
Mana~ement of a Remote Backup Copy
for Disaster Recovery

RICHARD P. KING and NAGUI HALIM

IBM T. J, Watson Research Center

and

HECTOR GARCIA-MOLINA and CHRISTOS A. POLYZOIS

Princeton University

A remote backup database system tracks the state of a primary system, taking over transaction

processing when disaster hits the primary site. The primary and backup sites are physically

Isolated so that fadures at one site are unlikely to propagate to the other For correctness, the

execution schedule at the backup must be equivalent to that at the primary When the primary

and backup sites contain a single processor, it is easy to achieve this property However, this is

harder to do when each .wte contains multiple processors and sites are connected via multiple

communication lines We present an efficient transaction processing mechamsm for multiproces-

sor systems that guarantees this and other important properties. We also present a database

initialization algorithm that copies the database to a backup site whale transactions are being

processed.

Categories and Subject Descriptors: C 2,4 [Computer-Communication Networks]: Distributed

Systems–dzstrtbuted applications, distributed databases; D.4 5 [Operating Systems]: Reliabil-
ity—backup procedures, fault tolerance; H,2.2 [Database Management]: Physical Design—re-

cooer.v and restart; H.2,4 [Database Management]: Systems—concurrency, distributed systems,

transaction processing; H 2.7 [Database Management]: Database Admmlstration-loggmg and

reco L,ery

General Terms: Algorithms, Reliabihty

Addltlonal Key Words and Phrases: Database initlahzatlon, hot spare, hot standby, remote

backup

1. INTRODUCTION

In critical database applications, the halting of the computer system in case

of failure is considered unacceptable. Instead, it is desirable to keep an
up-to-date backup copy at a remote site, so that the backup site can take over

Authors’ addresses: R. P. King and N, Halim, IBM T. J. Watson Research Center, P.O. Box 704,

Yorktown Heights, NY 10598: H, Garcia-Molina and C A. Polyzois, Dept of Computer Science,

Princeton Univ , Princeton, NJ 08544,

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1991 ACM 0362-5915/91/0600-0338 $01.50

ACM Transactions on Database Systems, Vol 16, No 2, June 1991, Pages 338-368

Management of a Remote Backup Copy for Disaster Recovery . 339

transaction processi~g until the primary site recovers. Such a remote backup

database (or hot standby or hot spare), normally of the same capacity as the

primary database, should be able to take over processing immediately.

Furthermore, when the primary site recovers, the backup should provide it

with a valid version of the database that will reflect the changes made by

tram.sactions processed while the primary was not operational; this will

enable the primary site to resume normal processing. Finally, the overhead

at the primary site for the maintenance of the remote backup copy should be

kept low.

A remote backup copy has advantages over other forms of fault tolerance.

To illustrate, consider a common form of local replication: mirrored ciisks. It

can happen that a repairman trying to fix one of a pair of mirrorecl disks

accidentally damages the good disk, which is physically 1ocatecl next to its

faulty mirror image [81. Thus, because failures tend to propagate, local

replication may sometimes be inadequate. The remote backup-copy technique

decouples the systems physically, so that failures are isolated and the overall

system is more reliable. we have mentioned only hardware failures so far;

physical isolation may also contain some failures caused by operator errors

or software bugs. For example, an operator may mistakenly destroy the

database by reformatting the disks that hold it. This has actually been

reported [8]. However, it will be much harder for the operator to destroy the

database stored remotely and under the control of a separate operator.

Similarly, software bugs triggered by particular timing events at the primary

site will probably not occur at the backup. The backup will have bugs of its

own, but these are likely to occur at different times. Finally, environmental

disasters (e. g., earthquakes, fires, floods, power outages) are yet another

important category of disasters whose impact can be minimized through the

use of a remote backup. Thus, remote backup copies provide a relatively high

ciegree of failure isolation and data availability, and are actually used in

practice [7].

The backup may find other uses as well, e.g., database schema or software

updates can be performed without interrupting transaction processing, by

having the backup take over processing while the new schema/software is

being installed at the primary and then reversing the roles to update the

backup.

Backup systems can track the primary copy with varying degrees of

consistency. An order-preserving backup ensures that transactions are exe-

cuted in the same logical order they were run at the primary. This is the only

approach we consider here. Nonorder-preserving backups are sometimes used

in practice [51, but may lead to inconsistencies between the primary and the

backup.

Along another dimension, backup systems can run 1-safeor 2-safe transac-

tions [10, 131. 2-safe transactions are atomic: either their updates are re-

flected at both the primary and the backup, or they are not executed at all. A

conventional two-phase commit protocol can be used to provide 2-safety [9,

16]. One major drawback of 2-safe protocols is that they increase transaction

response time by at least one primary-backup round trip delay plus some

processing time at the backup. According to Lyon [131, this may exceed one

ACM Transactions on Database Systems, Vol 16, No 2, June 1991.

340 . R P. Kmg et al

second in practice. These delays force transactions to hold resources (e. g.,

locks, workspace, etc.) longer, thus increasing contention and decreasing

throughput.

To avoid these delays, many applications use l-safety only: transactions

first commit at the primary and then are propagated to the backup. A

disaster can cause some committed transactions to be lost. These losses only

occur when a disaster hits and are “economically acceptable” in applications

with “very high volumes of transactions with stringent response time re-

quirements. Typical applications include ATM networks and airline reserva-

tions systems [13]. ” The backup algorithm we present in this paper is

intended for very high performance applications and only provides l-safety.

Apart from reducing contention for resources, l-safe transactions have

some other advantages as well. Suppose we have a system with some

response-time requirement. Typically, this may be something like “9070 of

the transactions must have response time below t,.” Assume that given this

requirement and using 2-safety the system can achieve a maximum through-

put w. If we switch from 2-safety to l-safety, the response time will drop for

all transactions. Consequently, we can increase the load of the system beyond

w and still meet the response time requirement. Thus, we can trade the gain

in response time for an increase in throughput.

A third advantage of l-safety is the simplification of processing when the

backup becomes unreachable. With 2-safety, the primary site must change

the way it processes transactions to “skip” the agreement phase. When the

backup becomes reachable again, it must catch up with the primary (in a

special processing mode). Then the two sites must synchronize, revert to the

previous mode and resume normal processing. l-safety makes things much

easier: if the backup becomes unreachable, the messages are simply accumu-

lated at the primary and are later sent to the backup. No deviation from

normal processing occurs. This is especially convenient for short periods of

disrupted communication (longer failures of communication links may re-

quire reinitialization of the backup anyway, since the backlog of messages

may have grown too big).

Finally, with l-safety it is easier to support multiple backups of the same

database than it is with 2-safety. When 2-safety is used, the coordinator of a

transaction must wait for messages to be received from all (or at least the

majority) of the participants. Thus, the latest response “sets the pace. ” The

more sites there are, the more likely it becomes that one of them will

introduce some delay and cause the other sites to wait for it. Furthermore,

when the configuration changes (sites leave or join the set of active sites), all

sites have to be notified. The problems mentioned above do not appear under

l-safety: each site operates at its own pace and independently of any other

site.

We would like to emphasize that we are not excluding the possibility of

2-safe transactions. As a matter of fact, within the same application it is

possible and useful to run some transactions as l-safe and others as 2-safe.

For example, in a banking application, transactions involving large amounts

of money could be run as 2-safe, while the bulk of the transactions, involving

ACM TransactIons on Database Systems, Vol 16, No 2, June 1991.

Management of a Remote Backup Copy for Disaster Recovery . 341

relatively small amounts, can be run as l-safe. The l-safe backup algorithm

we present can be combined with a 2-safe one in this way, although we do not

show this here.

In this paper we make three main contributions:

(1) We precisely define the concept of l-safe transactions and its implica-

tions. Commercial systems claim they provide l-safe transactions, but

they never state precisely what it means to “lose some transactions. ” For

instance, it is important to specify that if a transaction is lost, any

transactions that depend on it cannot be processed at the backup.

(2) We present a fully decentralized and scalable backup management algo-

rithm that does not rely on a single control process. All commercial

products concentrate the logs of every transaction into a single control

process and master log. Such a process may become a bottleneck in larger

systems. Furthermore, their solutions are not amenable to paralleliza-

tion: if the control process is split into a set of processes, correctness can

no longer be guaranteed.

(3) We present an efficient database initialization algorithm. It does not rely

on first making a fuzzy dump and then bringing it up-to-date with the

log. Instead, the fuzzy dump and the log playback occur concurrently,

making the initialization simpler and faster.

The paper consists of two parts. In Sections 2-4 we give the necessary

background (previous work, architectural model, goals) and in Sections 5-10

we present our solution.

2. REVIEW OF EXISTING SYSTEMS

Systems for maintaining a backup copy are commercially available. For

example, Tandem provides a Remote Ihplicate Database Facility (RDF’) [1$1

and IBM markets an Extended Recovery Facility (XRF) [121. The latter is

primarily appropriate for local backups. There is also a research project at

IBM [31, which is intended to support remote backups. These packages

provide a set of utilities for dumping databases, monitoring them, and

propagating modifications to a backup database. It is not our intention here

to describe the full packages; we are only interested in the algorithms used

for maintaining and initializing the backup database.

We discuss RDF briefly, which is typical of commercial systems. At the

primary site, undo/redo log entries for every transaction are written on a

master log. (If several processes or processors are executing transactions,

they all communicate with a logging process that manages the master log.)

As this log is written, a copy is sent to a control process at the backup site.

When a transaction commits at the primary site, it is assigned a ticket (a

sequence number) that represents its commit order relative to other transac-

tions. This is the order in which transactions must install their updates at
the backup. Note that the notion of a ticket may not be explicitly imple-
mented; it may be implicit in the position of a commit message in the log.

The log entries are received and installed at the backup by the control

ACM TransactIons on Database Systems, Vol 16, No 2, June 1991

342 . R. P. King et al

process in the same order they were generated. When a commit record for a

transaction T. is encountered, all transactions with earlier tickets have

already been safely received at the backup, so it is safe to commit T..

The actual writes are performed by a collection of writing processes. Each

writing process is assigned a part of the database (e. g., a disk volume). The

control process distributes the writes to the appropriate writing processes,

which install the updates in the order they receive them.

To initialize the backup database, a fuzzy dump is made at the primary,

usually onto tape. While the dump is in progress, the master log is sent to the

backup, where it is accumulated on disk. The tape is carried over to the

backup (or transmitted if it is small) and loaded onto the database. Finally,

the saved log is played back against the database, bringing it up to date. The

log playback is done through the control process and ticketing described

above.

The ticket assignment process plays a critical role, since every transaction

has to go through it. Having this central bottleneck is undesirable in

multiprocessor systems. It would be much better to have multiple master logs

created and received by multiple control processes running on multiple

machines at each site. Unfortunately, it is now much harder to know when a

transaction can be committed at the backup and what its ticket is. But before

we can illustrate this difficulty and our solution, we must step back and

define more formally an architectural framework and correctness criteria.

3 ARCHITECTURE AND GOALS

To make our discussion concrete we define an architecture, shown in Figure

1. We try to place as few restrictions as possible on this model, in order to

make it widely applicable. 13y site we mean all of the computer equipment at

one of the locations where the database resides. Each site (primary and

backup) consists of a number of stores and a number of hosts. The data

actually resides in the stores, which are assumed to have reliable, nonvolatile

storage. The stores also have enough processing power to perform basic

database operations (such as accessing and modifying records), to keep logs,

etc. The hosts are responsible for processing the transactions; they communi-

cate with the users, the stores at the local site and the hosts at the remote

site. We assume a fail-stop model [17] for host and store processors.

The stores and hosts need not necessarily be disjoint processors. The same

processor could perform both tasks, by dividing its CPU cycles between them.

Stores and hosts might actually be implemented as two layers of software in
the same system. For example, Bernstein et al. [2] define a database system

architecture with a transaction manager (corresponding to our notion of host)

and a data manager (corresponding to our notion of store). Similarly, the

RSS store manager of system R could implement our stores and the RDS

system our hosts. The problems and algorithms presented in the following

sections generally apply to both cases, i.e., when stores and hosts are disjoint

processors and when a computer acts partly as a store and partly as a host.

However, when we consider single failures in Section 9, we have to distin-

guish between the two models.

ACM Transactions on Database Systems, Vol 16, No 2, June 1991

Management of a Remote Backup Copy for Disaster Recovery . 343

4Store

Primary :::
site ::: site:::

:::
:::
:::

..
....................................! :

...

Fig. 1. System architecture.

,411 of the stores and hosts at one site can communicate with each other

through shared memory or through a local network or bus. The method we

present applies to shared memory architectures (e.g., DEC Firefly, Encore

Multi-Max) as well as more loosely coupled systems (e. g., a VaxCluster, a

Tandem Dynabus or a set of Camelot workstations connected via an Ether-

net).

IRunning between the two sites are several communication lines, which let

the hosts at the primary site send copies of operations being performed to the

backup hosts. Control messages are also exchanged over these lines. The

connections between primary and backup hosts may be either of the data-

gram or of the virtual circuit type [19]. In the following sections the type of

the connections usually does not make a difference. When it does (e. g., when

preservation of the order of messages is significant), we mention so explicitly.

Tke existence of enough bandwidth to propagate the changes is assumed;

however, communication delay is not a critical issue here, since we are

assuming l-safe transactions.

‘The database model we use is a simple version of the relational model, but

it is realistic enough to allow us to study the major issues. The database

contains a set of tables, and each table contains a set of records. The tables

have unique names and the records have unique record ids. Requests can be

made to create or delete tables and to insert, select, update or delete records.

Each of these requests must provide the appropriate parameters. For exam-

ple, in order to update a record, one must provide the id of that record along

ACM Transactions on Database Systems, Vol 16, No 2, June 1991

344 . R. P. King et al

with the new version of it. The store will, upon request, create and maintain

indices on tables, with any subset of the fields forming the key of the index.

Basic transaction processing functions, such as locking, abort and com-

mit operations, are also supported by the store. Such requests are always

associated with a transaction identifier, which is established with a begin-

transaction request during the initialization phase of a transaction.

The tables are partitioned among the stores. This could be done by hashing

names, by table look-up or by some other method; the details are not

important, but as we show in Section 10, the partition must be logically

identical at the two sites. We also remind the reader that the capacity of the

stores at the remote site must be at least equal to that of the stores at the

primary site.

Let us take a brief look at how normal processing would proceed at the

primary site without the existence of the backup. A host gets a transaction

from a user and assigns it a transaction id (host id followed by sequence

number). Before a transaction issues the first request to a particular store, it

must send a begin-transaction request to this store. Then the transaction is

executed, by issuing the appropriate requests to the store(s) where the

corresponding data reside; the requests contain the transaction id and the

necessary parameters. When all of the requests have been executed, the host

initiates a two-phase commit protocol that ensures that the transaction is

either committed or aborted at all stores. The stores, on the other hand,

execute all of the database operations that are issued to them, produce the

necessary logs, set the appropriate locks, etc., [9]. We are assuming strict

two-phase locking is used for concurrency control. (This is not necessary. In

Section 10 we drop this assumption and show that our mechanism also

applies to systems that do not use two-phase locking.) Note also that no

global transaction sequence numbers indicating the commit order are gener-

ated. (Generating them would create a bottleneck.)

As failures occur at the primary, the system tries to recover and reconfig-

ure. (The details for this are given in Section 9.) However, multiple failures

may slow down the primary site or even stop it entirely. At this point, a

primary disaster is declared and the backup attempts to take over transac-

tion processing. The declaration of a disaster will in all likelihood be done by

a human administrator. This is mainly because it is very hard for the backup

site to distinguish between a catastrophic failure at the primary and a break

in the communication lines. User terminals are usually connected to both the

primary and the backup site. The backup connection is normally on standby

and is used in case of disaster to route input transactions to the backup. For

simplicity we assume that when a primary disaster occurs, the hardware at

the backup site is fully operational. (Certain failures at the backup could be

tolerated during a primary disaster, but this is not discussed here.) A backup

disaster is similarly declared when failures impair the backup site. We

assume that the primary site is operational during a backup disaster.

A site is always in one of three modes: primary, backup or recovering. At

most one of the sites can be in the primary mode at any time. Under normal

operation, processing of the transactions takes place at the site operating in

ACM Transactions on Database Systems, Vol. 16, No 2, June 1991

Management of a Remote Backup Copy for Disaster Recovery . 345

primary mode and sufficient information is sent to the site operating in

backup mode to allow it to install the changes made at the primary site.

When a primary disaster is declared, the site previously operating in backup

mcile starts operating in primary mode and all of the transactions are

directed to it. When the failed site comes up, it enters a special recovering

mclde, which will allow it to get a consistent, up-to-date copy of the database

and (perhaps later) resume normal processing. The recovering mode is also

used for creating the backup copy at system initialization. Note that the

prj mary and backup roles are interchangeable between the two sites.

our remote lxi&Up algorithm was designed with the following goals in

mind:

Database consistency. We require that the database at the backup be

up-to-date and consistent. Application programs are usually written under

the assumption that they will operate on correct data, and error handling in

these programs is rarely comprehensive. h case of disaster the backup takes

over transaction processing and, if the backup does not preserve consistency,

the application programs may have to run on an inconsistent copy. Such an

inconsistency could lead to delays in transaction processing or even to

crashes. Thus, compromising the consistency of the database may endanger

its continuou5 operation and should be avoided. ln section 4 we define the

consistency requirements in more detail.

Scalability. Most existing systems have a component which must “see”

(process in some way) all transactions. For example, the master log may be

such a component. As systems scale upwards and use multiple computers for

transaction processing, the performance of this component will eventually

form a bottleneck in the overall performance of the system, no matter how

small the amount of processing for each transaction is. To illustrate, consider

the master log and assume that all messages sent to the backup must go

through the same “concentrating” processor that is connected to the commu-

nication line. Suppose that this processor has a capacity of P instructionsisec

and that processing a message (e. g., a message containing log or control

information from a primary to a backup computer) requires x instructions. If

a transaction generates m messages on the average and there are N proces-

sors processing transactions, the logging process limits the throughput of

each processor to P/(x x m x N) transactions per second, no matter what

the bandwidth of the communication link is.

Parallelism at the backup. Although it is rather difficult to give a mea-

sure for parallelism, one can see that an acceptable solution to the problem

should exploit the potential for parallelism at the backup. For example,

suppose that transactions at the backup site are processed sequentially. If the

primary site employs multiprogramming andlor multiprocessing to allow

parallel execution of transactions, it will have a higher throughput than the

backup. The backup will inevitably be unable to keep pace with the primary,

and the backup copy will become out of date.

ACM Transactions on Database Systems, Vol. 16, No, 2, June 1991

346 . R P. King et al

Primary overhead minimization. We try to rninii-nize the ove~head in-

duced by the backup algorithm at the primary site. During normal process-

ing, the backup is simply installing updates, as opposed to the primary,

which is actually running the transactions. Yet, the backup should be

capable of processing transactions after a disaster, so we expect it to have

some spare capacity during normal processing. Thus, if we have an option of

doing some backup function either at the primary or at the backup, we opt for

doing it at the backup. This lets the primary dedicate its resources to

transaction processing.

We note that our goals do not necessarily hold in every case. For example,

the backup may not have spare capacity during normal processing (e.g., if it

is being used for some other, noncritical processing), or database consistency

may not be significant. however, we do believe that the stated goals are

desirable in an important subset of applications, so that it is worth investi-

gating a solution for this scenario.

4. CORRECTNESS CRITERIA

In this section we describe the database consistency requirements for l-safe

transactions more precisely. The transaction processing mechanism at the

primary site ensures that the execution schedule PS of a set of transactions

T is equivalent to some serial schedule. Schedule PS induces a set of

dependencies on the transactions in T. Let TX and TY be two transactions

such that TX commits before T>. We say TX ~ T? (in PS) if both transactions

access a common data item and at least one of them writes it [11]. Dependen-

cies can be classified into write-write (W-W), write-read (W-R) and read-write

(R-W) depending on the actions that generate them.

The backup site will execute a subset of the actions in PS. Let this

schedule be BS. Read actions are not performed at the backup since they do

not alter the database. The write actions that are executeci simply install in

the database the value that their counterpart installed at the primary.

Because of failures, not all write actions of PS may appear in BS.

Requirement 1: Atomicity. If one action of a transaction T. appears in

13SJ then all write actions of TX appearing in PS must appear in BS. This

disallows partial propagation of a transaction. Let R be the set of transac-

tions whose writes are in BS, R G T.

Requirement 2: Mutual consistency, Assume TX and T, are in R. Then, if
TV + TY in BS, it must be the case that TX + T, in PS. This guarantees that

the backup schedule is “equivalent” to the primary, at least as far as the

propagated write actions are involved. (Since no read actions take place at

the backup, this requirement does not apply to R-W or W-R dependencies.)

Let M be the set of transactions that were not fully propagated to the

backup before a failure and hence were not installed. In addition to these

transactions, there may be other transactions that we do not want to install

at the backup. For example, suppose that when TX and TJ execute at the

primary, TX writes a value read by T,. If TX is not received at the backup

ACM ‘Ikansactlons on Database Systems, Vol 16, No 2, June 1991

Management of a Remote Backup Copy for Disaster Recovery . 347

(i.e., ‘TXe M), we do not want to install T, either, even if it is properly

reczived. If we did, the database would be inconsistent.

To illustrate this, say that TX is the transaction that sells a ticket to an

air line customer. It inserts a record giving the customer’s name, date, flight

involved, payment information, and so on. Transaction TY checks-in the

-passenger at the airport, issuing a seat assignment. The updates produced by

TY cannot be installed at the backup without those of TX: there would be no

passenger record to update. Thus, we have the following requirement:

Requirement 3: Local consistency. No transaction in R should depend on

a t mnsaction in M. That is, suppose there is a transaction T. e M and there

is a sequence of W-W and W-R dependencies (not R-W) in PS:

Then none of T., T~, T. is allowed to be in R. If C is the set of

transactions that depend in this way on M transactions, then R (7 (MU C)

should be ernpt y.

At this point we would like to make two observations First, R-W depen-

dencies do not cause violations of the local consistency constraint. If T. ~ Tb
an,i the only dependencies between these two transactions are R-W, then the

values installed by T. cannot possibly affect the values installed by Tfi.

Thus, one can install at the backup the updates made by T~ and have a

consistent database, even if T. does not reach the backup. Our second

observation is that the notion of local consistency is similar to that of

recoverability as defined by Bernstein et al. [2]. Since we m-e also allowing

W-W dependencies (not just W-R) in the dependency path of the definition

abme, Bernstein et al. define local comistency comes closer to the concept of

strict executions. ‘I’he rnokivation, however, is different in the two cases.

Bernstein et al. [21 introduced strict executions to avoid problems associated

with uncommitted data being read or overwritten by another transaction and

are intended to achieve correctness of a schedule within a single site. In our

case, local consistency is required to ensure the equivalence of two schedules.

It only happens that both problems are dealt with in the same way: the

actions of some transactions are delayed until some other transactions have

committed. Since the two notions are quite different in context, we have

chosen a distinct name for our requirement.

Requirement 4: Minimum divergence. The backup copy should be as close

to the primary as possible, i.e., the backup site should commit as many as

possible of the transactions it is given, as long as none of the above correct-

ness constraints is violated. In other words, if a received (therefore not

belonging to M) transaction does not depend on any transaction in M (i.e.,

does not belong to C], then it has to belong to R, i.e., T = R U M U C.

In closing this section we make four observations. First, we have implicitly

assumed that the primary and backup schedules PS and BS run on the same

initial database state. In Section 8 we present a procedure for initializing the

backup database so that this property holds.

ACM TransactIons on Database Systems, Vol 16, No 2, June 1991

348 . R. P King et al

Our second observation is that read-only transactions do not modify the

state of the database and therefore need not be propagated to the backup site.

The third observation is that most replicated data mechanisms described in

the literature (e.g., Bernstein et al. [21, Garcia-Molina and Abbott [61) would

not allow what we call missing transactions. That is, they would have the

property M = 0 (2-safe transactions). As discussed in the introduction, they

would use a two-phase commit protocol to achieve this property. With the

weaker constraints we have defined in this section, it is possible to have a

more efficient algorithm. In essence, transactions commit at the primary

(using a local two-phase commit that involves primary hosts and stores),

release their locks, and only then are propagated to the remote backup. At

the backup there will be a second local commit protocol to ensure that actions

are properly installed there. The details are given in the rest of the paper.

Our last observation deals with the semantics of missing transactions. In

particular, is it “valid” to lose transactions that already committed at the

primary? Is it “reasonable” to throw away transactions that were propagated

but violate the local consistency requirement? As discussed in the introduc-

tion, real applications do allow missing transactions and can cope with the

consequences. A simple example may illustrate what these consequences are.

Consider a banking application where a transaction TX deposits 1,000

dollars into an account that initially has no funds, and a transaction T,

withdraws 400 dollars from the same account. Both of these transactions run

at the primary just before a disaster. Transaction TX is lost, but TY arrives at

the backup. (This can happen if the log records for TX are propagated via a

different communication line than that for TY.) To satisfy the local consis-

tency constraint, TY is not installed at the backup. The database will be

consistent at the backup but not consistent with the real world. The inconsis-

tencies with the real world can be detected and corrected manually. For

example, when the customer checks the balance of the account (at the

backup) and sees zero instead of 600, he will go to the bank with his deposit

receipt and ask for a correction. The bank, knowing that a disaster occurred,

will be willing to make amends for missing transactions. The bank might

lose some money (especially if withdrawal transactions are lost), but this cost

can be much smaller than the cost of providing 2-safe transactions. Further-

more, not all transactions have to be l-safe. As noted in the introduction,

transactions that involve large sums of money can be performed with 2-safe

protocols.

Finally, there is the issue of whether T, (the withdrawal transaction that
depends on the lost TX) should be discarded even if it arrived at the backup.

Installing T? makes the database inconsistent (e.g., there are not enough

funds in the account to cover this withdrawal). On the other hand, discarding

TV creates an inconsistency with the real world. We believe it is more

important to maintain database consistency. As discussed in Section 3,

without consistency it would be very hard to continue processing new trans-

actions. Furthermore, TY can be saved for special manual processing. A bank

employee can look at the TY record and decide on the best compensating

transaction to run. Since disasters occur rarely, the price to pay for this

ACM Transactions on Database Systems, Vol 16, No 2, June 1991

Management of a Remote Backup Copy for Disaster Recovery . 349

special processing of the relatively few transactions that are discarded is

probably acceptable.

5. CiENERATING THE LOGS

In tlhe remaining sections we present our solution. Our method is based on

logs, which are generated at the primary site and propagated to the backup

(thie is discussed in the rest of this section). At the backup, two-phase locking

is used to detect and reconstruct dependencies, in order to install the changes

in a way observing the consistency requirements of Section 4. The details for

this are given in Section 7. In Section 8 we present a method for initializing

the database and in Section 9 we discuss partial failures. Section 10 contains

some extensions to the basic algorithm and Section 11 concludes the paper.

The basic idea in our solution is to reproduce the actions of each primary

stor? at a corresponding backup store. For this, a log of the executed actions

must be forwarded to the backup store. The log could be at the action or the

transaction level. We have chosen the former. The log could have undo/redo

information, or just redo. Our method does not sent undo information; this

reduces communication traffic. We made this set of choices for concreteness

and for compatibility with our architecture; other alternatives may also be

possible.

Given these design choices, we now describe in more detail how the

primary site generates the logs. The stores at the primary site keep track in

a redo log of the actions they are performing on behalf of a transaction. (As is

explained later, read sets also have to be recorded.) Each redo log entry

should contain enough information to enable the corresponding stores at the

backup site to repeat the same operations on their copy. This information

should contain the following data:

s,: the store performing the operation

H]: the host controlling the transaction

TX: the transaction id

act: action descriptor (e.g., update)

tbl: the name of the table involved

key: the record id of the record being updated

val: the after image of the record being updated

Note that not all entries contain all of the above data. For example, the log

entry for a delete need not contain an after image, and for create-table no key

nor value is necessary.

W7hen a host receives a transaction, it issues a begin-transaction request to

the stores (at the primary site) that will participate in the processing of the

transaction. Processing proceeds as usual, with local locks being used for

concurrency control and with the stores constructing the redo log. Note that

ACM Transactions on Database Systems, Vol. 16, No 2, June 1991.

350 . R. P. King et al

in many cases stores keep a log anyway (for local crash recovery), so the log

for the remote backup represents no extra overhead. An alternative not

considered here is for hosts to directly construct the log as actions are

acknowledged from the stores.

When a transaction completes, the host initiates a (local) two-phase commit

protocol. upon receipt of a commit message, a store produces a local ticket

number by atomically incrementing a counter and getting its new value.

Intuitively, if a transaction gets a ticket t at store S,, the transaction “saw”

state t – 1 of the store. If the transaction has only read (not written) data at

that store, the ticket of the transaction becomes the value of the counter plus

one, but the counter is not incremented (since the state of the store did not

change). For example, if the counter has the value 25, the committing

transaction gets ticket 26. If the transaction wrote at this store, the counter

becomes 26; otherwise, it stays at 25.

The store creates a commit entry in its redo log, with the following data:

s,: identifies the store involved

H,: identifies the host controlling this transaction

7’,: transaction id

act: action descriptor, in this case “commit”

ticket: the local ticket number

Then the stores send an acknowledgement to the coordinating host and

release the locks they held on behalf of the transaction.

Now the logs must be propagated to the backup. Stores typically do not run

remote communication software, so the logs must be sent via the hosts. This

can be done in two ways.

Bundles. The first way to send logs, called the bundle model, is on a per

transaction basis. The coordinating host collects the log entries for the

transaction (including the commit entries and the tickets) from the partici-

pating stores, bundles them together and sends them across the network to a

remote host. The choice of the remote host may be static (i. e., host i at the

primary site always sends to host j at the backup site) or it may be

determined dynamically, perhaps on the basis of load information. The

remote host receives the transaction’s logs, unbundles them, partitions them

by store and sends them to the appropriate (local) stores for processing.

Log streams. The second way to propagate logs to the backup, called the

stream model, is on a per store basis. For each store, a local host is

designated as its supervising host. A store communicates with its remote

peer via the corresponding supervising hosts, i.e., the primary store sends a

message to its supervising host, the supervising host sends it across the

network to the supervising host of the backup store, which in turn delivers

the message to the backup store. Thus, a log stream is formed from every

primary store to its peer at the backup to propagate the log entries created by

ACM Transactions on Database Systems, Vol 16, No. 2, June 1991

Management of a Remote Backup Copy for Disaster Recovery . 351

the primary store. iWote that under this model, parts of a transaction that

executed at different stores may follow different paths to the backup site.

In our discussion we distinguish between the two models for log propagation

when necessary. For example, as we see in Section 7, the satisfaction of the

minimum divergence requirement depends on the model we adopt.

Each transaction id may be associated with several ticket numbers, one for

each store in which actions of this transaction were executed. As is explained

in the next section, these ticket numbers are used to ensure that the database

changes of different transactions are applied to the backup copy in the same

order as in the primary. After the processing of the transaction at the remote

site has finished, the host that controlled the transaction at the primary site

is informed, which in turn informs the stores that they may safely erase the

relevant portion of the redo log from their storage. Note that, from the

viewpoint of the primary site, transaction processing is similar to what it

WOUI.Mbe without a backup copy. The only difference is the local generation

of a ticket number and the forwarding of log records to a remote host. We

believe these activities do not impose a significant overhead on normal

transaction processing, which is consistent with our goals. The reader should

contrast our model with other models for parallel logs, e.g., Agrawal [11,

where multiple logs are allowed, but all transactions have to go through a

cenu-al processor referred to as the back-end controller.

There are two alternatives with respect to when the user submitting

a transaction gets a response. If’ the response is sent to the user after the

transaction has committed at the primary site, then, in case of disaster,

the transaction may be lost if it does not commit at the backup. If the user

gets a response after the transaction has committed at the backup, then it is

guaranteed that the effects of the transaction will not be lost in case of

disaster. Note that transactions are l-safe in both cases; only the user’s

infcu-mation about the fate of a transaction is different.

6. INSTALLING ACTIONS AT THE BACKUP–WHY THE SIMPLE APPROACH

DOES NOT WORK

The next problem we address is installing the actions at the backup site. At

this point, it is tempting to propose a very simple solution: as each backup

store receives the redo log entries, it simply installs them in ticket order,

wit bout regard to what other backup stores may be doing. This simple

solution could be viewed as the generalization of the approach used by

commercial systems for the case where there is no master log.

In this section we show that there are problems with this approach. But

before doing this, we point out that at least the simple approach does

gUZlrantee mutual consistency (Requirement 2). To see this, suppose we have

two transactions TX and TY, such that TX ~ !l’Y at the backup site. Let z be a

data item that caused this dependency. If actions are installed at the backup
in local ticket order, the ticket number of TX is smaller than that of Ty at the

particular store. This implies that at the primary TX got its ticket before T-v.

When TX got its ticket, it held a lock on z, which was not released until Tx

ACM Transactions on Database Systems, Vol. 16, No. 2, June 1991.

352 . R. P King et al

BS z BS 3

::-’”
4

Tc

3

f

7

‘b

Fig. 2 Cascading aborts (Bundle model).

committed. The lock was incompatible with the lock on z requested by TY.

Thus, T, + T, at the primary.

One problem with the simple approach is that it does not ensure that

transactions are installed atomically at the backup (Requirement 1). Thus, in

addition to executing writes in ticket order at each store, it is necessary to

execute a local two-phase commit protocol among the stores that participated

in a transaction.

Even with installation in ticket order and a two-phase commit protocol,

local consistency (Requirement 3) may be violated. To illustrate this, we need

an example with three transactions and three stores (Figure 2). We assume

the logs are propagated to the backup on a per transaction basis (as bundles).

At the primary site, the following events occur: T. writes data at store SI

getting ticket number 8 (Sl). (We follow the ticket number by the store id to

prevent confusion.) Transaction T~ then reads this data, getting ticket 9 (Sl)

and writes at store S~, receiving ticket 3 (S2). Later on, T. reads this data

and writes at both Sz (ticket 4) and S~ (ticket 7).

Assume that each transaction is coordinated by a different host, so that the

three transactions each follow a different path to the backup. A disaster hits

and T. does not reach the backup site. Transactions T6 and T, do make it to

the backup (Figure 2). At backup stores BS2 and BS~ all writes are received,

so there are no gaps in the sequence numbers. Thus, it would appear that a

transaction like TC could commit: all of the data it wrote is available at BSZ

and 13S3 (i. e., the two-phase commit could succeed). Furthermore, all data

written at those stores before TC is also available (i. e., installation in ticket

order is feasible). Unfortunately, since TG is lost, at BSI there is a gap:

sequence number 8 (Sl) is missing. Thus, T~ with sequence number 9 (Sl)

must be aborted at store BSI and consequently (by the atomicity require-

ment) at all backup stores. If this happens, then there will be a gap at BSZ:

sequence number 3 (for Tb) is not really available. Hence, writes with higher

sequence numbers cannot be installed, so TC must also be aborted.

ACM TransactIons on Database Systems, Vol 16, No 2, June 1991

Management of a Remote Backup Copy for Disaster Recovery . 353

BS , BS2 BS ~

/ ‘c

Fig. 3. Cascading aborts (Stream model),

The difficulty caused by this type of cascading aborts should be apparent by

now: before a transaction can be installed at the backup, we must make sure

that the transactions it depends on have committed at the backup. This

involves synchronization with other stores. Thus, updates cannot be installed

blindly by each backup store, even if they are in correct sequence.

An interesting point about cascading aborts is that they appear under both

mc}dels for log transmission mentioned in Section 5. To illustrate the problem

under the log stream model, consider the following example (Figure 3).

Transaction Ta executed at stores So and S1. The logs created at S’l reach

the backup store BSI, while the ones created at SO do not reach 23S0 (they

were among the last few messages transmitted on the log stream for SO

which were lost because of a disaster). The atomicity requirement prevents

transaction T. from committing. The rest of the example is the same as

above and the effect of cascading aborts equally annoying. The persistence of

this effect under two quite diverse models has led us to believe that this

problem is inherent in the presence of multiple independent logs, i.e., when

no total ordering of messages is present. We would like to stress the fact that

the scenarios mentioned above are still possible even if the order of messages

is preserved within each log stream (e. g., virtual circuit type connections).

As we have seen, installing actions in ticket order at each store guarantees

mutual consistency. Unfortunately, there is potentially a major drawback

in terms of efficiency. Let us illustrate with an example. Suppose that ‘Tl

and Tz access disjoint data sets at some primary store and ticket(Tl) =

ticket(Tz) – 1. At the backup, the writes for Tz cannot be installed until

those for TI are installed (this is what ticket order means). Thus, Tz must

Wait until TI commits (which, as we have seen, involves waiting for other

stores to tell us what they have done), and then wait further until the writes

of TI are actually executed. This is inefficient, especially if stores have a

capacity for executing writes in parallel, e.g., have multiple disks. Even with

one disk, efficient disk scheduling of T1’s and Tz’s writes is not possible.

ACM Transactions on Database Systems, Vol. 16, No. 2, June 1991.

354 . R. P King et al

Remember that TI and Tz do not depend on each other, so their commits are

independent and their writes could proceed in parallel.

To avoid these delays, it is necessary for each store to determine if

transactions depend on each other or not. If TI and Tz write a common item,

then they are certainly interdependent and Tz must wait for TI to commit

and write. However, even if TI and T2 write disjoint sets, there may still be

a dependency! These dependencies can only be detected if read sets of

transactions are also propagated to the backup. To illustrate, suppose that at

a primary store TI wrote item y and that Tz read y and wrote z. There is a

dependency TI + Tz, so Tz cannot commit at the backup unless TI does

(local consistency, Requirement 3). The corresponding backup store will not

be able to detect the dependency from the write sets ({y} and { z}). If the read

sets are sent, the dependency will be seen, and Tz can be delayed until TI

finishes.

In summary, we have seen that actions cannot simply be installed in ticket

order at the backup stores. The system must guarantee that a transaction

only commits when all of the transactions that it depends on have committed

at the backup. In addition, a transaction should not wait for transactions it

does not depend on, something that would happen if actions were done in

strict ticket order. The mechanism we describe in the following section

achieves these goals.

Finally, note that sending undo/redo logs (as opposed to simple redo logs as

we are assuming) does not really eliminate the problems we have sketched

here. If undo logs are included, it is possible for backup stores to install

updates in local ticket order disregarding the state of other stores. If later it

turns out that some transaction does not commit, its updates can be undone.

This may lead one to think that it is possible to avoid these problems

(especially cascading aborts) and the processing overhead to handle them by

deferring the commit decisions until disaster time and doing some extra

processing at that time to abort those transactions that cannot commit.

However, the commit decisions must still be made at some point, and still

involve making sure that all transactions that a transaction depends on have

committed. It is not a good idea to delay all commit decisions until a disaster

hits, mainly for two reasons:

(1) The undo logs for all transactions must be kept until the commit decision

is reached, since potentially any transaction can be affected by a cascad-

ing abort (determining that a transaction can no longer be affected by a

cascading abort is equivalent to making a commit decision). The logs

grow with time, and it will probably be impossible to keep them because

of space limitations.

(2) Processing of new transactions at the backup after a disaster would be
delayed until the commits complete. This may take a long time, since the

cascading aborts mentioned above may lead to extensive searches in the

logs.

Thus, even with undo logs, we would still need a commit protocol to run as

transactions are received, and it would be similar to the one we describe for

ACM Transactions on Database Systems, Vol 16, No. 2, June 1991

Management of a Remote Backup Copy for Disaster Recovery . 355

redo logging only. As we have stated, redo logging sends less data to the

backup, so in the rest of the paper we only deal with it.

7. INSTALLING ACTIONS AT THE BACKUP–OUR APPROACH

In this section we present our method for installing the redo logs at the

backup, prove its correctness and discuss its performance. In what follows,

the notations TX and T(SX) are equivalent and are both used to denote the

transaction with ticket number SX. The store is usually implied by the

context.

No real processing of transactions takes place at the backup site, in the

sense that no computation is performed for a transaction. The backup site is

given the actions that were performed on the primary copy (in the form of a

redo log) and has only to install the changes in a manner consistent with our

correctness criteria. A backup host does not have much work to do. In the

bundle mode], it gets a redo log from a primary host, partitions the log by

store and sends each part to the appropriate store. This can be viewed as the

first phase of a (local) two-phase commit protocol, for which the host acts as

the coordinator. In the stream model, a backup host simply has to forward

the log streams to the stores for which it has been designated supervising

host. In the stream model a coordinating host must be elected for a transac-

tion and agreed upon by all participating stores. In order to avoid expensive

election protocols, the coordinating host at the backup can be selected by the

coordinator at the primary when a transaction commits there and recorded in

the commit log entries of the participating stores. Alternatively, the coordi-

nator at the backup could be determined using a mapping mechanism from

transaction id’s to backup hosts.

The stores install the changes (in the proper order, see below), and when

they are finished, they send an acknowledgement to the coordinating host.

When that host receives acknowledgements from all of the stores, it executes

the second phase of the commit protocol and also sends an acknowledgement

to the primary host (as mentioned in Section 5). The two-phase commit

-prc}tocol is used to make sure that the changes of a transaction are installed

atomically, so that the backup copy is never left in an inconsistent state.

In Section 6 we saw that updates in strict sequence order reduce paral-

lelism. The intuition behind our solution is to detect exactly those cases

where waiting is necessary and to let all other cases take advantage of

parallelism, This is achieved through locks on the data items accessed by the

transactions, which are granted to the transactions in ticket number order.

Write (exclusive) locks are requested for items that are to be updated. For

other items in the read set, read (shared) locks are requested. Additionally, a

read lock on every table “name” accessed is requested, in order to ensure

that the table is not deleted while accessing one of its records; if the table was

created or destroyed, this lock must be exclusive.
For a concrete example, suppose that TX has a smaller ticket number than

TV at one of the stores. If they access a data item i~ conflicting modes, our

mechanism ensures that the lock is granted to TX, the transaction with the

ACM TransactIons on Database Systems, Vol. 16, No. 2, June 1991.

356 . R P. King et al

smaller ticket number. Transaction T-Y cannot get the lock until TX releases

it, i.e., until TX commits. If, on the other hand, there is no dependency

between the two transactions, then they will not ask for conflicting locks, so

they will be able to proceed in parallel.

We now describe the locking mechanism at the backup in detail. When a

redo log for transaction T. with ticket number sl arrives at backup store

BSl, it is placed in a queue of transactions ordered by ticket number. In this

queue, TX can be in a number of states:

LOCKING: the transaction arrives and requests locks for all of the

records and tables it accesses. Then it waits until all

transactions with smaller ticket numbers have entered

(or gone past) the SUBSCRIBED state (so that conflicts

can be detected). Only then does it enter the SUB-

SCRIBED state.

SUBSCRIBED: the transaction is waiting until it is granted the locks it

requested. The transaction may then proceed to the PRE -

PARED state.

PREPARED: an acknowledgement for the first phase of the two-phase

commit protocol has been sent to the backup coordinating

host

COMMITTED: the message for the second phase has been received for

this transaction. All updates have been made public and

all locks have been released.

When TX arrives, BS~ sets the state of TX to LOCKING and starts

requesting the locks required. Transaction Tz asks for a lock on data item z

by inserting itself in a list of transactions asking for a lock on z; the list is

sorted by ticket number. Each store has a counter that keeps track of the

local ticket sequence, showing the ticket of the last transaction that entered

the SUBSCRIBED state at this store.

The locking procedure is summarized in Figure 4. After all of the locks for

TX have been requested, TX waits for the counter to reach SZ – 1, if it has not

already done so. This recursively implies that TX will wait for all transac-

tions with smaller ticket numbers to enter the SUBSCRIBED state. (Note

that some or all of these transactions may be further ahead, in the PRE -

PARED or COMMITTED state. The important thing is that they must have

reached at least the SUBSCRIBED state before T.Y can do so.) When this

happens, Tz enters the SUBSCRIBED state itself. If Tt writes data at this

store, then it increments the counter by 1. The increment in the counter may

in turn trigger T(SX + 1) to enter the SUBSCRIBED state and so on. For

example, if the current value of the counter is 25, then if transaction TX with

ticket 26 is in the LOCKING state, it enters the SUBSCRIBED state and

increments the counter to 26, which may cause the transaction with ticket 27

to enter the SUBSCRIBED state and so on. If TX were read only for this

store, it would proceed to the subscribed state without incrementing the

counter to 26.

ACM Transactions on Database Systems, Vol, 16, No, 2, June 1991

Management of a Remote Backup Copy for Disaster Recovery . 357

state(Z’X) = locking;

t = ticket(TX) at this store;

FOR each object z accessed by T,

add lock request (includes 2’$’s ticket) to z list;

WAIT UNTIL (counter > = t – 1);

IF TX writes at this store THEN

counter = counter + 1;

state(T’X) = subscribed;

FOR each object z accessed by Tl

WAIT UNTIL TX’S request is at head of z hst;

state(TX) = prepared;

send acknowledgement to coordinating host;

WAIT UNTIL commit message for T. is received;

FOR each object z accessed by TX

BEGIN

IF TX wrote z THEN

install new z value;

remove T’i lock request from z list;

END;

Fig. 4, Store pseudo-code for backup transaction processing

We would like to note that a transaction only waits for (parts of) other

transactions that executed at the same store to enter the SUBSCRIBED

state. The parts of a transaction at different stores proceed independently

from each other (this also avoids deadlocks). The coordinating host ensures

transaction atomicity by waiting for all parts of the transaction to enter the

PREPARED state before issuing a commit message and allowing any part to

enter the COMMITTED state. If one part is delayed in entering the PRE-

PARED state, the other parts will have to wait. In case of disaster one or

more parts may never reach the PREPARED state. In this case the transac-

tion cannot commit, and the parts that did reach the PREPARED state will

have to be rolled back.

Waiting for transactions with smaller ticket numbers to enter the SUB-
SCRIBED state is necessary in the bundle model, because transactions that

executed at the same store may follow different paths to the backup and

therefore arrive out of order. In the stream model the transactions arrive in

ticket order at a backup store, but it may still be necessary for them to wait

for the counter to reach the appropriate value. For example, if multiprocess-

ing is used at the backup, the transactions may try to enter the SUB-

SCRIBED state out of ticket order because of delays introduced by scheduling

or because one of them had to ask for more locks than the other.

In the SUBSCRIBED state TX waits until all of its lock requests reach the

head of their corresponding lists. (A read request is also considered at the

head of a list if all requests with smaller ticket numbers are for read locks.)

When this condition is met, TX enters the PREPARED state and informs the

coordinating host. After commit, all of T*’s requests are removed from

the corresponding lists.

W-hen a failure occurs at the primary site, the backup is informed that

prim ary processing will be switched to it. The (former) backup tries to

ACM Transactions on Database Systems, Vol. 16, No. 2, June 1991.

358 . R. P King et al

commit all of the transactions that can commit and aborts the ones that

cannot. It then enters the primary mode and takes over processing.

Obsei-uation: The atomicity constraint (Requirement 1) holds.

Argument: Atomicity is enforced by the local two-phase commit protocol at

the backup.

Observation: The mutual consistency constraint (Requirement 2) holds.

Argument: Since locks are granted in ticket order at the stores, updates

inducing dependencies are installed in ticket order. As discussed at the

beginning of Section 6, mutual consistency is observed.

Observation: The local consistency constraint (Requirement 3) holds.

Argurnen t: Suppose T. + T~ ~ TC - . . . + T~ and T~ has not arrived yet

at the backup site (we remind the reader that the dependencies are non R-W).

Further, assume that T. ~ T~ occurs at store Sl, Tb - T, at S2, and so on

(note that these stores are not necessarily different). Since the dependency is

non R-W, the ticket number of T~ is higher than that of T~. According to our

processing rules, Tb cannot enter the SUBSCRIBED state at BSI and will be

unable to commit. At BS2, T~ will lock the objects that caused Tb + T, and

will not release them until it commits, thus preventing T, from entering the

PREPARED state. Transaction TC in turn prevents Td from committing and

so on. Thus, local consistency holds.

Observation: The minimum divergence constraint (Requirement 4) holds in

the stream model (with message order preservation).

Argument: Consider a transaction Tz whose parts have been properly

received at the backup stores and which does not depend on any transactions

that cannot commit at the backup. In the stream model (and assuming that

the order of messages is preserved, e.g., virtual circuit type connections), all

transactions with smaller ticket numbers at those stores have arrived, so

that the corresponding transactions can ask for the locks. Since there is no

gap in the ticket sequence, all of these transactions will enter the SUB-

SCRIBED state at these stores. Note that some of these transactions may (in

case of disaster) never enter the committed state or even go beyond the

SUBSCRIBED state (perhaps because of the cascading aborts effect or be-

cause they depend on transactions that cannot commit). The important point

is that these transactions can enter the SUBSCRIBED state, which will

allow TX to also do so. Since TX does not depend on any transaction that

cannot commit, the locks it requests will be available or they will be

eventually released (since the transactions that hold them will commit), so

that TX will be able to obtain its locks, install its changes and finally commit.

Unfortunately, under the bundle model, the mechanism does not always

satisfy the minimum divergence constraint. Since transactions that executed

at the same store may follow different paths to the backup, gaps may be

introduced in the ticket sequence of transactions that are received at the

backup stores. This means that (in case of disaster) a transaction that has

been properly received may not be able to enter the SUBSCRIBED state

because a transaction with a smaller ticket at one store is missing. This

implies that TX will not commit, even if it does not really depend on any

ACM Transactions on Database Systems, Vol 16, No 2, June 1991

Management of a Remote Backup Copy for Disaster Recovery . 359

transaction with a smaller ticket. However, one can argue that this disadvan-

tage will not be serious in practice, because the number of transactions

unnecessarily aborted will be rather small and limited to transactions that

executed just before the catastrophic failure. Given a maximum transmission

delay T~aX for the transactions to reach the backup site and a maximum

processing rate R~aX, we can bound the number of transactions missed by the

backup in case of failure by T~,X x R~~X.

As we saw, minimum divergence may not be satisfied in the bundle model.

The same can happen in the stream model, if the order of messages is not

preserved. It is possible to devise a mechanism that strictly enforces the

minimum divergence constraint even in these cases, but we believe that its

overlhead would be too high. To enforce the constraint, each transaction T,

would have to arrive at the backup site with a list of transactions it depends

on. Transaction T, would only be delayed at the backup if the transactions on

its list were missing. To construct these lists, the primary site would have to

keep track of the last transaction that accessed every lockable database

object. This storage and processing cost would be incurred during normal

operation. In contrast, our solution pays the price of a few aborted transac-

tions only when a disaster hits. (The minimum divergence constraint could

also be satisfied by a mechanism that uses two-phase commit between the

two sites.)

Let us now examine our mechanism with respect to the design goals we set

in Section 3. Database consistency is preserved as shown in the above

observations. The overhead at the primary is minimal: logs are usually

maintained for other purposes, so that the only extra processing is the

increment of the ticket counter. The mechanism can also scale upwards

without limiting performance: there is no component that must process all

transactions in some way.

There is not much we can formally prove regarding parallelism, but we can

convince ourselves that the proposed mechanism is not a processing bottle-

neck at the backup site. Transactions are received by the backup hosts in

parallel. At each store, locks are requested concurrently by multiple transac-

tions. If the transactions with consecutive ticket numbers at one store access
disjoint data sets, then they can acquire their locks at that store in parallel.

The only part that is executed serially is the increment of the counter, which

is relatively fast. Note that this increment is not a global bottleneck, since

the increment at one store is independent from the increment at another

store, even for the same transaction. On the other hand, if the transactions

access common data items at a store, a certain amount of parallelism is lost,

because they will acquire their locks sequentially. However, at the primary

site, these conflicting transactions also executed sequentially, so the backup

is nck introducing new delays.

8. IPJITIALIZATION OF THE BACKUP DATABASE

8.1 Basic Idea

After considering operation under normal conditions, with one site in pri -

mar,y and one site in backup mode, we must now consider the system with

ACM Transactions on Database Systems, Vol. 16, No 2, June 1991

360 . R P. King et al

one site in the primary mode and one in the recovering mode. This will be the

case at system initialization and when a previously failed site recovers. The

mechanism we use is similar to a fuzzy dump [15], which is employed in

many commercial systems for media recovery (e. g., Crus [4]). However, there

are some differences. In a conventional fuzzy dump one gets a dump of the

database and a log of the actions performed while the dump was in progress.

In order to restore the database, the dump is installed and the log is replayed

against it. No transaction processing takes place while the restoration is

performed. The correctness criterion for the restoration process is defined

clearly: the database must be brought to the consistent state existing at

the time the last transaction recorded on the log committed. Our applica-

tion is complicated because there are multiple logs and because transaction

processing cannot be suspended during recovery: dump generation, dump

installation and log playback all occur simultaneously. This makes both the

implementation and the correctness proof trickier.

The basic idea is for the primary site to scan the entire database and

transmit it to the recovering site, along with the changes that occur while

this scan is taking place and may therefore not be reflected in the scan.

These changes are essentially a redo log and are transmitted over the

communication lines used for normal operation. The scan data will probably

take too long to be transmitted over the communication lines, so that an

alternate path between the primary and the recovering site may be estab-

lished. This path is usually a tape that is written at the primary site and

carried to the backup. The order in which scan messages are received at the

recovering site is irrelevant for our method, so that some scan messages may

be sent over the communication lines while others are written on tape. Our

scheme allows the use of multiple tapes to expedite the process.

8.2 Scanning the Primary

For each primary store S,, a primary host H, and a backup host BH, are

selected to copy the S, database. Host H, will scan the database at S,,

passing it to BH,, which in turn installs that data at the corresponding

backup store BS,. First HZ informs S, that initialization is starting. Then S,

records the current ticket number SX and returns it to Hz, which in turn

sends it (through BHt) to BS,. Backup store BS, sets its ticket number to SZ,

creates a legal but empty database and starts accepting redo logs with ticket

numbers higher than SZ; redo logs with lower ticket numbers are simply

ignored because their effects will be reflected in the scan copy. store BS,

remains in the recovery mode until initialization completes. If the primary

fails while the backup is in recovery mode, nothing can be done: the backup

database is still useless.

Under the control of H,, store S, starts scanning the portion of the

database residing in it. At the same time, normal processing continues and

redo logs are sent to the recovering site. The scanning of the database is like

a long lived transaction which reads the entire database. For each object

scanned (table or record), a scan message is sent to the backup with enough

ACM TransactIons on Database Systems, Vol 16, No. 2, June 1991.

Management of a Remote Backup Copy for Disaster Recovery . 361

state(7’X) = committed

FOR each table DO

BEGIN

get a table read lock;

send a scan message for table creation;

FOR each record DO

BEGIN

get a read lock on the record;

send a scan message with the image of the record;

release the lock held on the record;

END

release the lock held on the table;

END

Fig. 5. The scan process.

information for it to create the object. The scan process is described in detail

in Figure 5.

Note that the locks are held only while an object is scanned. Records are

locked one at a time; groups of records do not have to be locked together.

(When the scan process tries to lock an object that is already exclusively

locked by a transaction, the scan process does not get blocked: it reads the

before image of the record.) Tables or records created by transactions with

ticket numbers greater than SX do not have to be scanned, since they will be

transmitted anyway in the redo log of the transaction that created them.

However, it will not be harmful if they are transmitted by the scan process,

too. The same holds for objects that have been updated after time SX; it does

not matter whether we send the object value that existed at time s, or at

some later time.

8.3 13ackup Processing

The backup store will receive data of two types: messages from the scan

process and normal redo logs from transactions. The backup store processes

both types of messages, using the simple rule of always trying to keep the

most recent copy for every object. In particular, when a redo log arrives (with

ticket number greater than SX), it is processed as usual, except for the

following:

(1) If a record update action is to be performed but the record does not exist

yet, the update is treated as an insert. (This assumes that the update log

entries contain the full after image of the modified record.)

(2) I~f a record (or table) insert arrives, but the record (or table) already

exists, the values in the insert replace the existing ones. That is, the end

result should be as if the record (or table) did not exist and the insert

were normally executed.

(3) Deletes do not actually delete the record (or table). They simply mark it
as deleted, but it is still reachable through the primary key index. If a

delete arrives, and the object does not exist, a dummy record is inserted

with the record key and a flag indicating it is deleted.

ACM Transactions on Database Systems, Vol. 16, No 2, June 1991.

362 . R, P. King et al

When scan messages arrive at BS,, they are treated as insertions of the

record or table. However, if the object already exists (even in deleted form),

the scan message is ignored. This is because the scan message may contain

obsolete data (i. e., data which have been superseded by a later version). Note

that even if the scan message contains a later version than the one already

existing, no problem arises, because the later version will be installed when

the redo log for the transaction that wrote this later version arrives.

The motivation for the above rules is as follows: during the initialization

phase, there will be two types of objects, those accessed by transactions and

those not accessed at all. If the object is not accessed, then we want the scan

to give us the image of this object as it exists in the primary store. However,

if the object is modified by a transaction, then we really do not need the scan

for the object since the normal processing will deliver the new image. Our

rules ensure that a useless scan does not get in our way. For example,

consider a record z that exists at “time” s, in S,. The scan starts and sends

the image of z. Some time later a transaction deletes z. If the delete arrives

at BS, before the scan, we could end up with a copy of z that should not

exist. But since the delete creates a dummy record, the scan message will

find it, and the scan copy will be discarded. After initialization, the deleted

objects can be removed, so they do not represent a serious storage problem.

8.4 Correctness Arguments

There is a subtle point regarding the time at which we may resume normal

processing at the backup site, i.e., exit from the recovery mode. It is not

sufficient to wait until the scan process finishes, say at “time” SY. Let us

illustrate this with an example. Suppose that T, writes data items a and b,

which satisfy some consistency constraint (e. g., a + b = const). First the scan

process holds a read lock on a and transmits its before image (with respect to

T,). Then T, gets write locks on both a and b, updates them, commits and

releases the locks. The scanner gets a read lock on b, transmits its after

image and then finishes (say b was the last unscanned object). Suppose that
the scan messages for a and b arrive at the backup ahead of the redo log

message for T,. Assume further that the T, message never makes it because

of a failure. If we let the backup site resume normal processing at this point,

we end up with an inconsistent copy (we are left with the before image for a

and the after image for b).

To avoid this type of problem, we use the following rule. Suppose that the

scan process finishes at the primary store S, when the ticket number is SY.

Then it is safe to resume normal processing at the corresponding backup

store BSl after

(a) all transactions through T(s,) have committed at the backup store, and

(b) all of the scan messages for this store have been received and processed.

The entire backup site can resume normal processing once all of its stores

are ready for normal processing.

Observation: The above two conditions are sufficient for correctness.

ACM TransactIons on Database Systems, Vol 16, No 2, June 1991

Management of a Remote Backup Copy for Disaster Recovery . 363

Argument: Suppose the scan starts at primary store S, at “time” s, (i.e.,

after transaction 2“(Sz) ran), and ends at time S-Y.Let 20 be the state of S, at

time SX and let TSC.. be the set of transactions that committed at the primary

during the scan.

At the backup store BS, we start with an empty database state and install

a set of transactions T~aCh that includes all transactions in T~C~~. The

resulting schedule is SCE?~GC~. Concurrently, we process all scan messages

and arrive at a database state Z.. Note that T~~C~ may contain more

transactions than those in T~C.m. This is because transactions that committed

after time SY at S, can arrive before T(SY).

We want to show that Z. is identical to 25., the state resulting from

running SCH6~Ch cm .ZO. This can be done by considering each object z in the

database.

Case 1. Object z was not modified by any transaction in T~.Ch. Since

T C Tb.Ck (property (a) above), z was not modified by any transaction atSCL7,)L—

the primary site during the scan. Hence, the scan message for z will contain

the value of z in ZO, i.e., ZO(z). This value will be installed, so Z.(z) = 2.(z).

This is exactly the value of ZP(z).

Case 11. Object z was modified by some transaction in T~~Ck. Let TJ be

the last transaction in SCHhaCk to have modified z, writing value ZJ. That is,

ZP(z) = ZJ. Next, let us look at the moment when z, is installed by ~ at BS,.

If the scan message for z arrives after this time, it is ignored. If it arrives

before this time, ~ overwrites z. In either case, .Za(z) = ZJ. Thus, 2.(z) =

26(2).

We have shown that after SCH~.Ck is run, the state of BS, is as if we had

started with the initial state ZO. Given the correctness of normal processing,

the subsequent states of BS, will also have this property. This means that

after conditions (a) and (b) hold, our implicit assumption about initial states

holds (see Section 4).

9. COPING WITH SINGLE HOST OR STORE FAILURES

We have only addressed disasters so far. However, partial failures are also

possible, and one would expect them to occur much more frequently than

disasters, so it would be desirable for the remote backup to help the primary

recover from such failures as well. In this section we consider some failure

scenarios for single components and discuss what can be done in each case.

Let us consider the failure of a primary host H,. As we mentioned in

Section 3, the architectural configuration plays an important role in the

failure scenario. We first examine the case where stores and hosts are

different processors and each host has independent access to each store.

Under this assumption, the failure of the host has no impact on the data; only

processing power is lost. The transactions that would be processed by HZ will

now be spread among the remaining hosts to achieve graceful performance

degradation. It is also necessary to take care of the transactions that were

being processed by H, and were still in progress when the failure occurred. A

ACM Transactions on Database Systems, Vol 16, No. 2, June 1991

364 0 R P Kmg et al

replacement host RH, is selected from the remaining hosts at the primary

site to perform this task. Host RHZ is in charge of committing or aborting

pending H, transactions. In addition, if the stream model is used for log

propagation, RHL will start acting as the supervising host for stores which

H, had supervised. Finally, RH, is responsible for sending to the backup any

redo logs that should have been sent by H, but did not arrive because of H,’s

failure. In order to find such logs, RH, contacts the stores and obtains the

logs for committed transactions that should have been propagated by H, but

have not been acknowledged by the backup (see Section 5). As in normal

processing, when an acknowledgement is received that a transaction has

successfully committed at the backup site, RH, informs the primary stores to

purge the corresponding log entries.

Similarly, if a backup host BHZ fails, a replacement host RBHl is selected.

Host RBH, contacts the backup stores and obtains the status of all transac-

tions in proqess that were being coordinated by BHl; RBHl becomes the

coordinator for these transactions and tries to commit them. Host RBH, is

also responsible for obtaining the logs that were sent to BH, while it was

down and before RBHl took over. This is done by contacting the appropriate

primary host(s) and obtaining the redo logs that have not been acknowledged

by the backup. Again, in the stream model, host RBHt must act as the

supervising host for the stores that BH, had supervised.
In the previous sections we assumed that the stores were fault tolerant. If

this is not true, a store failure at the primary may render part of the data

inaccessible. This is also the case if a failure occurs in the model where stores

and hosts are not disjoint processors, but a computer acts partly as a host and

partly as a store. It is desirable to handle such a failure without declaring a

disaster. One possibility would be for the backup store corresponding to the

failed primary store to be “promoted” to primary and join the rest of the

primary stores to form a new primary processing group. Our algorithm does

not handle promotions and substantial changes would have to be made. We

do not address those here; instead, we simply note that the following issues

must be considered by a promotion algorithm:

—First, special care must be taken to preserve the consistency of the database.

Some transactions that committed at the failed store may not have reached
the backup. When the new primary processing group is formed, the changes

made by some of these transactions will not be reflected in the promoted

store but will appear in the rest of the stores. Thus, transaction atomicity
may be violated.

–Second, processing at the backup must be modified. It is now necessary to

handle transactions that access data at the promoted store in a special way,

since that store is no longer available for backup processing.

10. EXTENSIONS

In the preceding sections we assumed that two-phase locking was used for

concurrency control. Two-phase locking is conceptually simple and has been

studied extensively, so that adopting it in our model made the presentation

ACM Transactions on Database Systems, Vol 16, No 2, June 1991

Management of a Remote Backup Copy for Disaster Recovery . 365

simpler and helped us concentrate on the novel issues. However, two-phase

locking may not be the method of choice for some real systems (e.g., O’Neil

[141). We now show that our algorithm can also be applied to systems using

other concurrency control mechanisms.

The only requirement that must actually be satisfied to make our backup

method work is that the concurrency control algorithm assign tickets to

transactions at each store such that they have the following property: if at

the primary two logical actions Al and Az, executed by transactions TX and

T, respectively, induce a dependency TX+ TY, then ticket(TX) < ticket.

As long as this condition holds, one can see that our proofs are valid, no

matter what the details of the particular concurrency control algorithm are.

Logical actions are record reads, writes, etc., as discussed in Section 3. We

would like to emphasize that we are concerned with logical actions only; we

do not care about actions at the physical level (e.g., compacting records

within a disk page).

The above requirement implies that the schedule of logical actions must be

serializable. For every concurrency control method that generates serializ-

able schedules there is a way to figure out a serial order (this follows from

the fact that serializable schedules can be topologically sorted [2]). In two-

phase locking this can be done easily by incrementing a counter before

starting to release locks at commit time. In time stamp ordering, the time-

stamps themselves can be used as tickets.

In other concurrency control methods it may be more difficult to determine

(on-line) an equivalent serial order for transactions and use that as ticket. In

such cases, one may use multiple tickets for a transaction (each for a set of

data accessed by a transaction). These tickets have a limited scope, i.e., they

are only used at the backup to determine the order of conflicting accesses to

the set of data items for which the ticket was issued at the primary. The

particular way to assign such tickets depends on the details of the concur-

rency control method and is not discussed here.

A different extension is to break up the data residing in a store into chunks

ancl apply our proposed solution, generating ticket numbers per chunk in-

stead of per store. For example, each relation could be a chunk. This has the

advantage of gaining parallelism, by reducing the critical sections: there is

less contention for getting the ticket numbers at the primary stores, less

contention for the state flipping (from LOCKING to SUBSCRIBED) at the

backup stores, etc. h addition to this, the impact of a missing transaction in

case of failure is reduced. Let us illustrate with an example. Suppose disaster

stril kes and transaction TX does not make it to the backup site. All transac-

tions accessing data items in the same chunks as TX that have been received

properly at the backup but have higher ticket numbers than T, have to be

abcu-ted. The less data that the chunks accessed by TX contain, the fewer

abcmted transactions. On the other hand, more ticket numbers have to be

processed both at the primary and the backup site, which will add some

overhead.

Another optimization can be made in the scanning process. As we saw in

Section 8, some of the messages sent by the scanning process are ignored at

ACM TransactIons on Database Systems, Vol. 16, No. 2, June 1991.

366 . R P. King et al

the backup site. we can decrease the number of such messages if we keep

track of what has been scanned at S,. For simplicity assume that each record

has a scan bit that indicates if it has been scanned. (This might actually be

implemented with a cursor showing how far the scan process has gone.) As

each record is scanned, the bit is set. If a transaction modifies a record that

has not been scanned, the after image for that record need not be sent, since

the scan process will send the after image of the record later. However, the

redo log entry containing the ticket must be sent, so that the ticket sequence

will not be broken.

Yet another interesting problem is the partition of the data among the

stores. In this paper we took the partition to be identical at both sites. This is

the most natural case (since the backup system will probably be a replica

of the primary). However, it turns out that arbitrary partitions are not pos-

sible, at least within our framework. Consider the following case: backup

store BS,~ contains data from primary stores S, and SJ. Suppose that

ticket(TX) < ticket(TY) at S, and ticket(Ty) > ticket(7’Y) at SJ (at one of

the primary stores there is no dependency between the two transactions).

It is possible that all of the data accessed by T, and TY resides on BS,~.

Which ticket number will be used to determine the order in which the trans-

actions will enter the SUBSCRIBED state at BS,~? This leaves only the possi-

bility of a finer partition at the backup site. But it turns out that even this

is not practical. Suppose the data on primary store S, is split into backup

stores BS,I and BSZZ at the backup. Transaction TX accesses data only on

BS,I and has ticket (TX) = k. Transaction TY accesses data only on BS,q and

has ticket(TY) = k + 1.Transaction TX will never appear in store BS,Z. This

means that transaction TY will never execute, because it cannot enter the

SUBSGRIBED state unless T1 has previously done so! Thus, the partitions of

data at the two sites have to be identical. Note that the partitions only have

to be logically identical. In other words, for every process assigning tickets at

the primary, there must be a peer process at the backup counting the tickets

and controlling the same data as the process at the primary. The physical

distribution of the data among computers and the physical layout on storage

media can be different, as long as the same data at the two sites is controlled

by corresponding processes. Furthermore, no restriction applies to the way

the data is partitioned: arbitrary partitions are allowed, as long as the

partition at the two sites is the same.

The method for recovery we suggested in Section 8 assumes that the

primary database is lost during a disaster. If this is not the case, it may be
possible to bring the failed primary up-to-date by sending it the redo logs for

the transactions it missed, instead of a copy of the entire database. The

recovering primary also has to undo transactions that did not commit at the

backup before redoing the missed transactions. The use of redo logs for

recovery may or may not be feasible, depending on the time it takes for the

failed site to be repaired. If this time is long, the logs will grow too big. The

relative performance of the two methods also depends on the size of the logs.

Our method is general and works even when the primary loses its copy

entirely, without excluding the use of the other method. For example, one

ACM TransactIons on Database Systems, Vol 16, No 2, June 1991

Management of a Remote Backup Copy for Disaster Recovery . 367

could combine the two strategies as follows: when a failure of the primary is

detected, the backup takes over transaction processing and tries to keep the

logs for as long as it can, in case the primary recovers soon and still has its

copy. When its capacity overflows, it starts discarding the logs; when the

failed site recovers, the method proposed in Section 8 will be used.

11. CONCLUSIONS

We presented a method for keeping a remote backup database up-to-date for

disaster recovery. The method ensures that the backup copy will be consis-

tent with the primary and that in case of failure the backup copy will be (at

most) a few transactions behind the primary. The method is relatively

straightforward and can be implemented using well known concepts and

techniques, such as locking and logging. The overhead imposed at the

primary site is relatively small, and there is no central processing in our

mechanism, i.e., no component that must “see” all transactions. This means

that the system can scale upwards: more communication lines, hosts and

stores can be added without having backup management interfere.

ACKNOWLEDGMENTS

The authors would like to thank Jim Gray, Robert Hagmann, C. Mohan,

Andreas Reuter and the referees for their comments and the references they

provided.

REFERENCES

1. AGRAWAL, R. A parallel logging algorithm for multiprocessor database machines. In Pro-

ceedings of the 4th Znternattonal Workshop on Database Machines. Springerj New York,

19s5.

2. BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN, N. Concurrency Control and Recovery m

Database Systems. Addison-Wesleyj Reading, Mass., 1987.

3. BURKES, D,, AND TREIBER, K. Design approaches for real time recovery, Presentation at the

Third International Workshop on High Performance Transaction Systems (Pacific Grove,

Calif., Sept. 1989).
4. CRUS, R, A. Data recovery in IBM Database 2. IBM Syst. J. 23, 2 (1984), 178-188.

5. FINKELSTEIN, W., AND CAPPI, M. Experiences with large networks of computers. Presenta-

tion at the International Workshop on High Performance Transaction Systems (Pacific Grove,

Calif., Sept. 1985).

6. GARCIA-M• LINA, H., AND ABBOTT, R. K. Reliable distributed database management. In

Proceedings of the IEEE, Special Issue on Dwtributed Database Systems (May 1987), 601-620.
7. GRAY, J. N., AND ANDERTON, M. Distributed computer systems: Four case studies. In

Proceedings of the IEEE, Special Issue on Distributed Database Systems (May 1987), 719-726.
8. GRAY, J. N. Why do computers stop and what can be done about it? Presentation at the

Fifth Symposium on Reliability in Distributed Software and Database Systems (Los Angeles,

Calif., Jan. 1986).

9. GRAY, J. N. Notes on database operating systems. Operating Systems: An Aduanced

Course. R. Bayer et al., Eds., Springer, New York, 1979.

10. GRAY, J. N., AND REUTEE, A. Transaction processing. Course Notes from CS # 445 Stanford

Spring Term, 1988.

11.KORTH H. F,, AND SILBERSCHATZ, A. Database System Concepts. McGraw-Hillj New York,

1986.

ACM Transactions on Database Systems, Vol. 16, No 2, June 1991.

368 . R, P. King et al

12. IBM, IMS/ VS Extended Recovery Faciltty (XRF) General Information. Dec. GG24-3150,
March 1987

13, LYON, J Design considerations in replicated database systems for disaster protection.

IEEE Compcon, 1988

14, O’NEIL, P. E, The escrow transactional method. ACM, Trams Database Syst 11, 4 (Dec.

1986), 405-430,

15, ROSENKR~NTZ, D, J, Dynamic database dumping. In Proceedings of SIGMODInternatlonal

Conference on Management of Data. ACM (1978), 3-8

16. SKEEN, D, Nonblocking commit protocols In Proceedings of the AC’MSZGMOD Conference

on Management of Data (Orlando, F1., June 1982), 133-147

17, SCHLICHTING, R. D , AND SCHNEIDER, F D. Fail-stop processors: An approach to designing

fault-tolerant computing systems ACM, Trans. Comput S’vst l(Aug 1983),222-238.

18. Tandem Computers Remote Duplicate Database Faclllty (RDF) S.vstem Management

Manual. March 1987

19. TANENB.AUM, A. S. Computer Networks. Prentice Hall, Englewood Cliffs, N.J , 1988.

Received October 1989; revised March 1990; accepted April 1990

ACM TransactIons on Database Systems, Vol 16, No 2, June 1991

