11.17 5 deflate
9.56 122481874 cttally
8.50 5115 fillwindow
8.47 3668 inflatecodes
6.71 125222294 sendbits
5.52 2 deflatefast
5.02 3668 compressblock
4.67 10250 updcrc
3.44 memcpy

mcf % Exec. Calls Name
35.31 5235 refreshpotential
21.88 104573 primalbeampp
18.64 93235666 beacomputered cost
9.14 6 priceout impl
4.29 93235666 beais dual infeasible
2.93 104567 sortbasket
1.88 1022350 replaceweakerarc
1.76 92516472 computered cost
1.00 104567 updatetree

parser % Exec. Calls Name
10.18 11361658 hash
7.09 10084223 tablepointer
6.44 11515427 prunematch
6.19 25993211 xalloc
5.67 2589707 formmatchlist
5.15 25820721 xfree
3.74 684389 regionvalid
3.09 8038607 possibleconnection
2.96 ctype b loc
2.58 467 freetable
2.19 43340 cleantable
2.19 pthreadinternal tsd address
2.06 9788229 powerhash
2.06 2588929 catenate
2.06 8410 buildclause
1.93 9504250 tablelookup
1.80 5006344 match
1.55 1384118 hashS
1.55 1237 count
1.42 4885415 righttable search
1.42 663342 leftconnectorlist update
1.29 3511965 fastmatchhash
1.03 2545165 lefttable search
1.03 467 inittable

Table 6.4: List of methods that contribute greater than one percent of the execution time, the number of
times the methods are called, and their names
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perl % Exec. Calls Name
27.33 19493591 regmatch
8.04 14459657 Perlmy bcopy
6.54 58517594 regrepeat
4.88 24674440 Perlpp padsv
4.20 11109892 Perlsv setsv
3.06 17382160 Perlpp nextstate
2.85 19493591 regtry
2.54 3977825 Perlregexecflags
1.92 6672736 Perlpp and
1.66 5556109 Perlsv upgrade
1.45 5300124 Perlleavescope
1.40 6513307 Perlsv setpvn
1.40 1218778 Perlpp match
1.35 161 Perlrunopsstandard
1.14 5423898 Perlsv clear
1.14 2900601 Perlpp gvsv
1.14 1148534 Perlpp entersub
1.04 9083326 Perlpp const
1.04 7322234 Perlpp sassign
1.04 2429929 Perlmg get

twolf % Exec. Calls Name
30.30 3189275 newdbox a
14.60 2023349 newdbox
8.69 2730486 ucxx2
7.93 120 uloop
6.58 1724967 termnewposa
4.47 1464308 termnewposb
3.21 5855046 subpenal
3.12 6596085 XPICKINT
3.12 5855046 addpenal
2.45 3011773 acceptt
2.28 12983918 Yacmrandom
2.19 2730486 oldassgntonew2
2.19 2023349 termnewpos
1.52 468153 dboxpos 2
1.10 3124560 newold
1.01 IO vfscanf

vortex % Exec. Calls Name
12.63 481266209 ChunkChkGetChunk
10.11 286162243 MemGetWord
8.49 144000 PartDelete
7.28 memcpy
5.73 144692956 MemGetAddr
4.63 int malloc
3.70 18185478 OaGet
3.66 176132271 TmFetchCoreDb
3.06 101130315 TmGetObject
2.85 101130315 OaGetObject
2.30 101130315 HmFetchDbObject
2.11 48751402 MemGetBit
2.10 156232 SaFindIn
1.79 13352195 OaCompare
1.77 50458735 TmIsValid
1.30 4128498 TreeCompareKey
1.22 288001 SaDeleteNode
1.10 7385700 DbmGetVchunkTkn
1.00 41196116 UtMoveBytes

vpr % Exec. Calls Name
34.02 15491273 getheaphead
24.68 8845923 expandneighbours
11.31 28972981 addto heap
9.49 43692353 nodeto heap
6.38 10746 routenet
6.23 28972981 allocheapdata
1.59 28972981 freeheapdata
1.21 10746 resetpath costs

Table 6.4: List of methods that contribute greater than one percent of the execution time, the number of
times the methods are called, and their names... contd

Benchmarks bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Methods 5 23 14 10 5 4 11 37 10 10 15
Total Methods 279 307 1051 2464 321 214 527 1297 386 1156 471
Call Sites 23 188 48 32 25 5 133 57 26 174 30
PD Call Sites 13 109 42 20 16 5 44 38 26 110 12
Execution Time 35.0 65.9 51.9 50.6 54.2 53.5 56.5 79.1 89.4 55.5 63.6

Table 6.5: Number of methods and call sites considered for PDbased execution

makes them a poor choice for speculative execution because of limited parallelism and hardware resource

constraints.

Standard deviations for the benchmark programs are close toor higher than the mean, with 90-th

percentile more than the mean, indicating that the methods sizes are widely distributed. Exceptions include

the benchmarkparserwhose mean (= 243) is much higher than the 90-th percentile (=97), indicating the



111

benchmark has a few very large methods (thousands of instructions) and many small methods with tens of

instructions.

6.5.2 Potential for PD-based execution

This subsection presents the potential for PD, which is the ability to begin speculative execution of a method

before its corresponding call site in the program. This is specified by the ratio R defined as follows:

R =
CycleCall Site − CycleTrigger Point

Execution Cycles

R is the ratio of the difference of the cycle when the method and its handler are ready to execute, i.e., the

trigger point, and the cycle when the program reaches the call site, to the number of cycles to execute the

method. In the case when the method (caller) being evaluatedfor PD calls another method (callee) during

its execution, the trigger point is computed also includingthe callee, only if the callee is not considered for

PD. All the cycle times are obtained from the sequential execution of the program.

The ratio R is not a direct measure of performance benefits fortwo reasons: (i) The execution cycles

used for the computation is measured on the processing core running the program. In PD based execution,

this number is expected to be different as the speculative thread executes on another processing core (refer

Section 6.5.6 on overheads of speculative execution). (ii)The data is collected for every call site individually,

which is without the influence of other methods. In a PD based execution, however, the cycle time for a

given call site and its trigger point used in the ratio will vary and depend on other call sites speculatively

executed.

The ratio, however, gives an indication of how much a method interferes with the rest of the program,

as it determines the parallelism that is available and how well the method’s speculative execution could be

overlapped. A ratio close to 0 indicates that a method and itshandler’s execution is ready only just before

the method is called, therefore no overlap is possible with the program. A ratio close to 1 indicates the

method can be executed immediately after it is ready; it may be able to finish execution just before it is

called when overheads of speculative execution are considered. A ratio>> 1 indicates possible opportunity

for completely overlapping the execution even with any overheads.
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Figure 6.2 plots the ratio R averaged over all executions of agiven method’s call site on a logarithmic Y

axis. Each point in the graph represents a call site chosen for PD. From the graph we see that many call sites

could begin execution well before they are called. Note thatthe call sites plotted in the graph were chosen

after analyzing their execution time contribution and size. These metrics have already pruned methods that

may be unsuitable for PD.

A more insightful graph is the cumulative plot of the percentage of execution time, plotted on the Y axis,

over ratio R on logarithmic X axis, as shown in Figure 6.3. This graph gives an idea of the percentage of

the program’s execution time and the extent to which that percentage may be overlapped with the rest of the

program. For example, 46% of benchmarkparser’s execution time has a ratio R of 1,twolf with 50%

of its execution time with ratio greater than 0.8, andcrafty with over 60% greater than 0.8. From this

graph, reasonable performance benefits from benchmarksgap, parser, crafty, twolf, andvpr are

expected. As pointed out earlier, the data cannot be used as afirst order measure of performance benefits

because of the interaction of speculative threads in PD withthe program’s critical path.

Sensitivity of R to varying handlers and triggers. The results presented so far are for a specific

implementation of a handler. R may vary with other implementations. The rest of this subsection will

focus on the effect on ratio R with different implementations of handlers and restrictions on trigger points.

Figure 6.4 plots the ratio R assuming the trigger points cannot occur earlier than the beginning of the method

that calls the method being considered for PD. This preventsthe generation of any interprocedural slices in

the handler (discussed in Section 4.6.1). The following arethe noteworthy points from this graph. Overall,

the ratio has not dramatically changed, even though aberrations in some benchmarks are clearly visible. For

mcf, the limitation of handler has reduced the ratio for one callsite drastically (10s to 0.1). In general, this

form of handler can severely restrict the separation of trigger site and call site if the program invokes many

methods during its execution. For example, benchmarkscrafty, parser, andvortex, all have the

points in the graph located lower than the points in Figure 6.2 because these programs spend their execution

time over many methods. Benchmarkvpr also has some perturbations and some points shift closer to (and

below) the X axis.

Another study, shown in Figure 6.5, plots the ratio R assuming that the handlers do not evaluate any

branches. This reduces the dependencies that the handler may have with the program and could affect the
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Figure 6.2: Ratio R (described in the text) plotted for different call sites in the benchmark. The trigger point
for a call site in this study is the earliest the method and itshandler can begin speculative execution.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.10 1.00 10.00 100.00 1000.00

Ratio R

F
ra

ct
io

n 
of

 E
xe

cu
tio

n 
C

yc
le

s

bzip2 crafty

gap gcc

gzip mcf

parser perl

twolf vortex

vpr

Figure 6.3: Cumulative plot of the execution time versus theratio R plotted in Figure 6.2



114

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

R
at

io
 R

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr

Figure 6.4: Ratio R assuming the trigger points cannot be beyond the scope of the method that has the call
site of the method being considered for PD

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

R
at

io
 R

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr

Figure 6.5: Ratio R assuming the trigger points are based on handlers that do not compute any branches



115

Mean St. Dev 90%ile Max
bzip2 1.28 0.39 1.81 2.25
crafty 12.61 13.02 34.20 53.80
gap 4.46 7.08 8.64 38.70
gcc 27.67 96.64 19.92 477.00
gzip 1.90 4.06 1.27 21.37
mcf 10.68 5.64 14.71 15.48
parser 1.92 2.13 4.47 11.46
perl 1.00 0.01 1.00 1.06
twolf 4.60 11.10 5.86 42.80
vortex 3.03 7.02 4.44 48.90
vpr 2.53 3.81 6.02 13.51

Table 6.6: Ratio of the cycles elapsed between call site in the program and its trigger point assuming many
outstanding executions compared to just one

location of trigger points. All benchmarks see very little effect when branches are excluded, indicating that

it may not have significant impact on the trigger points.

In the results so far presented, it is assumed that more than one speculative thread can be outstanding for

a given call site, before they can be committed or squashed. Table 6.6 presents the ratio ofCycleCall Site −

CycleTrigger Point for the case studied so far, which is having several outstanding executions for a given

call site, versus, having just one outstanding execution for the call site. In the latter case, the trigger point for

a speculative thread can only be after the previous thread’sexecution has been committed or squashed. For

example, assume that a program calls methodM repeatedly with different parameter values (say, a pointer

to a data structure). Also assume thatM performs some computation with that parameter and each of the

executions are independent. Having only one outstanding execution severely limits the opportunities for

concurrent speculative executions, especially if the invocations ofM have no conflicts. In benchmarkmcf

this is noticeable from the high mean of 10x. Similarly, incrafty, a chess-playing program, few methods

are called to analyze several different moves. Restrictingthe number of outstanding speculative executions

severely limits the parallelism.

6.5.3 Handlers

Table 6.7 presents the number of instructions present in thehandlers generated for PD, as the mean, standard

deviation, 90-th percentile, and maximum. These numbers are dependent on the handler generation algo-
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bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Mean 2.91 30.29 33.15 27.50 10.70 19.60 14.66 10.08 21.79 36.96 8.17
Std Dev 1.70 54.02 35.23 20.83 6.19 17.76 18.53 11.63 22.60 24.74 8.38
90%-ile 6.40 66.00 91.40 46.90 20.00 37.60 42.00 27.50 36.80 73.60 16.70
Max 7.00 301.00 125.00 102.00 22.00 50.00 90.00 40.00 94.00 125.00 28.00

Table 6.7: Number of instructions in handlers generated with interprocedural slicing

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Mean 2.70 13.20 5.54 8.53 6.88 10.40 5.28 6.18 9.54 10.26 5.50
Std Dev 1.29 13.06 2.00 5.15 3.03 12.80 4.64 6.53 14.46 2.88 6.19
90%-ile 4.60 31.00 8.00 15.90 11.00 23.00 11.00 13.40 11.00 13.00 12.50
Max 7.00 69.00 11.00 21.00 12.00 33.00 39.00 32.00 78.00 31.00 21.00

Table 6.8: Number of instructions in handlers generated without interprocedural slicing

rithm and the heuristics, the program, and its programming characteristics. The mean for the benchmarks

varies from two to forty instructions. The maximum gives a clearer idea on the complexity of the handler for

different benchmarks. For example,bzip2 has a maximum of seven instructions in the handler, whereas

crafty has 300 instructions. This is due to two reasons: (i) fewer parameters passed inbzip2 than

crafty and (ii) crafty’s extensive use of the stack to communicate data values in the program. Since

the handler generation algorithm includes stack related computation, more instructions are included during

the slicing process incrafty. For comparison, Table 6.8 presents the number of instructions in the handler

without interprocedural slices. The additional constraint limits the number of instructions in the handler.

Benchmarkscrafty, gap, andgcc have 5 to 10 times smaller handlers than in the previous case.

Table 6.9 presents the fraction of instructions that a handler contributes to a speculative thread. (By

default, the handler is assumed to have interprocedural slices in all of the evaluations in this chapter.) Figure

6.6 presents the fraction of a speculative thread’s execution cycles spent executing the handler. On average,

the handler introduces 8% to 36% instructions in a speculative thread which take 5% to 15% of the execution

time. In the worst case, roughly 30% of the thread’s execution cycles are spent in the handler for many

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Mean 0.07 0.32 0.38 0.18 0.18 0.40 0.22 0.12 0.13 0.27 0.20
Std Dev 0.05 0.28 0.32 0.20 0.11 0.19 0.23 0.15 0.16 0.17 0.18
90-%ile 0.15 0.76 0.85 0.47 0.31 0.55 0.56 0.31 0.33 0.52 0.38
Max 0.21 0.94 0.92 0.63 0.37 0.59 0.90 0.61 0.57 0.62 0.50

Table 6.9: Ratio of the number of instructions executed by the handler in a speculative thread
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benchmarks. Forcrafty, this is over 55%, because the handlers contribute up to 94% of instructions to a

speculative thread. This is followed by benchmarksgap andparser also with over 90% of instructions

from the handler.

A handler for a speculative thread is generated by the software infrastructure. Therefore, the software

is responsible for determining the optimal number of instructions that must be in the handler to minimize

overheads and maximize performance benefits. For example, results presented in this subsection can be

incorporated into the handler generation process to determine how the handler can be adjusted, i.e., deter-

mining whether to include more instructions in it and possibly increase the separation of the speculative

execution from the call site, or make it shorter, to minimizethe overheads.

6.5.4 Triggers

In this subsection, I discuss trigger points for call sites chosen for PD, their sensitivity to different input

sets, and results related to the evaluation of triggers. First, Figures 6.7 and 6.8 present the average number

of trigger points (along with the standard deviation, 90-thpercentile, and maximum). The handler used in

Figure 6.7 contains interprocedural slices; those in Figure 6.8 do not. For the results presented, a speculative

thread whose trigger site is also the call site, i.e., a speculative thread forked when the previous outstanding

thread for that call site is committed, is considered to haveno trigger point, and accounted as zero.
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Figure 6.6: Fraction of speculative thread’s execution cycles in the handler



118

The number of trigger points with interprocedural slices ismore than the ones without them. Interpro-

cedural slice based handlers extend for more number of instructions, usually require more program state

and, therefore, increase the number of trigger points. For the benchmarks evaluated, the average number

of trigger points is between one and two. This implies that triggers for a call site, if optimized, may be

incorporated statically, instead of using the dynamic evaluation support discussed in Section 5.6.

For gap, the average is less than one because many call sites having no trigger points, as many spec-

ulative threads are forked when a previous outstanding speculative thread for that call site is committed.

Benchmarkcrafty has few hundred call sites for PD, unlike many other benchmarks. The large size of the

handlers for the call sites (discussed in Section 6.5.3) introduces many more dependencies with the program.

This results in the worst case of six trigger points with interprocedural slices, and five without. Benchmark

vortex, has over nine trigger points because of one notable programming characteristic. The program

code extensively uses macros to create specialized methodsfrom generic implementations (several hundred

are created from few generic methods). Macros are processedby the compiler toolchain’s preprocessor and,

when compiled, the binary only has the generic method calls.Trigger points are generated for the generic

versions of methods and not for the specialized methods.

Table 6.10 presents the number of trigger condition code registers needed for these benchmarks. These

are set or reset when the program commits an instruction at a program counter that is registered with the

trigger evaluation unit. The registers are further used forevaluating the trigger. The number of registers

required is dependent on the number of call sites chosen for PD based execution and the number of trigger

points for each of the chosen call sites. Based on these, benchmarksvortex, crafty andparser

require the maximum number of trigger condition code registers because of the number of call sites selected

for PD (refer Table 6.5). While on the other hand,mcf requires only seven registers.

The next set of rows in the table presents the hits and number of false positives to the Bloom filter, BF,

in the trigger evaluation unit (refer Section 5.6). Programcounters used in the predicates of triggers are

registered with the Bloom filter, BF. The program counters ofcommitted instructions are passed through the

BF to determine if further action, i.e., searching and setting the trigger condition code register, is required.

The second row in the table (titled Hits), lists the fractionof program counters of committed instructions

that hit in the BF. A hit indicates that the program counter may be registered; there may be false positives.
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Figure 6.7: Trigger points with interprocedural slices in ahandler

It is necessary to minimize the number of false positives so that the BF does not return a hit for a program

counter that is not registered. Several different configurations are therefore presented next, to determine

the optimal number of hash buckets needed and the hashing scheme that transforms program counter into

bucket index.

The third row in the table (titled, 8Kb) presents the number of false positives with eight kilobits of entries

in the filter. The hashing used is the XOR of lower 13 bits with bits 16 to 23 of the instruction’s program

counter.

The fourth row (titled, 16Kb) presents false positives for 16 kilobit entries with the hashing function

based on the XOR of lower 14 bits with bits 16 to 23 of the instruction’s program counter. The number of

false positives is significantly reduced because of lesser collisions due to more number of bits available in

the filter.

Benchmarkcrafty has the maximum number of false positives. 75% of the hits with 8Kb filter are

false positives, which is significantly reduced with 16 Kb filter (to 39%). Benchmarkparser has 50%

reduction,twolf has 75% reduction, andvortex has 80% reduction in false positives with the larger

filter.
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Figure 6.8: Trigger points assuming no interprocedural slices in a handler

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Registers 24 132 41 39 28 7 122 41 33 147 22
Needed
Fraction 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.04
Hits
8Kb 0.00 0.75 0.01 0.08 0.00 0.00 0.08 0.08 0.12 0.22 0.00
16Kb 0.00 0.39 0.00 0.05 0.00 0.00 0.04 0.03 0.03 0.04 0.00

Table 6.10: Statistics related to the trigger evaluation unit: number of trigger condition code registers, hits
and false positives in the Bloom filter

Benchmark Input used
bzip2 Reference input, input.graphic
crafty Reference input
gap Reference input
gcc Reference input, 166.i
gzip Reference input, input.graphic
mcf Reference input
parser Reference input
perl Reference input, diffmail
twolf Reference input
vortex Reference input, lendian1.raw
vpr Reference input, placement phase

Table 6.11: Input set used for trigger point sensitivity study

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
0.97 0.61 0.66 0.90 0.87 1.00 0.71 0.82 0.85 0.62 0.86

Table 6.12: Fraction of common trigger points with different input sets
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6.5.5 Sensitivity of trigger points

Unlike identification of call sites for PD based execution and generation of handlers for these call sites, the

identification of triggers relies extensively on profile information and may be sensitive to the behavior of the

program. (Even though static information from the compiler, as described in Section 4.3, can help reduce

this.) A poor choice of triggers can increase mis-speculations in the system and result in wasted execution

resources. In this subsection, I study the sensitivity of trigger points, which are used to identify triggers, to

different input sets.

An important requirement for collecting profile data for thegeneration of triggers is to achieve good

coverage of the control flow in the program. This is dependenton the program and its behavior with

different inputs. For example, a program may have two different set of inputs each executing different

set of methods and/or instructions in control flow paths, such asvpr with placement and routing inputs.

Some programs may not have different execution paths when input sets are scaled such asgzip, whereas

some other programs may be dependent on the scale and the semantics of the input, for examplegcc.

Besides this, it is likely that profile information for a program which is collected and processed for triggers

on one set of inputs, is used on another set of inputs.

In Section 6.5.4, the trigger points were obtained for the inputs presented in Table 6.3. To determine

the sensitivity of these trigger points with different inputs and possibly, completely different phases, trigger

points were collected for another set of inputs shown in Table 6.11. It is not known whether the phases that

the benchmark programs are in match the phases for the runs with inputs shown in 6.3. Table 6.12 presents

the fraction of trigger points that match between the two input sets. On average, 80% of the trigger points

match between the two input sets. Benchmarkscrafty, gap, andvortex have the lowest percentage

of roughly 63, mainly because these programs are large, withcomplex control flow paths than the other

evaluated benchmarks.

Even though it is desirable to have a high correlation of trigger points between different inputs, lower

correlation in the benchmarks may not necessarily affect performance. The low fraction of matching trigger

points is likely due to the methods executing in different phases of the program; control flow paths that were

not exercised when run with train inputs may be used with reference inputs. Detailed program analysis is

required to determine the nature of behavior of trigger points with changing inputs.
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6.5.6 Speculative execution overhead

Figure 6.9 presents the overheads of separating a method’s execution from its call site, and performing it on

another processing core. On the Y axis is the ratio of the cycles used for speculative execution of a method in

PD, over the cycles used by the method during sequential execution. The speculative execution of a method

is measured by the number of cycles taken to execute the speculative thread in its entirety (i.e., including the

handler). The following are the effects that a speculative thread in PD may have:

1. Negative effect due to execution of the handler.

2. Negative effect due to compromised locality of data because the method does not execute on the

processing core that the program runs on.

3. Positive effect due to increase in the cache capacity. A PDbased program uses the cache resources

of many processing cores, which may lower capacity and conflict misses. Spatial locality between

speculative threads that execute on a processing core may also be a positive effect.

4. Second order negative effects such as poor branch prediction accuracy because of the use of many

processing cores, and the inability to train the predictorsof all processing cores for an outcome of a

branch.

The data in the figure can be divided into three categories: (i) Smaller methods have higher overheads.

Therefore, the ratio is significantly greater than 1. (ii) Larger methods have lower overheads because

negative effects such as additional cache misses are amortized. Therefore, the ratio is close to 1. (iii) Some

large methods finish speculative execution faster than their counterpart in sequential execution. Therefore,

the ratio less than 1.

Benchmarkmcf, has ratio of 7 (7x overhead of speculative execution in PD) because speculative threads

in the benchmark are small, and frequently miss in the cache.Any locality that may exist is lost due to

threads executing on many processing cores. The worst case overhead formcf is 14x for a speculative

thread that executes a method of 10 instructions. All benchmarks have worst cases between 3 to 9x. This

is expected since small methods chosen for PD have high overheads. The average numbers for benchmarks

are, however, dominated by medium sized (100s of instructions) methods in benchmarksvpr,twolf,gcc,



123

andparser with overheads between 1 to 2x. Benchmarkvortex has 1.5x overhead because of good

cache locality, even though many speculative threads in thebenchmark are less than a hundred instructions.

crafty andgap call smaller methods more often than average sized methods.This results in poor locality,

and high average overheads of 3.3x and 2.6x respectively. Since poor cache locality is one of the main

reasons for the overheads, one way to lower the overheads is to implement data prefetching support in the

hardware. The usefulness of a data prefetcher will greatly depend on when the prefetch requests can be

issued, and when the data is available. Novel data prefetchers may be needed specifically to deal with short

running speculative threads in PD.

Figure 6.10 presents further insights into the overheads ofspeculative execution with respect to the

sizes of methods. The results are separated into methods that have, (i) less than 50 instructions, and (ii)

greater than 50 instructions. Becausecrafty andgap speculatively execute many small methods, the

averages presented in Figure 6.9 are dominated by these numbers (4.4x and 3.4x overhead for less than 50

instructions), rather than by methods with greater than 50 instructions (1.1x overhead). The explanation

provided in the previous paragraph forvortex is also accurate for these results; the benchmark has very

low overheads (1.23x). Noticeably, for all the benchmarks,methods with greater than 50 instructions have

overheads between 1x to 1.9x.
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Figure 6.9: Overheads of speculative execution of a method in PD over sequential execution
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Figure 6.10: Average overheads of speculative execution inPD over sequential execution separated into two
bars: methods with less than and greater than 50 instructions

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
1.46 0.82 0.52 0.84 0.95 5.4 0.54 0.74 0.73 0.71 1.02

Table 6.13: Minimum of the overheads of speculative execution in PD over sequential execution

Table 6.13 presents the minimum overheads of a speculative thread in the evaluated benchmarks. Due

to extra cache capacity, for several benchmarks the minimumis less than one, which implies that some

speculative threads takes less time to execute than their counterparts in sequential execution.

6.5.7 Cache references

PD based execution, unlike sequential execution, uses manyprocessing cores. The overheads associated

with this usage are likely to increase the number of requeststo the instruction and data caches of the

processing cores, when compared to sequential execution. This increase is because of: (i) the references

made by instructions in the handler during its execution and(ii) accesses performed by speculative threads

that are aborted or squashed.

Figure 6.11 plots the fraction increase in requests in levelone instruction and data caches during PD

based execution over sequential execution. In almost all programs, exceptmcf andgap, the increase in

instruction cache references is higher than that of data cache. On average, the references increase by 20%

in the instruction cache and 16% in the data cache.
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Figure 6.11: Fraction increase in cache requests with PD based execution over sequential execution in level
one data and instruction caches.

For level one instruction and data caches, Figure 6.12 and 6.13 presents: (i) the miss rate with sequen-

tial execution, (ii) the miss rate on the program’s processing core with PD based execution, and (iii) the

cumulative miss rate of all speculative processing cores. One observation that stands out is the high miss

rate in the data cache of speculative cores, which contributes to the high overheads of speculative execution.

Benchmarkmcf in particular has a 25% miss rate on speculative processing cores, which takes speculative

threads seven times more execution cycles than in sequential execution (refer Section 6.5.6). On average,

the miss rate on speculative processing cores is 11%. On the other hand, the miss rate on the non-speculative

processing core is 3%. This is largely unchanged from the miss rate during sequential execution (average of

4%) because speculative threads are committed through the private cache and, therefore, will have a similar

effect as sequential execution.

The observations from studying the instruction cache miss rates are different. The miss rate on the non-

speculative processing cores are lower than the miss rate during sequential execution. This is because of the

increase in total cache capacity and because the non-speculative processing cores must access and execute

only instructions that are not executed by committed speculative threads. The miss rate of the speculative

cores in PD is also lower for many benchmarks (exceptgap, bzip2, parser, andtwolf) because of

temporal locality exhibited when speculative threads of a method are scheduled in the same processing core.

In addition, unlike data cache lines, instruction cache lines are not written to, and hence, not invalidated by

the program.
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Figure 6.12: Miss rate per instruction for level one instruction cache in sequential execution (label: Miss
rate (Seq. Exec)), non-speculative processing core in PD based execution (label: Miss rate (PD, Non-spec
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Figure 6.13: Miss rate per instruction for level one data cache in sequential execution (label: Miss rate (Seq.
Exec)), non-speculative processing core in PD based execution (label: Miss rate (PD, Non-spec P)), and on
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bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Misprediction fraction in
Seq. program 0.05 0.07 0.01 0.05 0.08 0.05 0.06 0.04 0.14 0.02 0.08

Cumulative misprediction fraction on processing cores executing speculative threads in
PD program 0.13 0.09 0.04 0.04 0.13 0.09 0.10 0.06 0.15 0.04 0.10

Table 6.14: Fraction of branches mispredicted in sequential program and cumulative fraction of branches
mispredicted on processing cores executing speculative threads during PD based execution

6.5.8 Branch mispredictions

Section 6.5.6 discussed several factors that contribute tothe overheads of executing a speculative thread. One

of the factors is the overheads introduced by poor branch prediction in an out-of-order superscalar processor

pipeline. For example, the decision of a branch in a speculative thread is used to train the predictor table of

the processing core executing the thread. Another execution of the same speculative thread, if performed on

a different processing core, will not benefit from the trained predictor table. Table 6.14 presents the fraction

of branches mispredicted in a sequential program, and the cumulative fraction of branches mispredicted in all

processing cores used for execution of speculative threads(which is the ratio of the total number of branches

mispredicted over the total number of branches in all speculative threads). On average, the misprediction

fraction in sequential program is 6%, which increases to 9% in a PD execution. All benchmarks exceptgcc

have poor branch prediction accuracy in speculative threads. The prediction accuracy may be improved

with an intelligent scheduling policy that schedules all speculative executions of a given method on one

processing core.

6.5.9 Methods table

The average and maximum number of outstanding speculative threads in a system is presented in Figure

6.14, with their average occupancy cycles in Table 6.15. In these results, there is no limit to the number of

entries in the methods table, to study what might be an appropriate number to achieve maximum benefits.

The data does not include speculative threads that do not complete when the call site in the program is

reached as they are used or committed immediately upon completion, and not placed in the methods table.

The number of speculative threads outstanding is directly dependent on the number of call sites chosen

for PD based execution. It is also proportional to the cycleselapsed between the completion and use of a
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Figure 6.14: Number of oustanding speculative threads (excluding threads that stall the requestor)

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
39.90 1295.22 281.97 213.13 61.36 709.30 318.06 134.27 331.38 108.85 489.42

Table 6.15: Average number of cycles outstanding speculative threads are held

speculative thread. This is shown in Table 6.15. For example, benchmarkcrafty has over hundred call

sites for PD based execution and, therefore, has over 70 threads held for around a thousand cycles. On the

other hand, compression programsbzip2 andgzip have few call sites for speculative execution. The

speculative threads are used 40 to 60 cycles after completion and, therefore, very few speculative threads are

being held by the system. The performance benefits (presented in Section 6.5.13) are dependent not only

on the number of outstanding threads presented here, but also the fraction of program’s execution that they

cover.

6.5.10 Read and write sets

Figures 6.15 and 6.16 presents the average, standard deviation, 90-th percentile, and maximum number of

sub-blocks in the read and write sets of a speculative thread, respectively. (Sub-blocks are 16 bytes. For

more details, see Table 6.1.) This data accounts for read andwrite sets of all threads in the system, including

those that are in progress when the program reaches the corresponding call site.

The size of read and write sets depend on the method’s size andcomputation performed. Since call sites

of large methods were eliminated as candidates for PD, this limits the read and write sets of speculative
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Figure 6.15: Read set size (in sub-blocks) of speculative threads

threads to roughly 20 and 30 sub-blocks, respectively, for most benchmarks. Benchmarkvortex was

earlier described in this section to have several small methods of few hundred instructions. Its mean read

and write set sizes are 13 and 10 sub-blocks, respectively, lower than that of other benchmarks. It also has a

low standard deviation, and 90-th percentile close to the mean.

Few large methods in some benchmarks contribute to the maximum of 100 sub-blocks in the read and

write sets. The performance results (presented in Section 6.5.16) indicate that these methods contribute a

sizable fraction to the improvements. Benchmarkcrafty has many small methods contributing to the low

average, with some large methods contributing to the over 100 sub-blocks in the read set. Benchmarksgcc

andperl have large read and write sets, making the chances of speculative execution with limited entries

in the read and write set tables low. The smallest methods chosen for PD are in benchmarkmcf. This is

reflected in the read and write set sizes of 6 and 1 sub-block(s), respectively.

Studying the sizes of the read and write sets are important not only for deciding the size of several

hardware structures but also for determining which methodsto speculatively execute. First, the write set,

which represents the dirty data of a speculative thread, is held in the private caches of the processing core

during its execution. During a method’s speculative execution, dirty data cannot be evicted from the cache

and, in such a case, results in the termination of the thread.These methods must be eliminated as candidates

for speculative execution. The size of the read and write sets also determines the size of the hardware
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Figure 6.16: Write set size (in sub-blocks) of speculative threads

structures such as the speculative tag unit and execution buffer pool. The speculative tag unit must be sized

to hold the tags of read and write sets during the speculativeexecution. An overflow in the STU aborts the

thread. On completion of a speculative thread, its read and write sets are moved to the read and write set

tables. If these tables have a fixed number of entries per thread, overflow either aborts the thread, or places

the remaining tags (and data) in the overflow table, which maybe undesirable for efficiency. The invalidation

cache is populated with the read and write set tags and must also be sized to have minimal overflows. The

sizing of the structures will be further discussed in Section 6.5.13 on performance improvements with PD.

6.5.11 Invalidation cache

The invalidation cache is introduced in this implementation for the sole purpose of efficiently determining

if the address of a store committed by the program is present in the read or write sets of the outstanding

speculative threads. Without the invalidation cache, every entry in the read and write set tables for all the

speculative threads must be searched, which is likely to be inefficient, even though the operation is not on

the program’s critical path. Thus, additional storage and logic in the form of invalidation cache is used to

minimize the overheads. (Alternatives to the invalidationcache are private caches as discussed in Section

5.7 or signatures proposed in Bulk [32].)
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bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Fraction 0.00 0.00 0.14 0.38 0.01 0.23 0.21 0.00 0.91 0.03 0.04
sets overflow
# overflows 0.0 2.5 8 11 1.8 4 3.8 0.0 11.4 3.2 2.8

Table 6.16: Fraction of sets that overflow and the number of overflows for an invalidation cache of 1024
sets, 8-way

The invalidation cache organization is discussed in Section 5.3. The size and the associativity must

be chosen to minimize the number of overflows per set. Table 6.16 presents the fraction of sets in the

invalidation cache that overflow, and the average number of overflows in these sets. The invalidation cache

has 1024 sets, each 8-way associative. The worst case behavior occurs in benchmarktwolf; 91% of

the sets overflow and requires an additional average of 11.4 entries. 14% to 38% of the sets overflow in

benchmarksgcc, parser, mcf, andgap. They require an additional 1.8 to 11 entries per set.

6.5.12 Utilization

Figure 6.17 plots the utilization fraction for the seven processing cores that are used for speculative execu-

tion. The utilization fraction is the ratio of the cycles spent by a processing core for speculative execution,

over the cycles spent by the non-speculative processing core to execute the PD based program. The graph

only accounts for the execution of speculative threads thatare committed or used by another speculative

thread. The processing core spends the rest of the cycles executing speculative threads that are aborted or

squashed, and stalling when the write and read sets of a completed speculative thread are transferred from

its private caches to the execution buffer pool.

The utilization of processing cores may be used to determinethe plausible performance benefits. How-

ever, there is no direct correlation as the performance improvements will depend on the overheads of

speculative execution and the extent of overlap between thethreads in the system. Based on the data from

the figure, the highest cumulative utilization (Cumulativeutilization is obtained by adding the utilization

fraction on all seven processing cores presented in the graph and multiplying by 100. The highest possible

cumulative utilization can be 700%.) is from benchmarksparser (185%),gap (176%),crafty (157%),

vortex (197%), followed byvpr (137%),twolf (74%), perl (63%), andmcf (103%), and finally

gcc (17%) andbzip2 (52%). These numbers are representative of the discussion presented in this
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Figure 6.17: Ratio of the cycles spent by a processing core for speculative execution over the cycles spent
by the non-speculative processing core in PD based execution. The graph presents the ratio for the seven
processing cores used for speculative execution in the system.

section so far. Benchmarkscrafty, vortex, gap, andparser were observed to have the maximum

opportunities (refer Section 6.5.1) and, therefore, have high utilization. On the other hand, methods chosen

from benchmarksmcf, bzip2 did not cover significant fraction of program’s execution time (refer Table

6.5) and, therefore, utilize only a small fraction of the cycles for speculative execution.

6.5.13 Stall cycles

During PD based execution, when a call site is reached, outstanding speculative threads in the methods table

and any ongoing speculative threads in other processing cores are searched for a match. If the call site

matches with an ongoing speculative thread, the requestor stalls until the thread finishes execution, and then

initiates the operations to commit the thread. For performance reasons, it is best that the requestor wait only

if the number of cycles it is going to stall for the speculative thread to complete is less than the cycles the

requestor would take to execute the method. Otherwise, the speculative thread slows down the requestor,

an undesirable effect. While discussing the software infrastructure in Chapter 4, it was suggested that the

call sites chosen for PD be refined based on the feedback from aPD based execution. This is an instance

in which if it is observed that PD based execution for a call site hurts program’s performance, that call site
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bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Fraction 0.02 0.03 0.01 0.01 0.16 0.00 0.14 0.20 0.11 0.28 0.18
cycles stalled
Fraction 0.28 0.13 0.04 0.74 0.66 0.00 0.25 0.53 0.27 0.32 0.22
threads stall the program

Table 6.17: Fraction of cycles a requestor stalls for a speculative thread to complete, and the fraction of
threads that stall the requestor

must not be speculated. I performed this step by hand, observing results from simulations, and refining the

set of methods that can be used for PD.

Table 6.17 presents fraction of execution cycles that a PD based program stalls waiting for the speculative

thread to complete. It ranges for 0% formcf to 28% forvortex, with an average of 10% of cycles stalled

in all the benchmarks. During this time, the requestor stalls (other speculative executions may be ongoing).

The fraction is dependent on two aspects: (i) the size of the speculative threads, which depends on the

methods chosen for PD and the program’s characteristics, and (ii) the separation between the trigger site and

call site for a speculative thread achieved by the corresponding trigger and handler. The numbers presented

in the table may be taken into account to determine the appropriate trigger site for a speculative thread.

The second row in the table lists the fraction of used speculative threads whose corresponding call

sites are reached by the requestor before their completion.A large fraction indicates that majority of the

speculative threads are stalling the requestor, often the case if speculating on large methods. Benchmarks

gcc and perl are dominated by large methods, and 74% and 53% of the threadsstall the requestor.

Performance improvements with PD are likely to be insignificant for these benchmarks. A program that has

small methods for speculative execution, but significant fraction of threads stalling the requestor, implies

high overheads of speculative execution and/or speculative threads forked not well before their respective

call sites. Benchmarkgzip, with 66% of the threads stalling the requestor, is an example of such a case.

Finally, among the threads that stall the requestor, Figure6.18 presents the fraction of the thread’s

execution time that the requestor waits. Minimizing these numbers may be beneficial to the requestor, as

it represents the portion of a speculative thread in its critical path. These numbers, along with the fraction

of threads that stall the program presented in Table 6.17, determine the performance benefits of speculative

threads. For benchmarksgcc andperl, 74% and 53% of speculative threads stall the requestor for roughly

65% of their execution time.
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bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Fraction cycles 0.09 0.22 0.10 0.06 0.22 0.05 0.38 0.07 0.17 0.22 0.13
Fraction threads
utilized 0.09 0.20 0.29 0.50 0.15 0.10 0.19 0.30 0.70 0.90 0.33

Table 6.18: Fraction of cycles wasted by speculative threads that are squashed, or aborted by the handler

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
0 0 0.06 0 0 0 0 0 0.14 0 0

Table 6.19: Fraction of speculative threads aborted because of eviction of a speculative cache line

6.5.14 Wasted execution cycles

This subsection discusses the number of wasted cycles performing speculative execution, which is either due

to handler aborting without calling the speculative execution of a method or, a speculative execution that is

discarded due to a dependence violation. The cycles spent executing the handler in a speculative thread that

is later committed or used is not considered as wasted execution cycles.

The first row in Table 6.18 presents the ratio of the executioncycles on the speculative processing cores

that is discarded, over the cycles for PD based execution. Onaverage, 15% of execution cycles are wasted,

with benchmarks that achieve higher performance benefits (discussed later in Section 6.5.13) having higher

fraction of wasted cycles. These arecrafty with 22% of cycles,parser with 38%, andvortex with
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Figure 6.18: Fraction of speculative thread’s execution that the requestor stalls (only among threads that
stall the requestor)
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22%. Benchmarks with low utilization of processing cores for speculative execution (refer Section 6.5.12)

such asbzip2, mcf, andgcc have only 9%, 5%, and 6% of cycles wasted, respectively.

Of the cycles wasted, several speculative threads may be forked, but aborted by the handler. The fraction

of speculative threads that actually begin speculative execution of a method is presented in the second row

of the table. There is a large variance across the benchmarks, ranging from 9% to 90%, with an average of

34%. The fraction of threads aborted strictly depends on thebranches included for evaluation in the handler.

If the call site is control dependent on one or more branches which when executed rarely takes the path to

the call site, including these branches in the handler will therefore result in more frequent aborts. However,

the cycles to speculatively execute an handler that aborts is lower than speculatively executing a method that

will be squashed.

The fraction of speculative threads that are aborted when a speculative cache line is evicted (refer Section

5.2 for more details) is presented in Table 6.19. 6% and 14% ofthe threads ingap andtwolf are aborted.

The rest of the benchmark programs does not have any speculative cache line evictions.

6.5.15 Performance

This section has so far covered several results that can be broadly divided into three categories: (i) methods

chosen for PD and their characteristics, such as size, number of call sites, and execution time, (ii) potential

for performance improvements with the chosen call sites, (iii) results on software components of PD namely,

handlers and triggers and, (iv) hardware implementation results which consisted of overheads of speculative

threads, cache miss rates, mis-speculations, invalidation cache overflows, stall cycles, and processing core

utilization.

This subsection discusses the performance benefits of the implementation. I use the hardware imple-

mentation listed in Table 6.1 and the “Base” group of parameters in Table 6.20. Speculative threads are

scheduled every 50 cycles. Trigger evaluation code is not generated by the software infrastructure, but a

10 cycle execution latency is modeled for evaluating a trigger and determining if it has fired. 5 cycles are

used to communicate the handler program counter and stack pointers to the speculative processing core.

The system is assumed to have no bandwidth limitations with no overheads for transferring write and read

sets to and from the processing cores. The invalidation cache and trigger evaluation unit sizes are listed in
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Figure 6.19: Performance benefits from PD with two, four, six, and eight processing cores

the table. The methods table and read/write set tables are assumed to be large enough to accommodate all

speculative threads and their respective read and write sets.

Figure 6.19 presents the performance benefits, with respectto sequential execution, from PD on the

evaluated benchmarks for two, four, six, and eight processing cores.8 Speedups range from 1.1.x to 2x,

with a harmonic mean of 1.47x. The results follow the trend that has been set up by other results studied

so far. Compression programsgzip andbzip2 were expected to have minimal benefits because of very

few opportunities and their tightly coupled algorithms; they achieve 1.2x performance improvement in this

evaluation. Benchmarktwolf achieves 1.4x speedup, whilegap, crafty, vpr, parser, andvortex

are the best performing benchmarks, averaging 1.8x with eight processors.crafty has several speculative

threads because of the nature of the program, while withgap andvpr, the initialization, setup, and lookup

of structures used by the programs result in the performancebenefits. Benchmarkgcc andperl show lot

of potential opportunities, but do not result in any improvements, averaging 1.1x. Many methods in the two

programs are speculatively executed with very little overlap with other threads or the program. Benchmark

mcf is crippled by few opportunities and high speculative execution overheads. In all the benchmarks, eight

processing cores are rarely used by speculative threads, aswas evident in the utilization study presented in

Figure 6.17. Maximum benefits are achieved with four to six processing cores.

8The sequential program is compiled with the flags specified inSection 6.3. Unlike PD based execution, the sequential program
does not use any profile information. Profile guided optimization was been found to improve performance of the sequential
execution of SPEC CPU2000 integer benchmarks compiled withthe Intel C compiler, a state-of-the-art optimization compiler,
by 7% on an Intel Pentium 4 system. Profile guided optimizations may also be performed on a PD based application.
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Base
Scheduling First-come first-serve policy of scheduling speculative threads.

Threads are scheduled every 50-cycles.
Trigger evaluate 10 cycles fixed for all triggers
Forking 5 cycles to communicate call site and handler program counter, stack

and base pointers
Invalidation cache 1024 sets, 8-way
Trigger eval. unit 16Kbits Bloom filter. Upto 150 trigger condition code registers.

Execution buffer pool latency and bandwidth
Bandwidth & 10 bytes per cycle; two cache lines per 12 cycles to/from read and
Latency write set tables; 3 tags per cycle when using a speculative thread.

PD hardware structures
Methods table 20 entries
Spec. tag unit 50 entries
Read set table 20 entries per thread
Write set table 30 entries per thread

Table 6.20: Details of the simulated machine: Program Demultiplexing implementation parameters

6.5.16 Inorder forking

A novel aspect of PD that distinguishes it from prior proposals is the unordered forking of speculative

threads. This subsection compares this over the program ordered or “inorder” forking models of previous

speculative parallelization models. The inorder model of PD, referred to as Inorder PD, uses the PD

implementation discussed in this dissertation so far, except for one critical restriction. Speculative threads

are allowed to begin execution only after threads that will be committed earlier in the program have begun

execution. This restriction ensures that the threads beginspeculative execution in program order and,

therefore, will be committed in that same order. The InorderPD implementation however, has two notable

aspects that differ from prior speculative parallelization proposals: (i) Mis-speculations in Inorder PD do not

propagate to other speculative threads and, therefore, only the thread that violated dependencies is squashed,

and (ii) Inorder PD does not allow communication between speculative threads, because the implementation

of PD does not support it. To deal with nested method calls which results in nested speculative threads,

Inorder PD implements hierarchical tree ordered forking assuggested by Renau et al. [161]: the inner most

method begins speculative execution before the outer methods.

Useful utilization of processing cores with Inorder PD is presented in Figure 6.20. The Y axis represents

the ratio of the cycles spent on speculative executions by the seven processing cores that are eventually used
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bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Number 0.40 14.37 2.03 0.53 0.17 3.73 2.17 0.52 1.16 1.73 2.54
of threads
Cycles 98 1374 520 885 78 626 442 217 458 227 408
Held

Table 6.21: Number of speculative threads outstanding in Inorder PD and the number of cycles they are held
before being committed

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 2 3 4 5 6 7

U
til

iz
at

io
n 

F
ra

ct
io

n

bzip2 crafty gap gcc

gzip mcf parser perl

twolf vortex vpr

Figure 6.20: Ratio of the cycles utilized for useful speculative executions over the cycles for Inorder PD
based execution for the seven processing cores

by the program, over the cycles for Inorder PD based execution. The lack of utilization of processing cores

three to seven implies that the forking model is severely restrictive, and is unable to find speculative threads.

Compare this with the useful utilization with PD in Figure 6.17. Benchmarkcrafty has the highest

cumulative utilization (defined as the sum of utilization fraction for the seven processing cores, multiplied

by 100) at 101%, followed by benchmarksvpr andvortex at 83%. The rest of the benchmarks cover 7%

to 45% of execution cycles. Notably, benchmarkgap andparser, which utilizes up to 185% and 176%

of execution cycles (the top two among all evaluated benchmarks) in PD, with Inorder PD uses only 34%

and 45% respectively (5th and 7th when sorted in increasing order of utilization among benchmarks with

Inorder PD). The program ordered forking severely restricts the speculative threads that can be forked.

Performance is presented in Figure 6.21. The implementation parameters are the same as discussed in

Section 6.5.13. As expected the lower utilization of the processing cores results in performance that does

not match PD. Inorder PD performs well onvortex andvpr achieving 1.3x and 1.5x speedup.crafty’s
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Figure 6.21: Performance benefits with Inorder PD

bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
Fraction
Cycles 0.08 0.20 0.11 0.01 0.18 0.05 0.20 0.06 0.16 0.27 0.13

Table 6.22: Fraction of cycles wasted by speculative threads that are squashed or aborted in Inorder PD

high utilization results only in 1.3x speedup. The remaining benchmarks average 8% improvements, with

an overall average of 1.15x.

The average number of speculative threads outstanding in the Inorder PD system, and the number of

cycles they are held is presented in Table 6.21. The number ofoutstanding speculative threads is two times

lower compared to PD. They are held on average for 56% more cycles than PD (refer Section 6.5.5). This is

because of the program performing most of the execution in Inorder PD, which results in a thread being held

for more cycles before the program can reach the corresponding call site. Table 6.22 presents the fraction

of cycles spent in speculative executions that are discarded. For almost all benchmarks, the mis-speculation

fraction is nearly equal or less than that of PD. On average, the Inorder PD implementation has 15% lower

mis-speculations as compare to PD.

In summary, the two implementations, PD and Inorder PD, differ only in the ordering in which the

speculative threads are forked. Inorder PD forks speculative threads in program order, whereas PD does

not. The impact, in terms of utilization of processing cores, and the performance improvements are,

however, vastly different. On average, Inorder PD improvesperformance by 20%, whereas PD achieves

60% improvements. The forking model of Inorder PD affects the ability to fork speculative threads to create
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concurrency. Supporting communication of speculative data values between thread would allow a thread to

be forked before its data dependencies are satisfied, unlikePD, and obtain them speculatively from other

older (i.e., earlier in program order) speculative threads. This in turn, might improve the effectiveness of the

forking model.

6.5.17 Performance with latency between execution buffer pool and processing cores

The performance benefits presented in Section 6.5.13 assumed unlimited bandwidth and no overheads to

communicate between the execution buffer pool and the processing cores. This subsection presents a

realistic implementation of PD. The hardware used for this evaluation additionally models the parameters

listed in the latency and bandwidth group of Table 6.20.

In general, increasing the latency of communication to and from the execution buffer pool has the

following effects: (i) Increase in the number of cycles a speculative processing core is held after the thread

has finished execution. It is assumed that the processing core can be released only after all the data of a

speculative thread has been transferred to the execution buffer pool. (ii) Increase in the number of cycles

the program or a requesting speculative thread has to wait toobtain the write (and read set if the requestor

is a speculative thread) set(s). It is assumed that the requestor stalls until all the tags of the write set (and

read set, if the requestor is a speculative thread) are transferred. The write set data is transferred without the

requestor stalling (more details in Section 5.5).

Figure 6.22 presents the performance benefits for this implementation. On average, performance im-

provement drops by 11% from the implementation in Section 6.5.13, with benchmarksparser, vortex,

andvpr facing over 25% loss in improvements. On average, the benchmarks see improvements of 40%

over the sequential execution.

6.5.18 Performance with limited hardware resources

This subsection evaluates performance with further restrictions to the implementation. The additional

parameters used are listed in the PD hardware structures group in the table. For this implementation, the

methods table can hold 20 speculative threads, the speculative tag unit has 50 entries, the read set table is

fixed with 20 entries per speculative thread, and the write set table is fixed with 30 entries per speculative
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thread. These numbers were determined based on the results discussed in previous subsections (Section

6.5.9 and 6.5.10), and chosen to cover the average of the 90-th percentiles presented.

Overflows in the methods table, speculative tag unit, read set table, or write set table, aborts the specu-

lative thread. The fraction of threads that are aborted due to this restriction over the base case is presented

in Table 6.23. This has no effect on benchmarksbzip2, gzip andmcf as expected (see results on read

and write set sizes in Section 6.5.10). However, other benchmarks, in particular,perl, vortex, vpr,

andtwolf see 20% to 72% of the speculative threads aborted due to the hardware restrictions. Figure 6.23

presents how these restrictions affect performance improvements over the sequential execution. Performance

improvements drop by an average of 15% from the previous case. Benchmarktwolf has the worst effect

with 38% drop in performance over PD with limited bandwidth.Performance forcrafty andgap lowers

by average of 24%,vortex andvpr by 10%. Benchmarksgzip andmcf do not have any impact

as expected. Performance improvement formcf lowers by 14% because 20 entries in the methods table is

insufficient; upto 29 speculative threads can be outstanding during execution. (Refer Figure 6.14 for number

of outstanding speculative threads.) The results clearly indicate that the performance improvements from

PD is not only because of the small methods that fit in the execution buffer pool structures used in this

implementation but also because of speculatively executing larger methods, even if they are not completely

overlapped.

In summary, the choice and the sizes of hardware structures must be carefully deliberated to maxi-

mize benefits. However, a real implementation may have to deal with programs that cannot always be
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Figure 6.22: Performance benefits from PD with latencies modeled between execution buffer pool and
processing cores
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bzip2 crafty gap gcc gzip mcf parser perl twolf vortex vpr
0.00 0.07 0.08 0.10 0.00 0.00 0.02 0.72 0.20 0.44 0.35

Table 6.23: Fraction of threads aborted because of limited hardware resources

benchmarked and profiled to optimally size the structures. It is also unrealistic to build a hardware with

unlimited resources. Further research is needed to deal with cases that the hardware may not be able to

speculatively execute successfully. The simplest option is to revert to sequential execution, a benefit of

speculative parallelization. Another alternative is to let software perform the speculative execution at a

higher cost.

6.6 Chapter summary

This chapter evaluated an implementation of PD. The experimental infrastructure consisted of a hardware

simulator and software toolset based on the Intel x86 instruction set architecture. The evaluation was

conducted on integer programs from the SPECCPU2000 suite. Several results were presented. First,

opportunities, i.e., methods that form significant fraction of program’s execution time were presented.

Candidates for PD were chosen from these methods. The potential for PD based execution was presented

by introducing the ratio of the number of cycles between the trigger site and the corresponding call site

in the sequential program over the number of cycles to execute the method. Several different variants of

handlers were generated, their length (number of instructions), impact on the potential, and the fraction of

cycles that they contribute to the speculative thread were studied. Results on triggers included a study of the

number of trigger points, their sensitivity to changing input sets, and sizing of the hardware structure, the
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Figure 6.23: Performance benefits from PD with latencies modeled between execution buffer pool and
processing cores, and with limited hardware resources
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trigger evaluation unit. Then, with a PD based execution system, I discussed the overheads of speculative

threads, read and write sets of speculative threads, utilization of processing cores for speculative execution,

the number of outstanding speculative threads and their cycles between completion and use, the fraction of

cycles the program is stalled for completion of speculativethreads, and overflows in the invalidation cache.

PD is a speculation based technique bound to increase activity in the system. This was quantified with

wasted speculative cycles and increase in cache accesses.

Several results related to performance improvements were presented. Performance benefits of PD with

increasing number of processing cores were studied. To compare the benefits of PD”s forking model over the

forking model of prior speculative parallelization systems, a new model called Inorder PD was implemented.

This implementation had a restrictive program ordered forking of speculative threads. The comparison

results indicated lower utilization of processing cores and lower performance improvements. Finally, per-

formance improvements of PD with limited bandwidth betweenexecution buffer pool and processing cores,

and hardware resource restrictions were presented.



144

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Industry designers have recently turned to multicore systems to uphold Moore’s law. The out-of-order

superscalar processors that have been so successful for thepast several years have problems with scalability,

complex design, significant power consumption, and diminishing returns. The multi-threaded programming

model that is commonly used to execute an application on several processing cores also has its shortcomings.

Programmers of multi-threaded programs must understand the problem, decompose it into several threads,

program in the desired language with the parallel programming support provided, debug any correctness

issues, and achieve scalable performance with an increasing number of processing cores. Clearly, this is a

demanding set of tasks seldom applicable to large number of programmers. Newer generation of multicore

systems that support novel software models seem to be a necessity in the near future. Solutions must be

able to use the multicore systems without burdening the programmer, like the multi-threaded programming

model now does.

Speculative parallelization has been studied for many years as one plausible solution for creating con-

currency from a sequential program. It preserves the sequential execution of a program, but attempts to

gain parallelism from the program by dividing it into threads, and executing them speculatively in parallel,

with hardware support to ensure that these threads did not violate the sequential program order. Several

proposals have studied different aspects of the execution model, in particular, focusing on the hardware

support needed, and the composition of speculative threads.

This dissertation introduced a speculative parallelization model called Program Demultiplexing or PD.

Speculative threads in PD are composed of methods in a program, which I believe is an apt choice for

speculative execution for the following reasons. The large-scale nature of applications has made program

code complex and has required adherence to software engineering principles in the development process

for achieving modularity of code, flexibility of reusing it by many programmers, and maintainability of

applications. Among many principles advocated to achieve these, dividing the program into many methods,
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each targeting a specific subtask of the application is one ofthe fundamental ones. In addition, languages

such as Java and C# are being widely adopted because of its object-oriented programming style and managed

execution environment. These languages make modular programming a fundamental aspect of the program

design, and provide a managed system to handle routinely performed tasks such as dynamic allocation

and freeing of memory, ensuring safety of data references, and managing addresses of objects used in the

program. Even though this dissertation does not evaluate a model for these languages, methods have always

been, and will remain, a natural choice for programmers to encapsulate dependent computation.

The second aspect of PD is the novel execution model. Methods, even though called in sequential order,

may be executed in parallel because of the parallelism that may exist between them. This implies that a call

site for a method in the program is specified for convenience in conveying the execution to the hardware

and may not represent its earliest possible execution. For achosen call site of a method, PD speculatively

executes the method at the trigger site, which often occurs earlier than the call site. At the call site, if

the speculative execution is still valid, the thread is usedor committed, and the program continues with its

execution. The trigger site, therefore, specifies the pointin the program when the speculative executions of

a method for a particular call site can begin, without usually violating any of the dependencies that they may

have with the program.

The trigger site is determined by observing several executions of a call site chosen for PD. A trigger

point represents the point in the program when the dependencies for a given method’s execution and its

corresponding handler are satisfied. Trigger points collected for several executions are analyzed, and the

suitable triggers are determined. Since the trigger site separates the method’s execution from the sequential

program, on firing of a trigger, the corresponding handler isspeculatively executed to launch the method.

The handler performs the tasks of providing parameters and predicting the reachability of the program

to the call site, when the program is at the trigger site. Thisis achieved by speculative precomputation,

i.e., speculatively executing a backward slice of instructions composed of instructions that compute the

parameters and branches that these instructions and the call site may be control dependent on. Wasted

execution in PD can, therefore, be due to evaluation of handler that aborts and does not invoke the method,

and speculative threads that are executed but are later, squashed.

The hardware support for PD in this implementation is heavily based on prior speculative parallelization
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proposals. Speculative execution of threads is performed on available processing cores in a multicore

system. Private caches are used to hold the changes and accesses made by a speculative thread, which

are tracked by a speculative tag unit. After the thread’s execution, one means suggested in the dissertation

for storing and validating the data of a speculative thread until its use, is the auxiliary set of storage structures

referred to as the execution buffer pool. They consist of: a methods table which holds the list of outstanding

speculative threads, a read set table that holds the read setconsisting of locations referenced, a write set table

that holds the write set consisting of locations modified andthe data, and an invalidation cache, to efficiently

determine if an address is the read or write sets of a speculative thread. The invalidation cache is accessed

on every store location committed by the program to determine if there is any outstanding speculative thread

that has referenced that location, and if so, indicates a dependence violation and the thread is squashed.

The implementation results were studied on a simulation based multicore system consisting of Intel x86

processors. The software support included generation of handlers and triggers from application binaries.

Several integer programs from the SPEC CPU2000 suite were used for evaluation. The evaluation focused

on frequently called methods in these benchmarks, since they usually represent a large fraction of program’s

execution time, and have read and write sets of size that can be held by hardware with modest storage

requirements. Several results of the implementation were studied, which concluded with the performance

improvements of PD and the benefits of PD’s unordered forkingmodel over a PD implementation with

a restrictive program ordered forking model used in prior speculative parallelization proposals. Applying

PD based execution model to larger scale applications is likely to create more opportunities for speculative

execution with higher scalability and greater performanceimprovements.

The PD model is a generic framework that can extended in many different directions. I discuss some

promising avenues for future work next.

Software implementation. The scope of handlers and triggers used in this implementation of PD can

be expanded by altering the heuristics. Handlers and triggers may be optimized to minimize overheads and

maximize potential for parallel execution. Alternate variants of handler and even alternate implementations

of the execution model may be studied.
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Hardware implementation. The implementation can be extended to support communication of data

values between speculative threads, and allowing speculative threads to be forked not only by the program,

but by other speculative threads. Similarly, tighter integration of processing cores, such as communication of

register values via a low-latency inter-operand network, would allow handlers to obtain values from registers

of other processing cores with low latency, instead of accessing the memory. Extensions to the hardware

proposed in this implementation are required to support many of these ideas.

Runtime system implementation. I also see an implementation of PD in a managed system environment

to be very promising due to a number of reasons. The software community, in large, has been migrating

to managed execution environments and object-oriented languages due to its benefits with better software

engineering, manageability of code, and productivity of programmers (for example, Microsoft Windows

Vista running on the .NET managed environment). For PD, I believe that this means higher chances of

identifying parallelism at the granularity of methods and,therefore, more opportunities. A managed envi-

ronment implies dynamic optimizations and online profiling. With online profiles, the PD based program can

be dynamically optimized with insertion and deletion of triggers depending on changing phases, application

behavior, performance benefits, and wastage of execution resources. Runtime system also provides the

appealing choice of performing software based speculativeexecution and evaluating triggers without any

hardware support.

PD must be extended to support this kind of an environment. First, the system must be implemented

on a different compilation model in which programs are compiled to an intermediate representation, and

converted to native machine instructions only at executiontime.

Second, handlers must be able to handle features of object oriented languages such as dynamic poly-

morphism, i.e., run time method binding or dynamic dispatch, a feature that is used when multiple classes

contain different implementations of the same method. The target of a call site is resolved during program’s

run time, for example, by looking up a virtual table or vtable. To support this feature, the task of the handler,

besides providing parameters, must also determine the target of the call site. The speculatively chosen target

is speculatively executed and forms part of the speculativethread’s data. Before a speculative thread can be

committed or used, the target of the call site must also be compared with the parameters, to determine if the

handler called the right target method and used the correct parameter values.



148

Finally, triggers that rely on a memory profile must be aware of garbage collectors, and could obtain

information on when heap locations are live and dead, and consider them to identify opportunities in an

application. In addition, garbage collectors can move a data value from one location to a different location

during program’s execution. Correctness is an issue if a speculative thread performs some computation on

a location (i.e, the location belongs to the read or write set), which is later (non-speculatively) moved by

the garbage collector to a different location. To deal with this problem, the garbage collector may perform

a fake write to the source location of a data value which it is going to move. This generates an invalidate

message to the execution buffer pool and squashes speculative threads that have accessed or modified the

source location.

PD on future applications. In the future, we are likely to see many programming languages that provide

easy means of expressing problems in a particular domain. These domain specific programming languages

may also have support to automatically obtain concurrency from an application. One interesting possibility

is unifying these parallelization models with PD to create higher level of concurrency. For example, a

speculative thread in PD can be further optimized by other (speculative or non-speculative) parallelization

models. Similarly, PD can be used to speculatively parallelize regions of code that have not already been

parallelized by other means. Unifying many parallel modelswill be the key in using hundreds of processing

cores that are likely to be available in the near future.
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