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Abstract

Complexity theory attempts to classify problems into classes according to their resource

requirements such as time and space, and to understand the relative power of these resources.

This dissertation is motivated, in particular, by the study of the limitations of Boolean and

arithmetic circuits as models of computation. The goal of this area is to show that there

are explicit problems that cannot be solved by small circuits. To this end we make progress

along several avenues for proving such circuit lower bounds.

Polynomial Identity Testing is the fundamental problem of testing whether a given multi-

variate polynomial is identically zero. There is a natural efficient randomized algorithm.

Showing that there is an efficient deterministic identity test, in a sufficiently general setting,

implies long elusive circuit lower bounds. In the first part of this dissertation, we develop new

deterministic identity tests for bounded-read multilinear arithmetic formulas, an interesting

class of polynomials that encompasses and significantly generalizes several prior works.

Locality is a property of logical formulas that expresses that the formula cannot distinguish

between two inputs that appear the same up to some distance parameter. Once established

for a given set of logical formulas, the property can often be used to quickly argue sepa-

rations from that set. In this dissertation we tightly characterize the locality of a logical

system corresponding to AC0, the class of languages solvable by families of constant-depth

polynomial-size Boolean circuits. In doing so we give a meta-theorem for proving that

certain graph properties cannot be computed in AC0.

Kernelization is the process of transforming an equivalent instance of one problem into an

instance of another problem where the size of the latter instance depends only on a single

parameter. We look at a set system that is motivated by the study of kernelization, and

give a tight bound on the size of that set system.
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1 Introduction

The only way to discover the limits of the possible is to go beyond them into the

impossible.

— Arthur C. Clarke

We begin our story in the middle. We join Dorothy, an orphan from Kansas; the Scarecrow,

a strawman without a brain; and the Tinman, a woodcutter without a heart, as they

travel the yellow-brick road towards a fateful meeting with the Wonderful Wizard of Lower

Boundz.

A Quest for Identity

The road leads into a dark and foreboding forest. Not far within, Dorothy, the Scarecrow,

and the Tinman begin to hear a muffled sobbing through the trees. As they push on, the

noise becomes louder and louder until it is almost a roar. Turning a bend in the road they

see a huge lion curled up in a ball next to a tree and crying relentlessly. “Are you OK?”

Dorothy asks timidly of the cowering lion. In a start, the lion spins and darts behind a

nearby tree “WHO... Who are you? Leave me alone!” “Please don’t be afraid”, Dorothy

responds more confidently. “Can we help you?” “No, I’m afraid of everyone, and everything;

no one can help,” he whimpers.

“Let’s keep moving,” the Tinman presses impatiently. “How can you be so insensitive?”

Dorothy questions him. The Tinman, taken aback, blinks twice, “I... am... broken.” He

continues mechanically, “I feel nothing for this creature who is clearly in distress.” For some

time, Dorothy and the Scarecrow attempt to comfort the now stricken Tinman and the

Lion with no success.
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Drawing away from the others Dorothy and the Scarecrow confer. “We must help them.”

“The Tinman feels nothing and the Lion fears everything.” “We need to find something the

Tinman cares for and something the Lion isn’t afraid of.”

The two return to the group. “We may as well begin with you Tinman.” Dorothy asserts,

and then asks him “What do you feel about the color of the sunrise?” “It is a consequence

of atmospheric refraction,” he states matter-of-factly. “And what is your favorite kind of

pie?” she follows up. “My favorite pies are apple, cherry, key lime, ...,” the list continues

for some time before the Scarecrow stops him, “But what is your favorite?” The Tinman

thinks for a moment, “I have no favorite.” This continues well into the night.

The next morning, Dorothy observes, “We need more information about how the Tinman

forms emotions. Tinman, may we look at the circuitry inside your chest?” “Go ahead,”

he replies, “I’m sure I won’t feel a thing.” With the Scarecrow’s help Dorothy opens the

Tinman’s metallic torso. Inside, buried in a tangle of wires they find a circuit board reading

EMOTITRON-<3000. “This must be it!... Your emotions are determined by an arithmetic

formula!” Dorothy exclaims. “What’s an ‘a-rythm-o-matic form mule’?” the Scarecrow

asks, having forgotten grade-school algebra. “Well,” Dorothy begins, “it takes in a set of

constants and variables, which in this case are properties like ‘Color’, ‘Smell’, and ‘Size’,

and combines them arithmetically, using + and × operations.” “The magnitude of the

resulting value expresses your feelings on the matter,” she concludes pointing at a single

wire in the Tinman’s chest cavity labeled ‘Happiness’. “If we can demonstrate a point where

your happiness formula is non-zero, it will prove you have a heart, Tinman.” The Tinman’s

face remains neutral.

“Hurry up,” the Lion moans, “trying all possible settings will take too long.” “Suppose

we only had one property, say ‘Color’?” Dorothy followed, “If I recall, a non-zero formula of

size s can’t have more than s zeroes.” (Dorothy goes to an excellent public magnet school

in Kansas.) “This means we would only have to try s+ 1 distinct colors before we find a
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color the Tinman cares about.”

“It shouldn’t be much harder with more than one property.” She pauses, then argues

inductively, “Suppose we have picked good values for all the properties except one. Then,

the resulting formula only depends on one property and has smaller size. Assuming the

partial assignment so far is good (that is, we haven’t zeroed the formula), picking a random

element from a set of size 100s should succeed in distinguishing the formula from zero.”

“This means that if we pick a value for each property randomly from a set of 100s potential

values we will find something the Tinman cares about 99% of the time,” she concludes.

“RANDOMNESS!!!” the Lion shrieks and bolts out of earshot down the road.
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Undeterred, the companions turn back to the Tinman to try out their observation. “Huge

green neutral squishy pizza.” “Nothing.” “Large yellow menacing solid flower.” “Nothing,”

he repeats. “Small white harmless fluffy bunny.” The Tinman blinks, then smiles “...Yes.”

“It worked!” Dorothy and the Scarecrow exclaim together. The Tinman, recovered, asks

“What’s the Lion’s problem?” “I guess he’s afraid of randomness,” posits the Scarecrow.

The three set off to find the missing Lion.

As they search they ponder how to solve the Lion’s problem. “We can’t randomly guess

something he isn’t afraid of, he’s too scared of randomness to let us do that.” “It’s even

more of a problem that we can’t see how he determines what he’s afraid of. We can’t open

up his head and physically examine his amygdala,” the Tinman reasons. “We can only test

his response to certain questions.” The three walk quietly for a while. “Let’s assume that

his fear is also determined by a formula,” offers the Tinman. “Since we don’t know which

particular formula models the Lion’s fear we should come up with a set of inputs that work

for all formulas.” Dorothy adds, “Certainly a small random set would work...” “We need to

generate this set quickly, so it must be small, and we must do so without using randomness,”

the Tinman counters. “But HOW?...”

Unbeknownst to them, the Wicked Witches of Algebrization, Natural Proofs, and

Relativization gather around an opalescent crystal ball watching our heroes from afar. The

youngest guffaws “Foolish little girl, no one knows whether such a small hitting set can be

constructed efficiently.” The middle sister scoffs “You don’t even know how to do it for

depth three formulas!” The eldest, Relativization, chides the other two, “Sisters, we must

be careful. If they are successful in finding an efficiently computable hitting set we will be

defeated. They will reach the Emerald City and be granted an audience with the Wizard of

Lower Boundz.”

Meanwhile, the companions continue to search for the Lion. “This problem makes my

head hurt,” the Scarecrow mutters to no one. Suddenly, the soft voice of Glenda, the Good
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Witch of Prior Work, permeates the dark forest “Fear not. The Lion’s fear formula is a

constant-read multilinear formula.” Her voice slowly fades. After a day or two – which by

all accounts seemed like years – the trio devise a test that can help the Lion. But first they

need to find him...

Locally Lost

The three continue along the yellow-brick road searching for the Lion. The dark forest

gradually transitions into an enchanting meadow. Waist-tall grass grows as far as they can

see in all directions. Lone boulders of uniform size, shape, and color appear in the distance

away from the road. The meadow is uncannily flat with no discernible hills or valleys.

On the morning of their fifth day in the meadow they come to a fork in the yellow-brick

road. Here the road splits off in three directions. At the left side of each road there is a sign

reading Lower Boundz pointing away from the intersection. Curiously, there is a fourth

sign pointing back along the road the companions followed here. The trio examine each of

the four identical roads and signs. “Even the landscape in the distance looks the same,”

Dorothy observes. “Which way do we go?” “Not the way we came,” says the Tinman

shattering the sign pointing back the way they came with his ax.

“We may as well go straight,” says Dorothy after some time. Dorothy and the Tinman

begin to walk down that road. The Scarecrow momentarily hesitates, and then follows.

They walk for several days along the road, never passing anything of note. In the afternoon

of the third day they again reach a crossroads that splits off in three directions. “I think

we’ve been here before,” the Scarecrow points at pieces of a sign that lay smashed by the

left side of one of the forks. “We’ve been walking in a circle...” they sigh in unison. “At

least we’ve eliminated some possibilities,” says the Tinman hopefully as he knocks down

two wrong signs. The three proceed away from the crossroads following the one remaining
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sign.

The next day they reach another crossroads, here the road forks into seven parts each

paired with now unconvincing signs. They choose one to follow, but the Scarecrow again

hesitates, and, sure enough, the path loops back to the same crossroads. After several more

false starts they reach a new crossroads. Exasperated, the companions sit down by the side

of the road. “If history is any lesson, most of these roads loop back here, one goes back

where we came,” Dorothy gestures to the sign the Tinman had already destroyed, “and one

actually goes towards the wizard.” “How can we decide which way to go?” Squinting off

into the distance, the Tinman points out, “Locally, everything about these roads appears

exactly the same; we have no global information about the road network.” Dorothy and the

Tinman begin to irritably argue about their predicament.

After some time, the Scarecrow silently starts off down one of the roads. Eventually,

during a lull in the debate Dorothy and the Tinman notice that the Scarecrow is gone

and run to catch up. “Where are you going?” they say breathlessly when they reach him.

He stops and turns towards them. “You’ve hardly said a word since we reached the first

crossroads,” Dorothy continues, “is there something wrong?” The Scarecrow looks down,

and mumbles, “I... At each crossroads I felt which direction we should go... I don’t know

how... I’ve been right both times... But I’m not very smart... I didn’t want to...” He trails

off. “We may as well go your way, I don’t have any better ideas,” the Tinman callously

concludes the discussion.

They reach a new crossroad the next day, apparently making progress. They follow

the now more confident Scarecrow out of the crossroads. This repeats several times, never

looping back to where they’ve been before. After about a week the yellow-brick road leads

treacherously up a mile-tall escarpment. They pause after the long climb and look back at

their path through the meadow. They see the yellow road reflect brightly in the afternoon

sun, along with the long path they followed and the many spindled crossroads looping back
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on themselves. “I don’t know how you did it, but you got us through that strawman,” the

Tinman apologizes, “you could tell which path was a cycle.”

“You’re pretty intelligent after all Scarecrow; you’re smarter than an AC0 circuit.” The

strawman blushes. “And, indubitably, street-smart,” Dorothy adds, and they all laugh.

Following the Yellow-Brick Road

Much like the preceding tales, we begin our story in the middle of a long intellectual journey

towards a central and elusive goal in complexity theory:



8

Exhibit explicit problems that cannot be solved by small circuits.

In this dissertation we deal with two types of circuits: Boolean and arithmetic. Each

circuit is structured by an underlying directed acyclic graph whose leaf nodes correspond to

inputs that are either Boolean variables, or arithmetic variables and constant field elements.

The other nodes of the graph represent gates. In the Boolean setting these are usually

AND, OR and NOT, and in the arithmetic case + and ×. Each gate naturally computes

a Boolean function or a polynomial, respectively, of its children. The root of the graph

represents the output or value computed by the circuit.

The circuit complexity of a problem is the number of gates and wires a circuit requires

to compute a given function as a function of the number of input variables. By comparing

the number of functions on n bits (22n
) with the number of size-s circuits computing n-bit

functions (2O(s log s)) it follows that there exists some language that requires exponential-size

circuits. However, this argument only tells us that some such language exists, but does

not show us how to explicitly (succinctly) describe it. It is widely believed that a stronger

property holds:

Conjecture 1. There exist explicit problems that no small circuit family can compute.

One instance of an explicit language that we believe is hard to compute is Boolean

circuit satisfiability (SAT), that is, the problem of determining whether a given Boolean

circuit has a satisfying assignment. Since this problem is complete for non-deterministic

polynomial time, NP, showing that it requires large circuits would immediately imply that

NP 6= P, answering a monumental open problem in theoretical computer science. On the

other hand, if NP does have polynomial-size circuits it would collapse the entire polynomial

hierarchy, PH, to the second level [KL82].

From the algebraic perspective it is believed that the Permanent polynomial is exponen-

tially hard, i.e., that it requires exponential-size arithmetic circuits to compute. Intuitively,
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the Permanent polynomial is an unsigned version of the Determinant:

Perm(M)
.
=

∑
σ∈Symn

∏
i

Mi,σ(i),

where M is an n-by-n symbolic matrix and Symn is the symmetric group on n elements.

The Permanent is VNP-complete, that is, it plays the analogous role to SAT for counting

problems [Val79]. Moreover, the entire polynomial hierarchy reduces to the Permanent

[Tod91].

Showing general and unconditional circuit lower bounds for either of these canonical

problems has proved notoriously difficult; and, for this reason, much research has focused

on lower bounds for restricted circuit models. We mention a few such results now.

For Boolean circuits, no super-linear lower bounds are known for problems in NP in the

most general setting. There has been considerable progress for classes related to constant-

depth circuits. Perhaps the most well-known is a deep result from the 80s which shows

that PARITY, the problem of determining whether the number of ones in a sequence of n

bits is odd, cannot be computed, even approximately, by constant-depth Boolean circuits

of sub-exponential size [Ajt83, FSS84, Yao85, Cai89, H̊as86]. Recently, Williams showed

that there are problems in NEXP, non-deterministic exponential time, that do not have

polynomial-size constant-depth Boolean circuits with modulo gates, ACC0 [Wil11]. There

are also a number of results that show that classes within and related to the polynomial

hierarchy do not have size nc circuits for any constant c (e.g., [Kan82, Cai01]).

For arithmetic circuits, Baur and Strassen showed that the polynomial
∑n

i=1 x
r
i requires

Ω(n log r) size on general arithmetic circuits [BS83]. Raz demonstrated that both the

Determinant and Permanent polynomials of dimension n require multilinear formulas of

size 2Ω(log2 n) [Raz09]. A formula is multilinear if every gate computes a polynomial that is

linear in each variable.
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These results, and others we did not mention, are quite far from the full generality of

Conjecture 1. A number of barriers have arisen along the path to this goal, that, perhaps,

explain the difficulty: relativization [BGS75], natural proofs [RR97], and algebrization

[AW09]. Informally, these barriers are a manifestation of the fact that arguing the conjecture

will require more advanced proof techniques (and understanding) than we currently have.

In the following paragraphs we give a brief description of our main results. The

remaining sections of this chapter provide further context and motivation, and the body of

this dissertation formally substantiates the claims made in our theorems.

Polynomial Identity Testing is the fundamental problem of testing whether a given multi-

variate polynomial is identically zero. There is an efficient natural randomized algorithm,

as noted by Dorothy and the others in the first episode. Identity testing is closely tied

to arithmetic circuit lower bounds. In particular, an efficient deterministic identity test,

in a sufficiently general setting, implies strong circuit lower bounds. In the first part of

this dissertation, Section 1.1 and Chapter 3, we discuss new deterministic identity tests for

multilinear constant-read formulas, that is, formulas where each variable may occur only a

constant number of times. We give tests both in the blackbox and non-blackbox setting

for this type of formula, where blackbox means that the test does not have access to the

structure of the formula. The blackbox setting is much like the situation with the Lion’s

fear polynomial in the first episode, as opposed to the non-blackbox setting which is similar

to how the Tinman’s formula was visible to Dorothy and the Scarecrow. In addition, we

can extend our tests to a class of polynomials that significantly generalize and encompass

several prior works. This is joint work with Dieter van Melkebeek and Ilya Volkovich and

first appeared at Conference on Computational Complexity (CCC’11) [AvMV11].

Locality is a property of logical formulas that expresses that the formula cannot distinguish

between two inputs that appear the same up to some distance parameter; this is similar
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to the difficulty the companions had in the second episode while trying to distinguish the

correct road to follow among all the roads that appeared locally the same. Locality can

be used to quickly argue separations between sets of logical formulas. In Section 1.2 and

Chapter 4 we tightly characterize the locality of a logical system corresponding to AC0, the

class of languages solvable by families of constant-depth polynomial-size Boolean circuits,

and in doing so give a meta-theorem for proving that certain graph properties cannot

be computed in AC0. In the second story the Scarecrow was able to sense a variant of

cycle checking which is a very non-local property, and hence the others noted he was more

powerful than AC0. Our proof hinges on the strong lower bound for PARITY mentioned

earlier. Locality may prove a useful tool for separating some of the circuit classes between

AC0 and L (deterministic logspace) by tightly bounding the locality of the circuit classes in

this vicinity. This is joint work with Dieter van Melkebeek, Nicole Schweikardt, and Luc

Segoufin, and first appeared at the International Colloquium on Automata, Languages and

Programming (ICALP’11) [AvMSS11].

Kernelization is the process of transforming an instance of one problem into an equivalent

instance of another problem where the size of the latter instance depends only on a single

parameter. In Section 1.3 and Chapter 5 we look at a problem that was motivated by the

study of kernelization. Our result is a tight bound on the size of a set system that arose in

the development of [DvM10]. This result is yet unpublished.

1.1 Deterministic Polynomial Identity Testing

Polynomial identity testing (PIT) denotes the elementary problem of deciding whether

a given polynomial identity holds. More precisely, we are given an arithmetic circuit or

formula F on n inputs over a given field F, and we wish to know whether all the coefficients

of the formal polynomial P , computed by F , vanish. Due to its basic nature, PIT shows



12

up in many constructions in theory of computing. Particular problems that reduce to PIT

include integer primality testing [AB03] and finding perfect matchings in graphs [Lov79].

PIT has a very natural randomized algorithm – pick values for the variables uniformly

at random from a small set S, and accept iff P evaluates to zero on that input. If P ≡ 0

then the algorithm never errs; if P 6≡ 0 then by Schwartz-Zippel [Sch80, Zip79, DL78] the

probability of error is at most d/|S|, where d denotes the total degree of P . This results

in an efficient randomized algorithm for PIT. The algorithm works in a blackbox fashion

in the sense that it does not access the representation of the polynomial P , rather it only

examines the value of P at certain points (from F or an extension field of F).

Despite the simplicity of the above randomized algorithm and much work over the course

of thirty years no efficient deterministic algorithm is known when the polynomial is given

as an arithmetic formula.

Is there an efficient deterministic identity test for arithmetic formulas?

This question is fundamental to our understanding of circuit lower bounds: Efficiently

derandomizing identity testing implies elusive circuit/formula lower bounds [KI04, KvMS09,

AvM10]. In fact, an efficient deterministic identity test for depth-four arithmetic formulas

implies a lower bound for general arithmetic circuits [AV08]. There are also a number

of partial converses that show that lower bounds can imply deterministic identity tests

[KI04, DSY08].

The powerful connections with circuit lower bounds have energized much recent effort

towards derandomizing identity testing for restricted classes of arithmetic formulas, in

particular for constant-depth formulas. For depth two formulas several deterministic

polynomial-time blackbox algorithms are known [BOT88, KS01, Agr03, AM10, BHLV09].

For depth three the state-of-the-art is a deterministic polynomial-time blackbox algorithm

when the fanin of the top gate is fixed to any constant [SS11]. The same is known for depth
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four but only when the formulas are multilinear [SV11]. We refer to the excellent survey

papers [Sax09, SY10] for more information.

Another natural restriction are arithmetic formulas in which each variable appears

only a limited number of times. We call such formulas read-k, where k denotes maximum

number of times each variable may appear. PIT for read-once formulas is trivial in the

non-blackbox setting as there can be no cancellation of monomials. Shpilka and Volkovich

considered a special type of bounded-read formulas, namely formulas that are the sum of

k read-once formulas. For such formulas and constant k they established a deterministic

polynomial-time non-blackbox algorithm as well as a deterministic blackbox algorithm that

runs in quasi-polynomial time, i.e., in time sO(log s) on formulas of size s [SV08, SV09].

Results

We present a deterministic polynomial-time identity test for multilinear constant-read

formulas, as well as a deterministic quasi-polynomial-time blackbox algorithm for these

formulas.1

Theorem 1. For each k ∈ N there is a deterministic polynomial identity test for multilinear

read-k formulas of size s that runs in time poly(s). In addition, there is a deterministic

blackbox test that runs in time sO(log s).

Note that Theorem 1 extends the class of formulas that Shpilka and Volkovich could

handle since a sum of read-once formulas is always multilinear. This is a strict extension –

in Section 3.3.1.3 we exhibit an explicit read-2 formula with n variables that requires Ω(n)

terms when written as a sum of read-once formulas. The separating example also shows

that the efficiency of the identity test in Theorem 1 cannot be obtained by first expressing

1Note that the complete formal statements of results discussed in this section can be found in Section 3.1.
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the given formula as a sum of read-once formulas and then applying the known algorithms

[SV09] for sums of read-once formulas to it.

Shpilka and Volkovich actually proved their result for sums of a somewhat more general

type than read-once formulas, namely read-once formulas in which each leaf variable is

replaced by a low-degree univariate polynomial in that variable. We can handle a further

extension in which the leaf variables are replaced by sparse multivariate polynomials. We

use the term sparse-substituted formula for a formula along with substitutions for the leaf

variables by multivariate polynomials that are each given as a list of terms (monomials).

We call a sparse-substituted formula read-k if each variable appears in at most k of those

multivariate polynomials.

We can even further extend our identity tests by introducing a relaxed notion of

multilinearity for sparse-substituted formulas that requires only that for every multiplication

gate of the original formula the different input branches of the gate are variable disjoint.

We call such sparse-substituted formulas structurally-multilinear. Note that this definition

allows the resulting substituted polynomials to be non-multilinear.

Theorem 2. For each k ∈ N there is a deterministic polynomial identity test for structurally-

multilinear sparse-substituted read-k formulas that runs in time sO(log t), where s denotes

the size of the formula, and t the maximum number of terms a substitution consists of. In

addition, there is a deterministic blackbox test that runs in time sO(log st).

We observe that any multilinear depth-four alternating formula with an addition gate of

fanin k as the output can be written as the sum of k sparse-substituted read-once formulas,

where the read-once formulas are single monomials and the substitutions correspond to

multilinear depth-two formulas. This implies that our blackbox algorithm also extends the

work by Karnin et al. [KMSV10], who established a deterministic quasi-polynomial-time

blackbox algorithm for multilinear formulas of depth four. Thus, our results can be seen
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as unifying identity tests for sums of read-once formulas [SV09] with identity tests for

depth-four multilinear formulas [KMSV10] while achieving comparable running times in

each of those restricted settings.

We can improve the running time of our blackbox algorithm in the case where the

formulas have small depth. In particular, we obtain a polynomial-time blackbox algorithm

for constant-read constant-depth formulas.

1.2 Locality

Expressibility of logics over finite structures plays an important role in various areas

of computer science. In descriptive complexity, logics over finite structures are used to

characterize complexity classes [Imm99]. For example, existential second-order logic can

describe exactly those graph problems that belong to the complexity class NP. In automated

verification, one uses logics as specification languages to describe properties of hardware

and software systems, and one needs to balance the expressivity of the logics used with the

feasibility of the model checking task (cf., e.g., [CGP99]).

The classical inexpressibility arguments for logics over finite structures (i.e., Ehrenfeucht-

Fräıssé games) often involve nontrivial combinatorics. The notion of locality has been

proposed as an alternative that allows one to contain much of the hard work in generic

results, and keep the specific applications simple. Roughly speaking, a query is local if one

only needs to look at a small, localized part of the structure in order to answer the query. If

one can show that every query in a given logic has a certain degree of locality, and the query

at hand does not, then one can conclude that the query is not expressible in the logic. For

example, one can show that for every first-order query on graphs, there exists a constant r

such that the result of the query only depends on the neighborhood up to distance r of the

vertices that are part of the query (cf., e.g., the textbook [Lib04]). On the other hand, it is
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easy to see that the connectivity of two vertices in a graph is not determined solely by the

restriction to those neighborhoods. Therefore, connectivity is not expressible in first-order

logic.

Apart from inexpressibility proofs, locality is also used as a tool for obtaining algorithmic

meta theorems, i.e., results stating that if a problem is expressible in a certain logic on a

certain class of structures, then it can be solved algorithmically within certain resource

bounds (c.f., [GK11] for a recent overview on this topic).

This motivates the following question:

To what extent are logics local?

We show how to use circuit lower bounds to establish upper bounds on the locality radius

of certain logics. In particular, we consider a logic that corresponds to the complexity

class AC0 of all languages that can be decided by nonuniform families of polynomial-size

constant-depth circuits. By exploiting the known lower bounds for parity and related

problems on constant-depth circuits [Ajt83, FSS84, Yao85, Cai89, H̊as86], we obtain an

upper bound for the locality radius of queries expressible in that logic. This provides a

simple and generic means of proving inexpressibility results for this type of formulas, hence

extending the power of the original lower bound to a larger class of queries. It also gives a

simple and general way of showing that many graph queries cannot be computed in AC0.

We also give examples showing that our upper bounds are essentially tight.

The logic we consider is the extension of order-invariant first-order logic with arbitrary

numerical predicates. The notion of order-invariance was introduced a while ago to capture

the data independence principle in databases, cf., [AHV95, Lib04]: An implementation of a

database query may exploit the order in which the elements are stored on a disk, but only in

such a way that the result of the query does not depend on this order. Order-invariant first-

order queries are exactly those first-order queries that can make use of an order predicate <
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but such that the answer is independent of the interpretation of < as long as it is a linear

order on the domain of the structure. In our extension, on top of the order predicate <,

we also allow the use of arbitrary numerical predicates that are induced by the order. This

means that the formula has access to numerical predicates, like addition, multiplication, and

powering, all defined with respect to the order <, e.g., if a, b, and c are the 1st, 2nd, and 3rd

elements of the universe with respect to <, then a+ b = c, a · b = b, and ac = a. Further, we

require that the result of a query not depend on the actual choice of the linear order when

all numerical predicates are interpreted consistent with the linear order. We denote this

logic2 as Arb-invariant FO. In terms of graph queries, Arb-invariant FO expresses precisely

those computable in the complexity class AC0.

Results

In order to state our results, we need to introduce the two standard notions of locality,

known as Gaifman locality and Hanf locality. Both are based on the distance measure on

the elements of a structure when viewed as the vertices of a graph in which two elements

are connected by an edge whenever they appear together in a tuple of one of the structure’s

relations. The latter graph is referred to as the Gaifman graph of the structure. In a nutshell,

Gaifman locality means that a query cannot distinguish between two tuples having the

same neighborhood type in a given structure, while Hanf locality means that a query cannot

distinguish between two structures having the same (multi-)set of neighborhood types.

Here, the neighborhood type of a tuple refers to the equivalence class under isomorphism

of the substructure induced by the elements up to distance r from the tuple, where r is

a parameter. It is known that Hanf locality implies Gaifman locality, modulo a constant

factor loss in the distance parameter r. We refer to Section 4.3 for the formal treatment of

2Strictly speaking, Arb-invariant FO is a “logical system” rather than a “logic”, as the syntax is
undecidable.
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these notions.

A well-known result shows that first-order logic exhibits constant locality with respect

to both notions, i.e., every FO query is Gaifman and Hanf local with a constant parameter

r depending on the query [Gai82, Han65]. In the presence of an extra linear order that is

part of the structure, all neighborhoods of positive radius degenerate to the entire domain,

so all queries are trivially 1-local. Locality becomes meaningful again in order-invariant FO,

where the formulas can make use of an order, but the structure does not contain the order

and the semantics are independent of the order. It is shown in [GS00] that order-invariant

FO queries are Gaifman local with a constant parameter r depending on the query. The

status of Hanf locality for order-invariant FO is still open in general; it is only known for

structures like strings and trees [BS09].

When we allow arbitrary numerical predicates, constant locality no longer holds, even

if we require Arb-invariance. In fact, we show that the level of Gaifman locality of Arb-

invariant FO queries can be polylogarithmic in the number of elements of the structure, but

no worse than that: Arb-invariant FO is Gaifman (log n)O(1)-local in the following sense.

Theorem 3. Every Arb-invariant FO formula is Gaifman (log n)c-local for some constant

c depending on the formula, and for every constant c there exists an Arb-invariant FO

formula that is not Gaifman (log n)c-local.

The upper bound in Theorem 3 means that for any query in Arb-invariant FO and any

large enough number n, if a structure has n elements and if two tuples of that structure

have the same neighborhood up to distance (log n)c, then they cannot be distinguished by

the query. The lower bound part of Theorem 3 is realized by variations of the connectivity

example mentioned before.

As easy consequences of the upper bound in Theorem 3 one obtains, e.g., that the

following graph queries are not computable in AC0: Does a node x lie on a cycle? Are two
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nodes x and y connected by a path? Do nodes x and y have the same distance to node z?

Does node x belong to a connected component that is acyclic?

Theorem 3 provides an essentially complete picture of the Gaifman locality of Arb-

invariant FO. Similar to the case of order-invariant FO, the Hanf locality of Arb-invariant

FO queries is still open in general, but if we restrict our attention to structures that represent

strings, we can establish Hanf locality with the same bounds as in Theorem 3. In the

following statement, Arb-invariant FO(Succ) refers to Arb-invariant queries over string

structures.

Theorem 4. Every Arb-invariant FO(Succ) formula is Hanf (log n)c-local for some constant

c depending on the formula, and for every constant c there exists an Arb-invariant FO(Succ)

formula that is not Hanf (log n)c-local.

The upper bound in Theorem 4 means the following, where we use r to denote (log n)c: For

any Arb-invariant FO query over strings and any large enough number n, if two strings

of length n have the same prefix of length 2r, the same suffix of length 2r, and the same

multiset of substrings of length 2r + 1, then they cannot be distinguished by the query.

Since Hanf locality implies Gaifman locality, the lower bound in Theorem 4 can be viewed

as a strengthening of the lower bound part of Theorem 3.

We also present an application of our locality results to the study of regular languages.

It is known that the class of definable regular languages does not grow when we move from

FO to order-invariant FO [BS09], but does grow when we proceed to addition-invariant FO,

i.e., Arb-invariant FO where the only numerical predicate used is addition [SS10b]. The

larger class coincides with FO(Succ, lm), i.e., the extension of FO(Succ) with predicates

determining the length of a string modulo some constant. Based on our locality results, we

can show that the class does not grow further when we allow the use of arbitrary numerical

predicates, i.e., when we proceed from addition-invariant FO to Arb-invariant FO.
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Theorem 5. A regular language is definable in Arb-invariant FO(Succ) iff it is definable

in FO(Succ, lm).

1.3 Kernelization

A parameterized problem is a language extended with a parameter k: L ⊆ {0, 1}∗ × N.

One natural instance of a parameterized problem is k-VERTEXCOVER, the problem of

deciding whether a given graph G on n vertices has a subset S of the vertices of size at

most k such that each edge in G is incident to some vertex in S. See the survey [GN07] for

other examples and more background.

A kernelization procedure is an algorithm that takes an instance of a parameterized

problem and maps it to an instance of the same problem where the size of the instance

depends only on the parameter and the running time of the procedure is polynomial in

the input size. k-VERTEXCOVER has a simple kernelization procedure: Select a vertex in

the graph with degree greater than k, put the vertex into the cover and remove the vertex

from the graph. Such vertices must appear in the cover if it exists; otherwise the cover will

have size at least k + 1. Repeating this procedure at most k times will reduce the graph

to a vertex cover instance with O(k2) vertices and edges, or determine that a k-cover is

impossible. This reduction runs in time polynomial in the input size, and produces a size

O(k2) kernel.

At this point, it is natural to ask whether anything better can be done. Dell and Van

Melkebeek answer this question by showing that for vertex cover instances on n-vertex

graphs no deterministic polynomial-time mapping reduction exists to instances of size O(nc)

(for any language L), for any c < 2, unless the polynomial hierarchy collapses [DvM10]. In

an earlier weaker version of this result [DvM09] use set systems that realize lines in the

following sense.
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For some field F = GF(p), consider the line La,b in F2 for a, b ∈ F defined by La,b
.
=

{(x, a+ bx) | x ∈ F}. Let L be the family of lines La,b for all a, b ∈ F. We say that a set

family F over F2 realizes L if for every line L ∈ L there exist two sets Q,S ∈ F such that

Q ∩ S = L.

Now, suppose we have a set family F with |F| = pd that realizes L. Dell and Van

Melkebeek show that vertex cover does not have kernels of size nc for any c < 2
d
, unless the

polynomial hierarchy collapses [DvM09].

Results

We show essentially optimal bounds on d. We describe such a set family F of size O(p3/2)

that realizes L. This rules out the kernelization of generic vertex cover instances to size nc

for any c < 4
3
. We then argue that a family of this size is necessary. This implies that using

the above approach and set systems to rule out kernels of size n
4
3 or larger is not possible.

Theorem 6. Let F .
= GF(p), for a, b ∈ F La,b

.
= {(x, a+ bx) | x ∈ F}, and L .

= ∪a,b∈FLa,b.

Then the number of sets sufficient and necessary to realize L is Θ(p1.5).

The upper bound is fairly straightforward; the lower bound follows via a nontrivial

geometric argument. Observe that the size of such a set family is bounded above by p2

(pick F to be all of L) and bounded below by p (because |F|2 must be at least |L| = p2).
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2 Notation and Basics

We could, of course, use any notation we want; do not laugh at notations; invent

them, they are powerful. In fact, mathematics is, to a large extent, invention of

better notations.

— Richard Feynman

In this chapter we first describe some general notation then proceed to detail the various

models of computation that we consider in this dissertation: arithmetic formulas, Boolean

circuits, and first-order formulas.

2.1 General Notation

Let F denote a field, finite or otherwise, and let F̄ denote its algebraic closure. For a prime

p, GF(p) is the Galois field of order p. For the most part we use the basic properties of

fields implicitly, see, for example, the textbook [Isa09] for more background information.

For an integer n, let [n] denote the set {1, 2, . . . , n}. We use the notation | · | to represent

the size of various objects, like sets and binary strings. We use the following shorthand

for asymptotic notation: We write p = poly(f1, f2, . . . , fr) to indicate that there exists a

constant c such that p = O((f1 · f2 · . . . · fr)c).

2.2 Arithmetic Formulas

Let F[x1, . . . , xn] denote the polynomial ring in the variables x1 through xn over the field F.

In this dissertation we will be considering only finite polynomials P ∈ F[x1, . . . , xn]. We

often denote variables interchangeably by their index or by their label: i versus xi, and
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[n] = {1, 2, . . . , n} versus {x1, ..., xn}. We frequently drop the index and refer to a generic

variable as x ∈ {x1, . . . , xn}.

For a subset of the variables X ⊆ {x1, ..., xn} and an assignment ᾱ ∈ F|X|, P |X←ᾱ

denotes the polynomial P with the variables in X substituted by the corresponding values

in ᾱ. When X = {x1, . . . , xn} is the full set of variables we shorten this substitution to

P (ᾱ).

We say that a polynomial P depends on a variable xi if there are two elements ᾱ, β̄ ∈ F̄n

differing only in the ith coordinate for which P |[n]←ᾱ 6= P |[n]←β̄. We denote by var(P ) the

set of variables that P depends on.

One means of describing the complexity of evaluating a polynomial is by the size of an

arithmetic circuit that computes it.

An arithmetic circuit is a rooted directed acyclic graph whose inputs (nodes with no

incoming edges) are labeled with variables in {x1, . . . , xn} or by elements of F. The gates

(that is, those nodes with incoming edges) are labeled with addition + or multiplication

×. The singular root node with no outgoing edges is called the output gate of the circuit.

Naturally, each gate in an arithmetic circuit computes a polynomial of the nodes that point

to it and a polynomial Fn → F of the input variables. We interchangeably use the notions

of a gate and the polynomial in the input variables computed by that gate.

An arithmetic formula is simply an arithmetic circuit where the fan-out (or the number

of out-going edges) of any gate is at most one. We allow generalized input, addition, and

multiplication gates, where the result can be multiplied by and/or added to a constant.

Formally, for arbitrary constants α, β ∈ F, input and arithmetic gates produce the following

output, where the gi’s are the polynomials computed by the gate’s children.

• Input gates: α · x+ β.

• Addition gates: g = α · (
∑

i gi) + β.
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• Multiplication gates: g = α · (
∏

i gi) + β.

The size of an arithmetic formula is the number of wires together with the total bit length

of all the constant fields in the formula. The depth of an arithmetic formula is the length

of the longest path from the output gate to any input. Except when we are discussing

constant depth formulas we will assume that the fan-in of multiplication and addition gates

is two; it is not difficult to see that formulas with arbitrary fan-in can be transformed into

formulas with fan-in two at the cost of a constant factor increase in formula size. Note that

a given formula can be evaluated over an assignment to the variables from the base field (or

an extension field) in time polynomial in the size of the formula and the bit length of the

assignment. See the excellent survey [SY10] for more background information on arithmetic

circuits and formulas, including basic properties and algorithms.

We can define an analogous notion of complexity for Boolean languages.

2.3 Boolean Circuits

A Boolean circuit C is a rooted directed acyclic graph whose inputs are labeled with Boolean

variables {x1, . . . , xn} or their negations {¬x1, . . . ,¬xn}. The gates of C are labeled with

either ∧ or ∨. Each gate of the circuit C naturally defines a function from {0, 1}n to {0, 1}.

The depth of a circuit is the length of a longest path from the root of the circuit to one of

its inputs. The size of a circuit is the number of wires it contains.

A circuit family C is a sequence (Cn)n∈N such that for all n ∈ N, Cn is a circuit over n

input variables. We say that a circuit C accepts a string w if evaluating C on w outputs

1, otherwise C(w) = 0 and we say that C rejects w. We say that a Boolean language

L ⊆ {0, 1}∗ is accepted by a family of circuits (Cn)n∈N if for all n ∈ N and for all binary

strings w of length n, Cn(w) = 1 iff w ∈ L.
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A language L is in AC0 if there exists a family of circuits accepting L that have constant

depth and size polynomial in their input length n. A sequence of celebrated results shows

that AC0 is not even able to compute parity, that is, whether the number of ones in its

input is even or odd [Ajt83, FSS84, Yao85, H̊as86, Cai89]. In fact, we use the following

somewhat stronger promise version. For a binary string w ∈ {0, 1}∗, let |w|1 denote the

number of ones in w.

Lemma 2.1 (Implicit in [H̊as86, Theorem 5.1]). For any d ∈ N, there are constants

α > 0 and n0 > 0 such that for all n ≥ n0 there is no circuit of depth d and size 2αn
1/(d−1)

that accepts all inputs w ∈ {0, 1}2n with |w|1 = n and rejects all inputs with |w|1 = n+ 1.

To discuss circuits over graphs we must first discuss finite structures, which are intuitively,

a natural generalization of graphs.

2.4 Finite Model Theory and First-Order Logic

A relational schema is a set of symbols each with an associated arity. A structure M over a

relational schema τ is a finite set dom(M), the domain, containing all the elements of M ,

together with an interpretation RM ⊆ dom(M)k of each relation symbol R ∈ τ of arity k.

We call a structure over a relational schema τ a τ -structure. The size of a structure M is

the cardinality of its domain dom(M).

For a set S of elements in the domain of M , M|S denotes the induced substructure of M

on S. That is, M|S is the structure whose domain is S and whose relations are the relations

of M restricted to those tuples containing only elements in S.

We say that two τ -structures M and M ′ are isomorphic, M ∼= M ′, if there exists

a bijection π : dom(M) → dom(M ′) such that for each k-ary relation symbol R ∈ τ ,

(a1, a2, . . . , ak) ∈ RM iff (π(a1), π(a2), . . . , π(ak)) ∈ RM ′ . We write π : M ∼= M ′ to indicate
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that π is an isomorphism that maps M to M ′. If ā and b̄ are tuples (of the same length) of

elements of dom(M) and dom(M ′), respectively, then we write (M, ā) ∼= (M ′, b̄) to indicate

that there is an isomorphism π : M ∼= M ′ which maps ā to b̄. All classes of structures

considered in this dissertation are closed under isomorphisms.

A k-ary query on τ -structures is a mapping q that associates with each τ -structure M a

relation q(M) ⊆ dom(M)k, and that is closed under isomorphism in the following sense: If

(M, ā) ∼= (M ′, b̄), then ā ∈ q(M) iff b̄ ∈ q(M ′).

Queries over finite structure are naturally computed by logical formulas.

2.4.1 First-Order Logic

One standard class of logical formulas are first-order formulas. We denote by FO(τ) the

first-order logic with respect to the schema τ . This is the set of logical formulas whose

atoms are formed based on the relation symbols in τ , the equality symbol =, and an infinite

sequence of variables (x1, x2, . . .), and that is closed under Boolean connectives (∧,∨, and

¬) and existential and universal quantifications (∃ and ∀). We use the standard syntax and

semantics for FO (cf., e.g., [Lib04]). We write M |= φ(ā) or (M, ā) |= φ(x̄) to express that

the tuple ā of elements in dom(M) makes the formula φ(x̄) true in M . A formula φ(x̄) with

k free variables defines the k-ary query that associates with every τ -structure M the set of

k-tuples ā ∈ dom(M)k for which M |= φ(ā). Sometimes, we will say that φ(x̄) is a k-ary

formula. A sentence is a formula that has no free variables.

One measure of logical formula size is alternation depth. The alternation depth of a

formula is the maximum, over all paths from the root of a formula to its atoms, of the

number of alternating blocks of quantifiers along the path.

Queries may also be computed by Boolean circuits.
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2.4.2 Representing Structures and Queries as Strings

In order to enable circuits to act on structures and compute queries, we need to specify how

to represent a τ -structure M and a k-tuple ā ∈ dom(M)k as a bit-string. Our results are

robust with respect to the details of the encoding. For concreteness, we use the following

scheme based on characteristic sequences.

Let < be a linear order on dom(M). Let R1, . . . , Rs be a list of the relation symbols

in τ and let r1, . . . , rs be the arities of these symbols. For each Ri ∈ τ , we denote by

enc<(RM
i ) the bit-string of length |dom(M)|ri whose jth bit is 1 iff the jth smallest element

in dom(M)ri w.r.t. the lexicographic order associated with < belongs to the relation RM
i .

Similarly, for each component ai of the k-tuple ā, we let enc<(ai) be the bit-string of length

|dom(M)| whose jth bit is 1 iff ai is the jth smallest element of dom(M) w.r.t. <. Finally,

we let

enc<(M, ā) := enc<(RM
1 ) · · · enc<(RM

s ) enc<(a1) · · · enc<(ak)

be the binary encoding of (M, ā) w.r.t. <.

The above encoding presumes a linear order < on dom(M). For ordered structures, i.e.,

structures with an associated order on their domain, the choice of < is fixed. For unordered

structures – the ones we care about – we consider all possible linear orders and let

Rep(M, ā) := {enc<(M, ā) : < is a linear order on dom(M)}

denote the set of all binary encodings of (M, ā). Note that Rep(M, ā) = Rep(M ′, b̄) iff

(M, ā) ∼= (M ′, b̄).

For a circuit family C = (Cm)m∈N to compute a k-ary query q on τ -structures, we require

that it produces the correct result for all possible representations. In other words, for all

τ -structures M , all k-tuples ā ∈ dom(M)k, and all strings Γ ∈ Rep(M, ā), we have that
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C|Γ|(Γ) = 1 iff ā ∈ q(M). Note that for every fixed M and ā, all representations in Rep(M, ā)

have the same length, so the same circuit of the family C acts on all of them.
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3 Deterministic Polynomial
Identity Tests

Perhaps it’s impossible to wear an identity without becoming what you pretend

to be.

— Orson Scott Card

In this chapter we discuss our deterministic polynomial identity tests for bounded-read

multilinear formulas and related generalizations, both in the blackbox and non-blackbox

settings. In Section 3.1 we give the formal statements of our results and an overview of the

techniques we employ. In Section 3.2 we further discuss related work. In Section 3.3 we

introduce our notation and formally define the classes of arithmetic formulas that we study.

Section 3.3 also reviews some properties of tools that we use from prior work. In Section 3.4

we present a structural property of non-zero arithmetic formulas that witnesses their non-

zeroness and give a new result, in this context, that improves on the parameters of prior

work. In Section 3.5 we develop our main technical workhorse, the Fragmentation Lemma,

in a step-wise fashion – for read-once formulas, read-k formulas, and sparse-substituted

formulas – and the Shattering Lemma that is based on it.

We develop our blackbox and non-blackbox identity tests in parallel. Each is built using

two reductions. In Section 3.6 we reduce PIT for structurally-multilinear sparse-substituted

read-(k + 1) formulas to PIT for structurally-multilinear sparse-substituted
∑2-read-k

formulas. In Section 3.7 we reduce PIT for structurally-multilinear sparse-substituted∑2-read-k formulas to PIT for structurally-multilinear sparse-substituted read-k formulas.

In Section 3.8 we prove our two main theorems for identity testing structurally-multilinear

sparse-substituted constant-read formulas: a deterministic polynomial-time non-blackbox

algorithm and a deterministic quasi-polynomial-time blackbox algorithm. We end with a
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specialization of our approach that gives a deterministic polynomial-time blackbox algorithm

for multilinear constant-read constant-depth formulas. In Section 3.9 we describe some

avenues for further research and some recent developments.

3.1 Overview

In this subsection we give an overview of our results and techniques. For clarity we focus on

the case of multilinear constant-read formulas. At the end of this section we briefly discuss

the complexities that the extension to structurally-multilinear sparse-substituted formulas

entails. We begin with the formal statement of our main theorem (Theorem 1 from the

introduction).

Theorem 7 (PIT for Multilinear Bounded-Read Formulas). There exists a deter-

ministic polynomial identity testing algorithm for multilinear formulas that runs in time

sO(1) · nkO(k)
, where s denotes the size of the formula, n the number of variables, and k

the maximum number of times a variable appears in the formula. There also exists a

deterministic blackbox algorithm that runs in time nk
O(k)+O(k logn) and queries points from

an extension field of size O(n2).

As mentioned earlier, polynomial identity testing is trivial for read-once formulas. Our

overall approach for multilinear constant-read formulas is a recursive one in which we reduce

to instances with smaller read-value and/or fewer variables until we reach a trivial case.

Our reduction alternates between two steps and uses as an intermediate stage formulas that

are the sum of two multilinear read-k formulas. We refer to such formulas as multilinear∑2-read-k formulas.
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Step 1. Reduce PIT for multilinear read-(k+1) formulas to PIT for multilinear
∑2-read-k

formulas and PIT for multilinear read-(k+1) formulas on half the number of variables.

Step 2. Reduce PIT for multilinear
∑2-read-k formulas to PIT for multilinear read-k

formulas.

A key concept in our tests is the notion of a structural witness: A structural witness is a

means of exhibiting a formula is nonzero by examining its structure (rather than finding

a particular point where the formula is nonzero). We develop a technique, which we call

shattering, that exposes structural witnesses using a few well-chosen partial derivatives.

This allows us to bring the known structural witnesses for depth-three formulas (namely,

[DS07, SS10a], as seen through [KMSV10]) to bear on multilinear
∑2-read-k formulas, and

enables us to realize Step 2 in both the blackbox and non-blackbox settings. Our shattering

technique builds on a simpler technique, which we call fragmentation, that breaks up a

formula into the product of small factors using a single partial derivative (this generalizes an

idea of [KMSV10]), and which we also use to realize Step 1 in the blackbox setting. A key

technical difficulty lies in showing how fragmentation enables shattering. Ultimately, one

can view our approach as unifying the techniques developed for sums of read-once formulas

(the SV-generator from [SV09]) and multilinear depth-four formulas by using the novel

techniques mentioned above to explore the structure of bounded-read formulas.

In general, a blackbox PIT algorithm for a class F of formulas is equivalent to the

construction of a low-degree polynomial mapping G on few variables such that F ◦ G is

nonzero for every nonzero F ∈ F . We refer to such a mapping as a hitting set generator for

F , and say that G hits every F ∈ F . Testing F on all elements in the image of G when the

input variables to G range over some small set produces an identity test. The converse is

also true – identity tests imply hitting set generators (see e.g. [SV09]).
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We now discuss the two steps and their key ingredients in more detail, with a focus on

the role of fragmentation.

3.1.1 Fragmenting Multilinear Formulas

Our fragmentation technique for multilinear formulas involves partial derivatives with

respect to well-chosen variables. In the simple case of read-once formulas F , the idea boils

down to the following observation: Taking the partial derivative with respect to the median

variable x on which F depends in leaf order, yields a nonzero formula ∂xF that is the

product of subformulas each of which depends on at most half the variables. For a general

multilinear read-(k + 1) formula on n variables, a similar procedure yields the following.

Lemma 3.1 (Simplified Fragmentation Lemma). Given a nonzero multilinear read-

(k + 1) formula F on n variables, there exists a variable x such that ∂xF is nonzero and

can be written as the product of subformulas on at most n/2 variables each, and possibly

one other formula that is the derivative of a
∑2-read-k subformula.

The Fragmentation Lemma helps us in realizing the blackbox version of Step 1 as follows.

A hitting set generator for a class F of formulas also hits products of formulas from F .

Multilinear formula classes (e.g., read-(k + 1) or
∑2-read-k) are closed under the action of

partial derivatives, because for any variable at most one input to each gate may depend

on that variable and, hence, the product rule is simplified. Thus, by the Fragmentation

Lemma, a hitting set generator that hits multilinear
∑2-read-k formulas on n variables as

well as multilinear read-(k + 1) formulas that depend on at most n/2 of the n variables,

also hits some nonzero partial derivative of any nonzero multilinear read-(k + 1) formula on

n variables. Adding an independent random field element turns such a hitting set generator

into one that hits every multilinear read-(k + 1) formula on n variables. A logarithmic
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number of applications of this transformation then turns a hitting set generator for n-variate∑2-read-k formulas into one for n-variate read-(k + 1) formulas.

We also use the Fragmentation Lemma as a building block to establish our Shattering

Lemma. This is the most involved step in our construction. Once we have our Shattering

Lemma, we employ two more ingredients: the SV-generator and structural witnesses for

depth-three formulas. At a high level, the Shattering Lemma allows us to transform

multilinear read-k formulas into depth-three formulas for which structural witnesses are

known, and the latter enables us to apply the SV-generator and realize Step 2. We first

introduce these additional ingredients, then explain how they combine with the Shattering

Lemma, and finally sketch how to obtain shattering from fragmentation.

3.1.2 SV-Generator

Shpilka and Volkovich [SV09] defined a hitting set generator Gw that interpolates all 0-1-

vectors of weight at most w (i.e., it contains all such vectors in its image) and has some

additional closure properties. Their approach for sums of a constant number of read-once

formulas is based on two facts.

Fact 3.1 ([SV09]). Let D` denote the class of nonzero polynomials that are divisible by

at least ` distinct variables. Gw is a hitting set generator for any class F of multilinear

polynomials that

1. is closed under zero-substitutions and

2. is disjoint from D` for every ` > w.
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Fact 3.2 ([SV09]). 1 Let Fi ∈ F[x1, . . . , xn] = F[x̄] be read-once formulas and F =
∑k

i=1 Fi

be a nonzero formula. Let σ̄ be a point in Fn where none of the nonzero first-order partial

derivatives of the Fi’s vanish. Then F (x̄+ σ̄) 6∈ D` for any ` ≥ 3k.

For a formula F as in Fact 3.2, consider applying Fact 3.1 to the class F consisting of

F (x̄+ σ̄) and all its zero-substitutions, for some fixed σ̄. The first condition of Fact 3.1, the

closure under zero-substitutions of F , holds by construction. As for the second condition,

consider a formula F ′ obtained by substituting into F the corresponding components of σ̄

for some subset X ⊆ {x1, . . . , xn} of the variables. For any variable xi 6∈ X, we have that

∂F ′

∂xi
(σ̄) = ∂F

∂xi
(σ̄). Thus, if σ̄ satisfies the hypothesis of Fact 3.2 for F , then it also satisfies

that hypothesis for any partially substituted F ′ of the above type. By Fact 3.2, this shows

that F ′(x̄ + σ̄) 6∈ D` for ` ≥ 3k. Noting that F ′(x̄ + σ̄) coincides with F (x̄ + σ̄) where

all variables in X have been substituted by zero, this means that F satisfies the second

condition of Fact 3.1. We conclude that for any σ̄ satisfying the condition of Fact 3.2 G3k

hits F (x̄+ σ̄), and hence G3k + σ̄ hits F .

In addition, since the partial derivatives ∂xFi are read-once formulas and PIT for read-

once formulas is trivial, we can efficiently find a shift σ̄ satisfying the conditions of Fact

3.2 when given access to the formula F – select values for the components of σ̄ one by

one so as to maintain non-zeroness of the nonzero partial derivatives under that setting.

This is how Shpilka and Volkovich obtained their polynomial-time non-blackbox test [SV08].

Alternately, one can use a hitting set generator G for read-once formulas to generate a shift

σ̄ satisfying the conditions of Fact 3.2. Fact 3.1 then shows that G +G3k is a hitting set

generator for sums of k read-once formulas. This is how Shpilka and Volkovich obtained

their quasi-polynomial-time blackbox test [SV09].

1Shpilka and Volkovich refer to this fact as a hardness of representation result and use the term
“justifying assignment” for σ̄.
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Although more involved, our approach follows the same strategy for Step 2, i.e., to

reduce PIT for multilinear
∑2-read-k formulas to PIT for multilinear read-k formulas.

We use Fact 3.1 as is, and develop the following equivalent of Fact 3.2 for sums of (two)

multilinear read-k formulas.

Lemma 3.2 (Informal Simplified Key Lemma). Let F be a
∑2-read-k formula, and

σ̄ a point where none of the nonzero partial derivatives of small order of any subformula of

F vanish. Then F (x̄+ σ̄) 6∈ D` for any ` that is sufficiently large with respect to k.

Note that the condition of the Key Lemma involves higher-order derivatives, whereas the

corresponding condition in Fact 3.2 only uses first-order derivatives. Nevertheless, the

important properties are preserved: (i) the condition implies that the conclusion holds for

F (x̄+ σ̄) as well as for all its zero-substitutions, and (ii) the condition states that σ̄ is a

common nonzero of some nonzero multilinear read-k formulas which we can easily compute

from F .

Thus, given access to F and to an oracle to a polynomial identity test for multilinear

read-k formulas, we can efficiently construct a shift σ̄ such that Gw hits F (x̄ + σ̄) for w

sufficiently large with respect to k. This gives our non-blackbox reduction from PIT on

multilinear
∑2-read-k formulas to PIT on multilinear read-k formulas. In the blackbox

setting, we can generate the shift σ̄ we need using a hitting set generator G for multilinear

read-k formulas, resulting in G +Gw as a hitting set generator for multilinear
∑2-read-k

formulas.

Shpilka and Volkovich show Fact 3.2 by arguing that applying a sequence of partial

derivatives and nonzero substitutions to F reduces the degree of the terms in D` and zeroes

some of the Fi’s. If D` remains non-trivial after all Fi’s are zeroed, the fact is proved. The

bound they derive on ` depends on how quickly the fanin k is reduced relative to the number

of operations performed by the argument. Strong structural properties of read-once formulas
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make it relatively easy to argue that few partial derivatives and substitutions suffice to zero

any particular read-once formula. For formulas of arbitrary read these properties are not

readily present. In order to prove the Key Lemma, we employ our fragmentation technique

to bring the known structural witnesses for depth-three formulas to bear on multilinear

constant-read formulas.

3.1.3 Structural Witnesses

Derandomizing polynomial identity testing means coming up with deterministic procedures

that exhibit witnesses for nonzero circuits. The most obvious type of witness consists of a

point where the polynomial assumes a nonzero value; such witnesses are used in blackbox

tests. For restricted classes of circuits one may hope to exploit their structure and come

up with other types of witnesses. The prior deterministic PIT algorithms we mentioned

[KS08, SV08, KS09, SV09, SS09, KMSV10, SV11] follow the latter general outline. More

specifically, they exhibit a measure for the complexity of the restricted circuit that can

be efficiently computed when given the circuit as input, and prove that (i) restricted

circuits that are zero have low complexity, and (ii) restricted circuits of low complexity are

easy to test. This framework immediately yields a non-blackbox PIT algorithm for the

restricted class of circuits, and in several cases also forms the basis for a blackbox algorithm.

Complexity measures that have been successfully used within this framework are the rank of

depth-three circuits [DS07, KS08, SV08, KS09, SV09, SS09, KMSV10] and, very recently,

the sparsity of multilinear depth-four circuits [SV11].

To derive their results for multilinear depth-four formulas, Karnin et al. [KMSV10]

established the following structural witness for formulas F that are the sum of “split”

formulas. A “split” formula is the product of subformulas that each only depend on a

fraction of the variables.



37

Fact 3.3 (Informal and implicit in [KMSV10]). A simple and minimal 2 sum of a

constant number of sufficiently split 3 multilinear formulas cannot be zero.

For the precise quantitative version of Fact 3.3 we refer to Section 3.4, where we also give a

new self-contained proof that yields slightly better parameters than the original one. For

the moment it suffices to say that the conditions of simplicity and minimality are relatively

easy to deal with.

We use Fact 3.3, not to directly construct our PIT algorithm as in earlier works, but to

establish the Key Lemma (Lemma 3.2). The connection between the two is as follows. Let

F be a sum of a constant number of multilinear formulas. Note that F (x̄+ σ̄) ∈ D` iff there

exists a nonzero formula Q and an index set I of size ` such that F (x̄+ σ̄)−Q ·
∏

i∈I xi ≡ 0.

Since F is multilinear, Q cannot depend on any variable in I. Thus there is an assignment

to the variables not in I that does not zero Q (it turns out that substituting σ̄ works), and

hence we can assume that F ′(x̄+ σ̄)− a ·
∏

i∈I xi ≡ 0 for some nonzero scalar a. Fact 3.3

shows that the latter cannot happen for ` > 0 if each of the summands of F ′ is (i) sufficiently

split and (ii) not divisible by any variable. For the shifted formula F ′(x̄ + σ̄) the latter

condition is met if the summands of F ′ do not vanish at σ̄. Thus, in order to establish the

Key Lemma, all that remains is to transform multilinear
∑2-read-k formula F ′(x̄+ σ̄) ∈ D`

into a sum F ′′(x̄+ σ̄) of a constant number of sufficiently split multilinear formulas such that

F ′′(x̄+ σ̄) ∈ D`′ for some `′ > 0. Moreover, the transformation should be sufficiently simple

so that the condition that none of the summands of F ′ vanish at σ̄ translates into a simple

condition about σ̄ and the original formula F . Repeated applications of the Fragmentation

Lemma allow us to do so (for ` sufficiently large compared to k) in a process we refer to as

“shattering”.

2Simplicity means that there is no non-trivial factor that is common to all summands of F . Minimality
means that no non-trivial subset of the summands of F sums to zero. Intuitively, these two conditions
mean that there is no “easy” way to make F less complex.

3Karnin et al.[KMSV10] refer to “split” formulas as “compressed”.
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3.1.4 Shattering Multilinear Formulas

For the purpose of exposition, let us consider the case k = 1, i.e., let F = F1 +F2 be the sum

of two read-once formulas. The Fragmentation Lemma applied to Fi gives a formula ∂xFi

that is a product of subformulas on at most half of the variables each. When we greedily

apply the Fragmentation lemma to a factor which depends on the most variables, O(1/α)

applications suffice to ensure that each of the remaining factors depend on at most a fraction

α of the variables. If we denote by P the set of variables we used for the partial derivatives,

multilinearity implies that the product of all those factors equals ∂PFi. Thus, the formula

F ′
.
= ∂PF is the sum of two split multilinear formulas. Moreover, if F (x̄ + σ̄) ∈ D` then

F ′(x̄+ σ̄) ∈ D`′ for `′ = `−|P |, which is positive as long as ` is sufficiently large compared to

1/α. Let F ′i coincide with ∂PFi, so the condition that F ′i does not vanish at σ̄ is equivalent

to ∂PFi not vanishing at σ̄. This is how higher-order derivatives enter the conditions of the

Key Lemma.

In the cases where k ≥ 2 the shattering process becomes more complicated as it no

longer holds that all the factors produced by the Fragmentation Lemma depend on at most

half the number of variables – the one
∑2-read-(k − 1) factor may depend on more.

We handle this situation by explicitly expanding the
∑2-read-(k − 1) formula into the

sum of two read-(k− 1) formulas and propagating the sum up to the top addition gate of F ′.

This increases the top fanin of F ′ and duplicates some of the variable occurrences. However,

by restricting to the variables that only appear in the
∑2-read-(k − 1) formula and then

further restricting the variables to the largest group that appear the exact same number of

times in the larger of the two terms, we can ensure that the sum of the read-values of the

children of F ′ does not increase. As a result, we need to apply this expansion operation no

more than 2k times, and the top fanin of F ′ never grows above 2k. Since we only apply

the operation when the
∑2-read-(k − 1) formula depends on many variables, the subset of
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the variables to which we restrict remains large. This result of this process is qualitatively

captured in the following lemma.

Lemma 3.3 (Informal Simplified Shattering Lemma). For any
∑2-read-k formula

F , there exist disjoint sets of indices P and V , with P small and V relatively large, such

that ∂PF can be written as
∑m

j=1 F
′
j where m ≤ 2k and each F ′j is split with respect to V

and is the product of subformulas of partial derivatives of F1 and F2.

Note that the formula F ′ given by the Shattering Lemma may depend on variables outside

of V , and that the F ′j ’s are only split with respect to V , i.e., they are the products of factors

that each only depend on a fraction of the variables of V but may depend on many variables

outside of V . The formula to which we apply Fact 3.3 is obtained from F ′ by setting the

variables outside of V appropriately. If neither the projections nor any of the Fj vanish

at σ̄, we can conclude that F (x̄ + σ̄) 6∈ D` for any ` larger than the number of partial

derivatives we needed for the shattering. Since the variables always appear as subformulas,

the condition in the statement of the Key Lemma suffices.

3.1.5 Extension to Multilinear Sparse-Substituted Formulas

To extend our results to multilinear sparse-substituted formulas, only a few modifications

are needed. Such a formula consists of a multilinear formula in which each leaf variable is

replaced by a sparse multilinear polynomial in such a way that all multiplication gates of the

original formula remain variable disjoint. The main extension happens in the Fragmentation

Lemma. A combination of partial derivatives and zero-substitutions similar to the techniques

used in [KMSV10] allows us to fragment the sparse substitutions. For substitutions that

consist of at most t terms, this results in an overall multiplicative increase in the number of

such operations by log t. This factor propagates to the exponent of the running time of our

algorithms. Making this argument rigorous gives the following theorem.
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Theorem 8 (Extension to Multilinear Sparse-Substituted Formulas).

There exists a deterministic polynomial identity testing algorithm for multilinear sparse-

substituted formulas that runs in time sO(1) · nkO(k)(log(t)+1), where s denotes the size of the

formula, n the number of variables, k the maximum number of substitutions in which a

variable appears, and t the maximum number of terms a substitution consists of. There also

exists a deterministic blackbox algorithm for multilinear sparse-substituted formulas that

runs in time nk
O(k)(log(t)+1)+O(k logn) and queries points from an extension field of size O(n2).

Note Theorem 7 is a specialization of Theorem 8 obtained by setting t = 1.

3.1.6 Extension to Structurally-Multilinear Sparse-Substituted

Formulas

Our arguments thus far hinge on multilinearity, for two main reasons. First, we heavily use

partial derivatives, and partial derivatives do not increase multilinear formula size. Second,

the factors of multilinear formulas are variable disjoint.

We can relax the multilinearity condition somewhat, namely to structural multilinearity.

The latter only requires that the multiplication gates of the original formula be variable

disjoint under the sparse-substitution, but the sparse polynomials may be non-multilinear.

In the non-blackbox case, the extension to structurally-multilinear sparse-substituted

formulas follows by a simple transformation from general sparse substitutions to multilinear

sparse substitutions that preserves (non-)zeroness. This transformation is based on the fact

that in structurally-multilinear formulas each variable power can be treated as a distinct

variable since the structurally-multilinear condition forces all such products to be formed in

the sparse-substituted polynomials. In the blackbox case, the extension is more difficult.

We argue that a generalization of the Key Lemma holds for structurally-multilinear sparse-

substituted formulas. We show that the transformation from non-blackbox case can be used
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within the proof to reduce to the multilinear sparse-substituted version of the Key Lemma.

In both cases the effect of this extension on the running times of the algorithms is

minimal, increasing the base of the exponent from n to dn.

Theorem 9 (Extension to Structurally-Multilinear Formulas). There exists a de-

terministic polynomial identity testing algorithm for structurally-multilinear sparse-substi-

tuted formulas that runs in time sO(1) · (dn)k
O(k)(log(t)+1), where s denotes the size of the

formula, n the number of variables, k the maximum number of substitutions in which a

variable appears, t the maximum number of terms a substitution consists of, and d the

maximum degree of individual variables in the substitutions. There also exists a deterministic

blackbox algorithm for structurally-multilinear sparse-substituted formulas that runs in time

(dn)k
O(k)(log(t)+1)+O(k logn) and queries points from an extension field of size O(dn2).

Note that this is the formal statement of Theorem 2 from the introduction and that

Theorem 8 is a specialization of Theorem 9 obtained by setting d = 1.

3.2 Related Work

For depth-three formulas with constant top fanin Kayal and Saxena [KS07] present a

non-blackbox algorithm that runs in polynomial time; Karnin and Shpilka [KS08] give a

blackbox algorithm that runs in quasi-polynomial time, i.e., in time 2polylog s on inputs of size

s; for the special case when the field is the rationals or the reals polynomial-time blackbox

algorithms are known [KS09, SS09]. Saxena and Seshadhri resolve this line of research, by

giving a polynomial-time blackbox algorithm for depth-3 constant-top-fanin formulas over

arbitrary fields [SS11].

For depth four Karnin et al. [KMSV10] established a deterministic quasi-polynomial-time

blackbox algorithm for multilinear formulas. Parallel to our work, Saraf and Volkovich
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[SV11] obtained a deterministic polynomial-time blackbox algorithm for multilinear formulas

of depth four. There are also a few incomparable results for rather specialized classes of

depth-four formulas [Sax08, AM10, SV09].

There is some prior work on depth-three constant-read formulas that does not require

multilinearity. In particular, [KS08] gives a n2O(k2)
blackbox identity testing algorithm for

read-k depth-three formulas. Later work in [SS09] implies an improved running time of

n2O(k)
for this algorithm. Note that Saxena and Seshadhri’s (dn)O(k) time blackbox identity

test for depth-three formulas with degree d and top fanin k [SS11] that we mentioned

before subsumes these depth-three constant-read because one can efficiently transform a

constant-read depth-three formula into a constant-top-fanin depth-three formula.

3.3 Background

In this section we first review some notation and basic properties of polynomials and

arithmetic formulas. We then describe an ingredient we need from prior work, namely, the

SV-generator, along with some related observations and extensions.

3.3.1 Polynomials and Arithmetic Formulas

We consider several restricted classes of arithmetic formulas. An arithmetic formula is

multilinear if every gate of the formula computes a polynomial that has degree at most one

in every variable. This means that only one child of a multiplication gate may depend on a

particular variable. However, more than one child may contain occurrences of some variable.

For example, the formula

(x1 − x2) · ((x1 + x3)− x1)
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is multilinear, and although the second factor has occurrences of x1 it does not depend on

x1.

We also consider the restriction that each variable occurs only a bounded number of

times.

Definition 3.1 (read-k formula). For k ∈ N, a read-k formula is an arithmetic formula

that has at most k occurrences of each variable. For a subset V ⊆ [n], a readV -k formula

is an arithmetic formula that has at most k occurrences of each variable in V (and an

unrestricted number of occurrences of variables outside of V ).

Observe that for V = [n] the notion of readV -k coincides with read-k.

Given a read-k formula, we can transform it in polynomial time into an equivalent

formula in standard form that has at most O(kn) gates and where constants only occur

in the α and β of gates. The transformation preserves multilinearity and number of reads.

The transformation is included in the next subsection for completeness. In the blackbox

setting we can assume without loss of generality that the underlying read-k formula is in

standard form. Our non-blackbox algorithms will always implicitly start by running the

transformation.

We can build more complex formulas by adding several formulas together.

Definition 3.2 (
∑m-read-k formula). For k,m ∈ N, a

∑m-read-k formula is the sum

of m read-k formulas.

Note that any
∑m-read-k formula is a read-(km) formula.

Finally, we also consider the above types of formulas in which variables can be replaced

by sparse polynomials. We call a polynomial is t-sparse if it consists of at most t terms.
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Definition 3.3 (sparse-substituted formula). A sparse-substituted formula is an arith-

metic formula where each leaf is replaced by a sparse multivariate polynomial given as a list

of terms. Further,

1. if every variable occurs in at most k of the sparse polynomials, we say that the formula

is read-k , and

2. if for every multiplication gate g and every variable x there is at most one multiplicand

of g that depends on x, we say that the formula is structurally multilinear.

A sparse-substituted formula is multilinear if every gate (including the substituted input

gates) computes a multilinear polynomial. This is equivalent to all multiplication gates in

the backbone formula being variable-disjoint, and the sparse substitutions being multilinear.

The corresponding interpretation of structural multilinearity is that the multiplication

gates in the backbone formula are variable-disjoint, but the substituted sparse polynomials

may not be multilinear. Thus, structural multilinearity is more general than multilinearity.

For brevity we often drop the quantifier “sparse-substituted” when discussing structurally-

multilinear formulas.

3.3.1.1 Standard Form of Read-k Formulas

Given a read-k formula, it can be transformed into a standard form read-k formula where

constants only occur in the α and β of gates and the formula has at most O(kn) gates.

Proposition 3.1. There is an algorithm that transforms a given read-k formula F on n

variables into an equivalent read-k formula F ′, such that F ′ has at most kn gates. Moreover,

the algorithm preserves multilinearity and runs in time polynomial in the size of F .

Proof. Without loss of generality assume has F fanin at most 2. Consider the following

simplification rules for a gate g in F .
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1. Suppose g has one child. Then g = α · g′ + β. If g′ is a constant, replace g with the

constant α · g′ + β. If g′ is an input variable do nothing. If g′ is another gate, where

g′ = α′ · g′′ + β′, replace g with (αα′) · g′′ + (αβ′ + β), explicitly computing the new

constants.

2. Suppose g has two children. Then g = α · (g1 op g2) + β. If both children are constant

replace g with the constant it computes. If one child is constant, without loss of

generality, g1, and op = +, replace g with α · g2 + (αg1 + β); if op = ×, replace g

with (αg1) · g2 + β; otherwise do nothing.

Note that the simplification rules preserve multilinearity. Repeatedly apply these rules

until a fixed point is reached, say F ′. Inspection of the rules gives that g is always replaced

by an equivalent formula. Therefore F ′ ≡ F . Since non-constant parts of the formula are

never duplicated, F ′ is read-k. If g is an internal gate with only one child, it is eliminated;

if g is an internal gate with two children at least one of which is a constant, g is changed by

these rules. Thus, if a fixed point is reached, all internal gates must have two children that

are not constants.

This implies that all the original constants have been moved into the α’s and β’s of the

gates and inputs. Therefore F ′ can be viewed as a binary tree where the at most kn inputs

are leaves. Thus, the total number of gates in F ′ is at most kn. This means that there are

at most 2kn gates and input pairs (α, β).

Since the total number of gates and constants decreases with each step, this process can

repeat at most the size of F many times before the fixed point is reached. �

The previous lemma only bounds the number of gates in the resulting formula. The

constants α and β at each gate and inputs in F ′ are bounded in bit-length by the size of the

original formula F . This means that evaluating the formula F ′ only incurs cost polynomial

in the size of F .



46

The standard form can be easily generalized to sparse-substituted formulas, because the

internal gate structure is the same where the sparse polynomials are treated as inputs. The

standard form can also be specialized to bounded depth formulas where the gate fanin is

unbounded.

3.3.1.2 Partial Derivatives

Partial derivatives of multilinear polynomials can be defined formally over any field F

by stipulating the partial derivative of monomials consistent with standard calculus, and

imposing linearity. The well-known sum, product, and chain rules then carry over. For a

multilinear polynomial P ∈ F[x1, ..., xn] and a variable xi, we can write P as P = Q ·xi +R,

where Q,R ∈ F[x1, x2, . . . , xi−1, xi+1, . . . , xn]. In this case the partial derivative of P with

respect to xi is ∂P
∂xi

= Q. We often shorten this notation to ∂xi
P . Observe that R = P |xi←0.

For a multilinear read-k formula F , ∂xF is easily obtained from F , and results in a

formula with the same or a simpler structure than F . Start from the output gate and

recurse through the formula, applying at each gate the sum or product rule as appropriate.

In the case of an addition gate g = α ·
∑

i gi + β, we have that ∂xg = α ·
∑

i ∂xgi. Thus, we

essentially recursively replace each of the children by their partial derivative. The structure

of the formula is maintained, except that some children may disappear because they do not

depend on x. In the case of a multiplication gate g = α · (
∏

i gi) + β, the derivative ∂xg

is a sum of products, namely ∂xg = α ·
∑

i(
∏

j 6=i gj) · ∂xgi. However, by the multilinearity

condition at most one of the terms in the sum is nonzero because at most one gi can depend

on x. Thus, we leave the branches gj for j 6= i untouched, recursively replace gi by its partial

derivative, and set β = 0. The structure of the formula is again maintained or simplified.

Overall, the resulting formula ∂xF is multilinear and read-k. See Figure 3.1 for an example

with each α = 1 and β = 0. Similarly, the partial derivatives of multilinear
∑m-read-k

formulas are multilinear
∑m-read-k formulas.



47

x2

x3

+

+

×

× ×

x1 x2 x1 x3

x4

×

+

x4

+

×

x4

x2 x3

∂x1

Figure 3.1: An example of taking the partial derivative of a multilinear read-2 formula.

To handle the case of structurally-multilinear formulas we extend the notion of partial

derivative: ∂x,αF
.
= F |x←α−F |x←0 for some α ∈ F. Provided the size of F is more than the

degree of x in the formula F , there exists some α ∈ F such that ∂x,αF 6≡ 0 iff F depends

on x. For this more general definition the analogs of the sum and product rules follow for

structurally-multilinear formulas. Given a structurally-multilinear formula F , ∂x,αF can be

computed by a structurally-multilinear formula with no larger size or read.

3.3.1.3 Example Separating Read-2 and
∑

-Read-Once Formulas

In this subsection we give an example which separates multilinear read-2 formulas from∑
-read-once formulas to demonstrate that the identity tests of [SV08, SV09] for the latter

type cannot carry over to our more general setting.

We follow an approach similar to that which [SV08, SV09] use to show “hardness of

representation” results for sums of read-once formulas. Consider some multilinear read-2

polynomialHk which is purportedly computable by the sum of less than k read-once formulas,

i.e., Hk ≡
∑k−1

i=1 Fi. We argue that for an appropriate choice of Hk, some combination of

partial derivatives and substitutions is sufficient to zero at least one of the branches Fi while

not degrading the hardness of Hk by too much. Since H stays hard we can complete the
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argument by induction. In the base case H1 is nonzero, so it requires at least one read-once

formula to compute. This intuition is formalized in the following lemma.

Lemma 3.4. For any non-trivial field F and each k ∈ N define

Hk
.
=

2k−1∏
i=1

(x1,ix2,ix3,i + x1,i + x2,i + x3,i).

Hk is a multilinear read-2 formula which depends on 6k − 3 variables. Moreover, Hk is not

computable by the sum of less than k read-once formulas.

Proof. Observe that for all i ∈ N , (x1,ix2,ix3,i + x1,i + x2,i + x3,i) is a multilinear read-2

formula. Therefore for all k ∈ N , Hk is a multilinear read-2 formula. We prove the second

half of the claim by induction. When k = 1, H1 is nonzero and hence the claim holds

trivially. Now consider the induction step. Suppose the contrary: There exists a sequence

of at most k − 1 read-once formulas {Fi} such that Hk =
∑k−1

i=1 Fi.

Consider Fk−1. Suppose there exists a pair of variables y, z such that ∂y,zFk−1 ≡ 0.

These operations modify at most two factors of Hk but do not zero them. Therefore

∂y,zHk = H ′ ·Hk−1 for some nonzero multilinear read-2 formula H ′ that depends on four

variables and is variable disjoint from Hk−1 (abusing notation to relabel the variables). Since

H ′ 6≡ 0 and multilinear, there exists ᾱ ∈ {0, 1}4 ⊆ F4 such that H ′(ᾱ) = c 6= 0. This means

that ∂y,zHk|var(H′)←ᾱ = c · Hk−1. Hence Hk−1 can be written as
∑k−2

i=1 c
−1∂y,zFi|var(H′)←ᾱ,

which contradicts the induction hypothesis. Therefore we can assume that for all pairs of

variables y and z, ∂y,zFk−1 6≡ 0.

This together with the read-once property of Fk−1 implies the that least common ancestor

of any pair of variables in Fk−1 must exist and must be a multiplication gate. This also

implies that Fk−1 depends on all variables in Hk. Consider some variable y. Now, since

k > 1 there must exist a variable z such that the least common ancestor of y and z in Fk−1



49

is the first multiplication gate above y which depends on a variable other than y. Because

Fk−1 is a read-once formula we can write ∂zFk−1 = (y − α) · F ′k−1 for some α ∈ F and

a read-once formula F ′k−1 which is independent of y and z. Therefore (∂zFk−1)|y←α ≡ 0.

By inspection we see that for all variables y, z and α ∈ F, (∂zHk)|y←α = H ′ · Hk−1 for

some nonzero multilinear read-2 formula H ′ which is variable disjoint from Hk−1. By the

argument in the previous paragraph we may again conclude by contradicting the induction

hypothesis. �

This implies the following corollary.

Corollary 3.1. There exists a multilinear read-2 formula in n variables such that all k

sums of read-once formula computing it require k = Ω(n).

3.3.1.4 Polynomial Identity Testing and Hitting Set Generators

Arithmetic formula identity testing denotes the problem of deciding whether a given

arithmetic formula is identically zero as a formal polynomial. More precisely, let F be an

arithmetic formula on n variables over the field F. The formula F is identically zero iff

all coefficients of the formal polynomial that F defines vanish. For example, the formula

(x− 1)(x+ 1)− (x2− 1) is identically zero but the formula x2− x is nonzero (even over the

field with 2 elements).

There are two general paradigms for identity testing algorithms: blackbox and non-

blackbox. In the non-blackbox setting, the algorithm is given the description of the arithmetic

formula as input. In the blackbox setting, the algorithm is allowed only to make queries to

an oracle that evaluates the formula on a given input. Observe that non-blackbox identity

testing reduces to blackbox identity testing because the description of a formula can be

used to efficiently evaluate the formula on each query the blackbox algorithm makes. There

is one caveat – in the blackbox case the algorithm should be allowed to query inputs from a
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sufficiently large field. This may be an extension field if the base field is too small. Otherwise,

it is impossible to distinguish a polynomial that is functionally zero over F but not zero as

a formal polynomial, from the formal zero polynomial (e.g., consider the formula x2 − x

restricted to the field with two elements).

Blackbox algorithms for a class P of polynomials naturally produce a hitting set, i.e., a

set H of points such that each nonzero polynomial P ∈ P from the class does not vanish at

some point in H. In this case we say that H hits the class P , and each P in particular. To

see the connection, observe that when a blackbox algorithm queries a point that is nonzero

it can immediately stop. Conversely, when the result of every query is zero, the algorithm

must conclude that the polynomial is zero; otherwise, it fails to correctly decide the zero

polynomial.

A related notion is that of a hitting set generator. Formally, a polynomial map G =

(G1,G2, . . . ,Gn) where each Gi ∈ F[y1, y2, . . . , y`] is a hitting set generator (or generator for

short) for a class P of polynomials, if for each nonzero polynomial P ∈ P , G hits P , that is

the composition of P with G (often denoted P ◦ G or P (G)) is nonzero. Suppose that G

hits a class of polynomials P , then G can be used to construct a blackbox identity test for

P ∈ P by collecting all elements in the image of G when we let the input variables to G

range over some small set.

Proposition 3.2. Let P be a class of n-variate polynomials of total degree at most d. Let

G ∈ (F[y1, ..., y`])
n be a generator for P such that the total degree of each polynomial in G is

at most dG. There is a deterministic blackbox polynomial identity testing algorithm for P

that runs in time O((d · dG)`) and queries points from an extension field of size O(d · dG).

Proof. Let P be a nonzero polynomial in P. Since G is a generator for P, the polynomial

P ◦ G ∈ F[y1, y2, . . . , y`] is nonzero. The total degree of P ◦ G is at most d · dG. By the

Schwartz-Zippel Lemma [Sch80, Zip79, DL78] any set V ` ⊆ E`, where |V | ≥ d · dG + 1, and
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E is an extension field of F, contains a point at which P ◦ G does not vanish. Note that the

extension field E ⊇ F must be sufficiently large to support the subset V of the required size.

The algorithm tests P at all points in G(V `) and outputs zero iff all test points are zero.�

Note that this approach is only efficient when `� n and the degrees are not too large.

Hitting set generators and a hitting sets are closely related. By Proposition 3.2 a hitting

set generator implies a hitting set. It is also known that a hitting set generator can be

efficiently constructed from a hitting set using polynomial interpolation [SV09].

3.3.2 SV-Generator

One example of such a generator is the one Shpilka and Volkovich obtained by interpolating

the set Hn
w of all points in {0, 1}n with at most w nonzero components. The resulting

generator Gw is a polynomial map of total degree n on 2w variables. Shpilka and Volkovich

[SV09] showed that it hits
∑k-read-once formulas for w ≥ 3k+log n. Karnin et al. [KMSV10]

also used it to construct a hitting set generator for multilinear depth-four formulas with

bounded top fanin.

For completeness, we include the definition of the generator Gw.

Definition 3.4 (SV-Generator [SV09]). Let a1, . . . , an denote n distinct elements from

a field F, and for i ∈ [n] let Li(x)
.
=
∏

j 6=i
x−aj

ai−aj
denote the corresponding Lagrange inter-

polants. For every w ≥ 1, define

Gw(y1, ..., yw, z1, ..., zw)
.
=

(
w∑
j=1

L1(yj)zj,
w∑
j=1

L2(yj)zj, ...,
w∑
j=1

Ln(yj)zj

)
.

Let (Gw)i denote the ith component of Gw.

For intuition it is helpful to view the action of G1 on a random element of F2 as selecting a
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random variable (via the value of y1
4) and a random value for that variable (via the value

of z1). Since the SV-generator is a polynomial map it is natural to define the sum of two

copies of the generator by their component-wise sum and to furthermore view Gw as the

sum of w independent choices of variables and values. For this reason and convenience of

notation we take the convention that whenever an instance of the SV-generator Gw is added

to another polynomial map G (including to another instance of the SV-generator) we will

assume that Gw is defined over a new set of variables, that is, var(Gw) ∩ var(G) = ∅. With

this convention in mind, the SV-generator has a number of useful properties that follow

immediately from its definition. We list the ones we use.

Proposition 3.3 ([KMSV10, Observations 4.2, 4.3]). Let w1, w2 be positive integers.

1. Gw1(ȳ, 0̄) ≡ 0̄.

2. Gw1|yw1←ai
= Gw1−1 + zw1 · ēi, where ēi is the 0-1-vector with a single 1 in position i.

3. Gw1 +Gw2 = Gw1+w2.

The first item states that zero is in the image of G. The second item shows how to make

a single output component (and no others) depend on a particular zj. The final item

shows that sums of independent copies of G are equivalent to a single copy of G with the

appropriate parameter w (note that the seed variables to the generator can be reindexed

without loss of generality). Proposition 3.3 implies the following.

Proposition 3.4. Let P =
∑d

i=0 Pix
i
k, where each Pi ∈ F[x1, . . . , xk−1, xk+1, . . . , xn] are

polynomials independent of the variable xk. Suppose the polynomial map G hits Pj for some

j > 0, then P (G +G1) is non-constant.

4Note: This is not completely accurate because for values outside the ai’s the generator does not
uniquely select a variable.
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Proof. Consider G +G1. Without loss of generality, the variables in G1 are y1 and z1, and

by convention are disjoint from the variables in G. Set the seed variable y1 to the constant

ak. By Proposition 3.3, Part 2, G1(y1, z1)|y1←ak
= z1 · ēk.

Now, consider P composed with G +G1(ak, z1) and write:

P (G +G1(ak, z1)) =
d∑
i=0

Pi(G)((G)k + z1)
i.

By hypothesis Pj(G) 6≡ 0 for some j > 0, fix j to be the maximum such index. Since G is

independent of z1, Pj(G) 6≡ 0, and j is maximal: P (G +G1(ak, z1)) has a monomial which

depends on zj1 that cannot be canceled. Therefore P (G +G1(ak, z1)) is non-constant and

hence P (G +G1) is as well. �

This proposition implies the following lemma: If G is a generator that hits some partial

derivative of a polynomial, then G +G1 hits the polynomial itself.

Lemma 3.5. Let P be a polynomial, x be a variable, and α ∈ F. If G hits a nonzero ∂x,αP ,

then P (G +G1) is non-constant.

Proof. Write P as a univariate polynomial in x:

P =
d∑
i=0

Pix
i,

where the polynomials Pi do not depend on x. By definition

∂x,αP = P |x←α − P |x←0 =
d∑
i=1

Piα
i.

Our hypothesis (∂x,αP )(G) 6≡ 0 then implies that there is a j > 0 such that Pj(G) 6≡ 0.

Applying Proposition 3.4 completes the proof. �
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We now use this lemma to argue that the SV-generator hits sparse polynomials. Consider

a sparse polynomial F . For any variable x that does not divide F , either at least half of the

terms of the sparse-substituted polynomial depend on x, or at least half of the terms the

do not. In the former situation setting x to zero eliminates at least half of the terms in F ;

in the latter situation taking the partial derivative with respect to x has the same effect.

Combining this with Lemma 3.5 and the properties of G completes the argument.

Lemma 3.6. Let F be a non-constant sparse polynomial with t terms, then F (Gdlog te+1) is

non-constant.

Proof. Assume, without loss of generality, that there are no duplicate monomials present in

F . We proceed by induction on t.

Suppose t = 1. By hypothesis F consists of a single non-constant monomial. Because

the components G1 are non-constant we can conclude that F (G1) is non-constant.

Now consider the induction step for t > 1. Let w
.
= dlog t

2
e+ 1.

Case 1: Suppose there exists a variable xi ∈ var(F ) such that at most half of the terms

depend on xi. Then there is an α ∈ F̄ such that ∂xi,αF 6≡ 0 and has at most t
2

terms.

By induction (∂xi,αF )(Gw) 6≡ 0. By Lemma 3.5, F (Gw + G1) is non-constant. Applying

Proposition 3.3, Part 3, completes the case.

Case 2: Otherwise, for each variable xi ∈ var(F ) more than half the terms in F depend on

xi. There are two cases.

1. Suppose there exists a variable xi ∈ var(F ) such that F |xi←0 is non-constant. Consider

F (Gw + G1(yw+1, zw+1)). Set yw+1 ← ai and zw+1 ← −(Gw)i. Write F = Fxi
· xi +

F |xi←0, for some sparse polynomial Fxi
which may depend on xi. By Proposition 3.3,
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Part 2:

F (Gw +G1(ai,−(Gw)i)) =F |xi←0(Gw)

+ Fxi
(Gw +G1(ai,−(Gw)i)) · ((Gw)i − (Gw)i)︸ ︷︷ ︸

≡0

=F |xi←0(Gw).

By induction, the RHS of the above equation is non-constant, and hence F (Gw +G1)

is non-constant.

2. Otherwise, for all xi ∈ var(F ), F |xi←0 is a constant. We can assume without loss

of generality that F is not divisible by any variable because such a variable can be

factored out and independently hit by Gw+1. Therefore, for each xi ∈ var(F ) at least

one term of F does not depend on xi. Combining this fact with the hypothesis of the

case implies, without loss of generality, that F has a nonzero constant term c. We

can write F = F ′ + c for a non-constant sparse polynomial F ′ with t− 1 terms. By

induction F ′(Gw+1) is non-constant. Hence F (Gw+1) is non-constant.

This completes the proof. �

Before we argue the last necessary property of G, we state one additional definition.

Definition 3.5. For ` ∈ N, let D` denote the class of nonzero polynomials that are divisible

by a multilinear monomial on ` variables, i.e., the product of ` distinct variables. We use

M` to denote the monomial
∏`

i=1 xi.

We require a property of G that is implicit in [SV08, SV09], namely Fact 3.1 from the

introduction. Informally it states: If a class of polynomials is disjoint from D`, and is closed

under zero substitution, then the SV-generator hits this class of polynomials.
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Lemma 3.7 (Implicit in [SV09, Theorem 6.2]). Let P be a class of polynomials that

is closed under zero-substitutions. If P is disjoint from D` for every ` > w, the map Gw is

a hitting set generator for P.

Proof. Fix P ∈ F[x1, . . . , xn] in P, and let d denote the maximum degree of individual

variables in P . Let S ⊆ F̄ with |S| = d+ 1 and 0 ∈ S. Define the set Hn
w to be the set of

vectors in Sn ⊆ Fn with at most w nonzero components. The set Hn
w is in the image of Gw.

To see this, consider x̄ ∈ Hn
w. Let {ci}ri=1 be the index set of at most w nonzero components

of x̄. We can set the seed to Gw so that Gw evaluates to x̄: For i ∈ [r], set yi ← aci (that

is, the constant selecting the cthi component) and zi ← xi; set yi = zi ← 0 for i > r. Then

Gw(ȳ, z̄) = x̄.

Since the image of Gw contains Hn
w, it is sufficient to prove that P |Hn

w
≡ 0 implies P ≡ 0.

For the given value of d, we prove the latter statement by induction on n. If n ≤ w, then Hn
w

is all of Sn. Since P has individual degree at most d, there is point in Sn which witnesses

the non-zeroness of P . Therefore, P |Hn
w
≡ 0 implies P ≡ 0, completing the base case.

Now, consider n > w and suppose that P |Hn
w
≡ 0. For some j ∈ [n], let P ′

.
= P |xj←0.

By the closure under zero-substitutions of P, P ′ ∈ P. Since Hn−1
w is a projection of

Hn
w ∩ {x̄ ∈ Sn|xj = 0}, we have that P ′|Hn−1

w
≡ 0. The individual degree of P ′ is at most d,

and P ′ depends on at most n− 1 variables. By the induction hypothesis P |xj←0 = P ′ ≡ 0

and therefore xj|P . The above argument works for any j ∈ [n], so xj|P for all j ∈ [n].

Hence, (
∏n

i=1 xi)|P . We have that P = Q ·
∏n

i=1 xi for some polynomial Q. Since P ∈ P

and P ∩ Dn = ∅ for n > w, we conclude that Q ≡ 0. Thus P ≡ 0, completing the proof. �

3.4 Structural Witnesses

Structural witnesses allow us to determine that certain formulas are nonzero without

exhibiting a point where they do not vanish. The notion was introduced for depth-three
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formulas in [DS07] and later also applied to multilinear depth-four formulas in [KMSV10,

SV11].

For their application to multilinear depth-four formulas Karnin et al. [KMSV10] consider

multilinear formulas of the form F =
∑m

i=1 Fi where the Fi’s factor into subformulas each

depending only on a fraction α of the variables. In such a case we call the formula F α-split.

For technical reasons we present a more general definition that requires “splitness” with

respect to a restricted set of variables.

Definition 3.6 (α-split). Let F =
∑m

i=1 Fi ∈ F[x1, . . . , xn], α ∈ [0, 1], and V ⊆ [n]. We

say that F is α-split if each Fi is of the form
∏

j Fi,j where |var(Fi,j)| ≤ αn. F is α-split

with respect to V (in shorthand, α-splitV ) if |var(Fi,j) ∩ V | ≤ α|V | for all i, j.

For V = [n], the two definitions coincide. Note in the definition of split we do not require

that var(F ) = [n].

To state the structural result Karnin et al. use, we also need the following terminology.

An additive top-fanin-m formula F =
∑m

i=1 Fi is said to be simple if the greatest common

divisor (gcd) of the Fi’s is in F. F is said to be minimal if for all non-trivial subsets S ( [m],∑
i∈S Fi 6≡ 0. The following formalization quantifies Fact 3.3 from the introduction.

Lemma 3.8 (Structural Witness for Split Multilinear Formulas).

For R(m) = (m− 1)2 the following holds for any multilinear formula F =
∑m

i=1 Fi on n ≥ 1

variables with ∪i∈[m]var(Fi) = [n]. If F is simple, minimal, and α-split for α = (R(m))−1,

then F 6≡ 0.

Although not critical for our results, we point out that Lemma 3.8 shaves off a logarithmic

factor in the bound for R(m) obtained by Karnin et al. They show how to transform a split,

simple and minimal, multilinear formula F =
∑m

i=1 Fi into a simple and minimal depth-three

formula F ′ =
∑m

i=1 F
′
i , and then apply the so-called rank bound [DS07, SS09, SS10a] to F ′
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in order to show that F 6≡ 0. We follow the same outline, but use a new structural witness

for the special type of multilinear depth-three formulas F ′ that arise in the proof, rather

than the rank bound Karnin et al. use.

The special type of multilinear depth-three formulas we consider is of the form F =∑m
i=1 Fi where each Fi is the product of univariate linear polynomials (of the form α · x+ β)

on distinct variables. Along the lines of [SV11], we show that a simple and minimal formula

of that form where at least one Fi depends on more than m− 2 variables, is nonzero.

Lemma 3.9 (Structural Witness for Univariate Multilinear Depth-3 Formulas).

Let m ≥ 2 and F =
∑m

i=1 Fi =
∑m

i=1

∏di

j=1 Lij be a multilinear depth-three formula where

each Lij is a univariate polynomial. If F is simple and minimal, and |var(Fi)| > m− 2 for

some i ∈ [m], then F 6≡ 0.

We provide the proof of Lemma 3.9 in Section 3.4. For completeness, we now show how it

implies the structural witness that we use in our identity test.

Proof (of Lemma 3.8). Without loss of generality write: F =
∑m

i=1 Fi =
∑m

i=1

∏di

j=1 Pij,

where the Pij are irreducible. We can construct a set U ⊆ [n] such that for all i, j,

|U ∩ var(Pij)| ≤ 1 and there exists ` ∈ [m] for which |U ∩ var(F`)| ≥ 1
α·m > m− 2.

Construct U greedily as follows. Begin with U empty. While there is a variable x such

that all the Pij’s that depend on x depend on no variables currently in U , add x to U .

Each added variable x excludes at most (αn) · bx variables from consideration, where bx is

the number of branches of F that depend on x. This procedure can continue as long as∑
x∈U αnbx < n. This implies that we can achieve b

.
=
∑

x∈U bx ≥
1
α
. Observe that we may

also write b =
∑m

i=1 |U ∩ var(Fi)|. By averaging we see that there exists an ` ∈ [m] such

that |U ∩ var(F`)| ≥ 1
α·m > m− 2, as claimed.

Assigning all variables outside of U linearizes each Pij – in fact, each Pij becomes a

univariate linear function – and turns F into a depth-three formula F ′ with an addition
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gate on top of fanin m. Moreover, as we will argue, a typical assignment β̄ from F̄ to the

variables outside of U keeps F ′ (1) simple, (2) minimal, and (3) ensures that |var(F ′`)| is

more than m− 2. The structural witness for univariate multilinear depth-three formulas

(Lemma 3.9) implies that F ′ 6≡ 0, and therefore that F 6≡ 0.

All that remains is to establish the above claims about a typical assignment β̄ to the

variables in [n] \ U :

1. To argue simplicity, we make use of the following property of multilinear polynomials

P and Q: If P is irreducible and depends on a variable x, then P |Q iff P |x←0 ·

Q − P · Q|x←0 ≡ 0.5 Since F is simple, for every irreducible subformula Pij that

depends on some u ∈ U , there is branch, say Fi′ , such that Pij does not divide

Fi′ . Thus, by the above property, Pij|U←0 · Fi′ − Pij · Fi′|U←0 6≡ 0. Let P ′ij be the

result of applying β̄ to Pij, and define F ′i′ and F ′ similarly. A typical assignment β̄

keeps Pij|U←0 · Fi′ − Pij · Fi′|U←0 nonzero and P ′ij dependent on u. Since P ′ij remains

irreducible as a univariate polynomial, the above property implies that P ′ij does not

divide F ′i′ . Therefore, F ′ is simple.

2. Minimality is maintained by a typical assignment since if
∑

i∈S Fi is a nonzero

polynomial for all ∅ ( S ( [m], then the same holds after a typical partial assignment

β̄.

3. Finally, for any u ∈ U there exists at least one Pij for which u ∈ var(Pij). Since a

typical assignment to the variables in Pij other than u turns Pij into a non-constant

linear function of u and |U ∩ var(F`)| > m− 2, we conclude that F ′` depends on more

than m− 2 variables under a typical assignment β̄. �

5Here is a short proof of this property: If P |Q, then Q = P · Q′ where Q′ does not depend on x by
multilinearity and hence P |x←0 · Q − P · Q|x←0 ≡ P |x←0 · (P · Q′) − P · (P |x←0 · Q′) ≡ 0. If P does not
divide Q, then because P is irreducible and depends on x, P does not divide P |x←0 ·Q, and we conclude
the required identity cannot hold.
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Proof of Lemma 3.9

We now return to the proof of Lemma 3.9, whose outline goes as follows.

We argue the contra-positive of the lemma, that is, if F is a formula of the stated form

from Lemma 3.9, and simple, minimal, and zero, then |var(F`)| ≤ m− 2 for all ` ∈ [m]. We

proceed by induction on m. Consider such a simple, minimal, and zero formula F . Suppose

that some branch, say Fm, depends on more than m − 2 variables. Since F is simple, if

(x− α) divides Fm, it does not divide all other F`’s. We may therefore assume it does not

divide F1. Setting x← α zeroes the branch Fm, but not F1. The formula F ′
.
= F |x←α may

not be simple or minimal. Consider a minimal zero subformula of F ′, called F ′′, containing

F1|x←α. We argue that the size of var(F1) can be bounded by a combination of the number

of variables in: (i) F1|x←α

gcd(F ′′)
, and (ii) the gcd of the branches of F ′′. The former may be

bounded by induction. To bound the latter we argue a bound on the number of variables in

the gcd of a non-trivial subformula of F (with fanin at least 2). This is done by including

the gcd as a summand in a formula with fanin less than m. Since the gcd is a product of

univariate polynomials, we use induction to derive the stated bound on |var(F1)|.

The above argument can be repeated for each F` with ` ∈ [m− 1] to get the bound the

lemma states for those branches. Since all branches except Fm depend on few variables,

there exists a set of variables V ⊆ var(Fm) that is not fully contained in any other branch

F`. This implies that the partial derivative of F with respect to V zeroes all branches except

Fm. This in turn, means that ∂V F ≡ ∂V Fm 6≡ 0, contradicting the fact that F ≡ 0, and

completing the proof.

When m = 2 the simplicity and zeroness of F implies that neither branch depends on

any variables. In the induction step at least one branch is eliminated at the cost of at most

one variable. This intuitively implies the bound of m − 2. We now formalize the above

outline.
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Proof (of Lemma 3.9). The proof is by induction on m. If m = 2 then F can only be a

sum of two constants. Hence, the base case holds. Assume m ≥ 3. We need the following

proposition.

Proposition 3.5. Let m ≥ 2 and F =
∑m

i=1 Fi =
∑m

i=1

∏di

j=1 Lij be a multilinear depth-

three formula where each Lij is a univariate polynomial, let H
.
= gcd(F1, F2, . . . , Ft) for

some 2 ≤ t ≤ m− 1. If F is simple and minimal, then |var(H)| ≤ m− t− 1.

Proof. Denote V = var(H) and Fi = H · fi for i ∈ [t]. We can write

F = H · (f1 + f2 + . . .+ ft) + Ft+1 + . . .+ Fm.

As F is multilinear H must be variable disjoint with all fi’s. As in the proof of Lemma 3.8,

we can fix the variables outside V such that the resulting formula F ′ = H ·α+F ′t+1+ . . .+F ′m

remains simple and minimal, and α 6= 0. A typical assignment will suffice. We obtain

a formula satisfying the conditions of Lemma 3.9 with top fanin m′ = m − t + 1. Note

that 2 ≤ m′ ≤ m − 1. Therefore, we can apply the induction hypothesis to get that

|var(H)| ≤ m′ − 2 = m− t− 1. �

We now return to the proof of the lemma.

Suppose that the lemma does not hold. Then there is some branch that depends on more

than m−2 variables. Therefore, we assume without loss of generality that |var(Fm)| > m−2.

Now consider some other branch, say F1. Since F is simple and minimal, by Proposition 3.5,

|var(gcd(F1, Fm))| ≤ m − 3. Therefore there is a univariate factor of Fm which does not

divide F1. Let this factor be (x− α).

Consider F ′
.
= F |x←α, and observe that Fm|x←α ≡ 0, but F1|x←α 6≡ 0. By assumption

F ′ is a multilinear formula computing the zero polynomial. Let F ′′ be a minimal zero

subformula of F ′ that contains the summand F1|x←α. Assume without loss of generality
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that

F ′′
.
=

t∑
i=1

F ′′i =
t∑
i=1

Fi|x←α,

for some t. From the above discussion 2 ≤ t ≤ m− 1. We would to like to upper bound

|var(F ′′1 )|. By multilinearity we may write

|var(F ′′1 )| =
∣∣∣∣var

(
F ′′1

gcd(F ′′1 , · · · , F ′′t )

)∣∣∣∣+ |var(gcd(F ′′))| .

We bound these two terms in turn. Consider the first term. This formula F ′′

gcd(F ′′)
is simple

by construction; in addition, it is minimal because F ′′ is minimal. Consequently, by the

induction hypothesis on F ′′

gcd(F ′′)
we get that:

∣∣∣var
(

F ′′1
gcd(F ′′)

)∣∣∣ ≤ t− 2.

Now consider the second term. We have that

|var(gcd(F ′′))| ≤ |var (gcd(F1, F2, . . . , Ft))| ≤ m− t− 1,

where the former inequality follows because the Fi are multilinear products of univariate

polynomials, and the latter inequality follows by the minimality of F , and Proposition 3.5

applied to F with t. By putting everything together we have that:

|var(F1)| ≤ 1 + |var(F ′′1 )| ≤ 1 +

∣∣∣∣var

(
F ′′1

gcd(F ′′)

)∣∣∣∣+ |var(gcd(F ′′))|

≤ 1 + (t− 2) + (m− t− 1) = m− 2.

�

We have concluded that |var(F1)| ≤ m− 2. Moreover, since the above argument is generic,

the bound applies to all F`, for ` ∈ [m−1]. Thus, we have |var(F`)| ≤ m−2, for ` ∈ [m−1].

Form a set V of variables in var(Fm) by selecting for each ` ∈ [m− 1] a variable that

occurs in var(Fm) but not in var(F`). This is possible because F is multilinear and Fm

depends on more variables than any other branch. Because Fm is a multilinear product
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of linear univariate polynomials, ∂V Fm 6≡ 0. However, ∂V F` ≡ 0 for all ` ∈ [m− 1]. From

this we conclude that ∂V F ≡ ∂V Fm 6≡ 0, contradicting the fact that F ≡ 0. Therefore

var(Fm) ≤ m− 2 and the proof is complete.

3.5 Fragmenting and Shattering Formulas

In this section we describe a means of splitting up or fragmenting multilinear sparse-

substituted formulas. We build up towards this goal by first fragmenting read-once formulas,

and then multilinear read-k formulas. We conclude by extending our fragmentation technique

to work for sparse-substituted formulas, proving our Fragmentation Lemma (Lemma 3.12).

We view the Fragmentation Lemma as an atomic operation that breaks a read-k formula

into a product of easier formulas, at the cost of a few partial derivatives and zero-substitutions

(the more such operations performed the longer the seed length of the eventual generator).

By greedily applying the Fragmentation Lemma and using some other ideas we are able to

shatter multilinear sparse-substituted
∑m-read-k formulas, that is, simultaneously split all

the top-level branches so that they are the product of factors that each only depend on a

fraction of the variables. The Shattering Lemma (Lemma 3.14) is the main result of this

section and formalizes Lemma 3.3 from the introduction.

3.5.1 Fragmenting Read-Once Formulas

Let F be a read-once formula. Consider a traversal of the variables of F in leaf order. For

the median variable x in this traversal, ∂xF is 1
2
-split. This is because the path from the root

of F to x partitions the formula into halves that can only combine at the top multiplication

gate of ∂xF . Moreover, by only considering variables on which F depends, we can make

sure that ∂xF 6≡ 0 assuming F is non-constant. We make this intuition more formal in the
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Figure 3.2: An example of fragmenting a read-once formula.

following lemma and refer to Figure 3.2 for an example. For generality, we state the lemma

with respect to a restricted variable set V ⊆ [n]. Recall that a formula F is α-splitV if it is

the product of formulas each depending on fewer than α|V | variables from V (and possibly

more variables outside of V ).

Lemma 3.10 (Fragmenting Read-Once Formulas). Let ∅ ( V ⊆ [n] and let F be an

n-variable multilinear readV -once formula that depends on at least one variable in V . There

exists a variable x ∈ V such that ∂xF is nonzero and is the product of subformulas of F that

each depend on at most |V |
2

variables from V (and possibly more variables outside of V ).

Proof. Without loss of generality, it can be assumed that V only contains variables on which

F depends. Let S be a sequence of the variables in V produced by an in-order traversal of

F . Select the variable x, which has no more than |V |/2 of the variables in V to the left

or right of it in the traversal S. Then ∂xF is nonzero (since F depends on x) and can be

written in the required form. To see the latter, follow the procedure for computing ∂xF

described in Section 3.3.1.2 by tracing the path in F from the root to the leaf labeled x.

By the sum rule, ∂x eliminates the diverging addition branches along this path as those
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branches to not depend on x. Multiplicative branches that do not depend on x are split

off as factors. None of those factors of ∂xF can depend on more than |V |/2 variables from

V . This is because the variables within each factor cannot span both sides of the formula

around the path from the output gate to x. �

3.5.2 Fragmenting Multilinear Read-k Formulas

While illustrating the basic idea of fragmenting, Lemma 3.10 is insufficient for our purposes.

A key reason the proof of Lemma 3.10 goes through is that in read-once formulas each

addition gate has children that are variable disjoint. This property allows the argument to

recurse into a single addition branch. In read-k formulas this is no longer the case. Our

solution is to follow the largest branch that depends on a variable that is only present within

that branch. This allows us to mimic the behavior of the read-once approach as long as

such a branch exists. Once no such branch exists, each child of the current gate cannot

contain all the occurrences of any variable x. This means that these children are read-(k−1)

formulas. Taking a partial derivative with respect to a variable that only occurs within

the current gate eliminates all diverging addition branches above the gate. This makes the

resulting formula multiplicative in all the unvisited (and small) multiplication branches.

This intuition can be formalized in the following lemma, which generalizes Lemma 3.1 from

the introduction.
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Lemma 3.11 (Fragmenting Multilinear Read-k Formulas). Let ∅ ( V ⊆ [n], k ≥ 2,

and let F be an n-variable multilinear readV -k formula that depends on at least one variable

in V . There exists a variable x ∈ V such that ∂xF is nonzero and is the product of

1. subformulas of F each depending on at most |V |
2

variables from V (and possibly more

variables outside of V ), and

2. at most one
∑2-readV -(k − 1) formula, which is the derivative with respect to x of

some subformula of F .

Proof. Assume without loss of generality that V only contains variables on which F depends,

and that the children of multiplication gates are variable disjoint with respect to V .

If none of the variables in V occur k times in F , any choice of variable x ∈ V does the

job. So, let us assume that is at least one variable in V occurs k times. We use Algorithm 1

to select the variable x, where we assume without loss of generality that F has fanin two.

The algorithm recurses through the structure of F , maintaining the following invariant:

The current gate g being visited contains below it k occurrences of some variable in V .

Setting g to be the output gate of F satisfies this invariant initially.

If g is a multiplication gate (steps (1)-(3)), recurse to the child of g that depends on

more than |V |
2

of the variables in V and contains k occurrences of some variable in V . If no

such child exists, return a variable from V that occurs k times in g. Such a variable must

exist by the invariant.

If g is an addition gate (steps (4)-(6)), and at least one of its children, gi, has a variable

in V that occurs k times in gi, recurse to gi. Otherwise, both children of g are readV -(k− 1)

formulas. Select a variable x ∈ V that occurs k times in g ending the recursion.

In the partial derivative ∂xF , all unvisited addition branches along the path from the

output gate of F to the final g have been eliminated. Also, all unvisited multiplication

branches along the path become factors of ∂xF together with ∂xg. More formally, ∂xF =
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(∂xg) ·
∏

i Fi, where the Fi are the unvisited multiplication branches. The Fi are readV -k

formulas that depend on at most |V |
2

variables from V , because the largest branch is always

taken at multiplication gates. When the process stops at a multiplication gate, no large

child contains all occurrences of some variable in V . In this case, there is at most one

factor of ∂xg that depends on more than |V |
2

variables from V . If this factor exists it is a

readV -(k − 1) formula (and thus also a
∑2-readV -(k − 1) formula). The remaining factors

are readV -k formulas depending on at most |V |
2

variables from V . When the process stops

at an addition gate, ∂xg is a
∑2-readV -(k − 1) formula that may depend on many variables

from V . In either case, the resulting ∂xF meets the requirements of the lemma. Note that

since we assumed F depends on all variables in V , ∂xF 6≡ 0. �

Lemma 3.10 can be viewed as a simplified version of Lemma 3.11 for the case k = 1.

Algorithm 1 SPLIT(g, k, V ) - A readV -k fragmenting algorithm

Input: k ≥ 2, n ∈ N, ∅ ( V ⊆ [n] and g is an n-variate, multilinear readV -k formula that

depends on all variables in V . There exists a variable in V that occurs k times in g.

Output: x ∈ V , such that ∂xg meets the conditions of Lemma 3.11

1: case g = α(g1 · g2) + β

2: if ∃i ∈ {1, 2}, x ∈ V where x occurs k times in gi and |var(gi) ∩ V | > |V |
2

then

3: return SPLIT(gi, k, V )

4: case g = α(g1 + g2) + β

5: if ∃i ∈ {1, 2}, x ∈ V where x occurs k times in gi then

6: return SPLIT(gi, k, V )

{Otherwise}

7: return x ∈ V that occurs k times in g.
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3.5.3 Fragmenting Sparse-Substituted Formulas

In this subsection we extend our fragmenting arguments to work for sparse-substituted

formulas.

First consider a multilinear sparse-substituted read-once formula F . The idea is to apply

the argument from Lemma 3.10 and the chain rule to locate a variable x such that ∂xF is

almost fragmented. By this we mean that each of the factors of ∂xF depends on at most

half of the variables except the factor that was originally a sparse polynomial that depends

on x. The sparse polynomial, say f , may depend on too many variables. In that case we

perform further operations so that f factors into small pieces. Through a sequence of partial

derivatives and zero-substitutions we eliminate all but one term in f . This implies that

the sparse polynomial and hence the overall resulting formula F ′ is 1
2
-split. To perform

the additional step, observe that for any variable x, either at most half of the terms in f

depend on x or at most half do not. In the former case, taking the partial derivative with

respect to x eliminates at least half of the terms; setting x to 0 has the same effect in the

latter case. Repeating this process a number of times logarithmic in the maximum number

of terms eliminates all but one of the terms, resulting in a trivially split formula.

This is the intuition behind the sparse-substituted extension of Lemma 3.10 and cor-

responds to the first part of the next lemma. The second part is the sparse-substituted

extension of Lemma 3.11 and follows from that lemma by a simple observation.
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Lemma 3.12 (Fragmentation Lemma). Let ∅ ( V ⊆ [n], k ≥ 1, and let F be an n-

variable multilinear sparse-substituted readV -k formula that depends on at least one variable

in V . Let t denote the maximum number of terms in each substituted polynomial.

1. If k = 1 there exist disjoint sets of variables P,Z ⊆ V with |P ∪Z| ≤ (log(t)+ 1) such

that ∂PF |Z←0 is nonzero and is a product of factors that each depend on at most |V |
2

variables from V (and possibly more variables outside of V ). Moreover, the factors

are subformulas of F and at most one formula of the form ∂Pf |Z←0 where f is one of

the sparse substitutions.

2. Otherwise, there exists a variable x ∈ V such that ∂xF is nonzero and is the product

of

a) subformulas of F each depending on at most |V |
2

variables from V (and possibly

more variables outside of V ), and

b) at most one multilinear sparse-substituted
∑2-readV -(k − 1) formula, which is

the derivative with respect to x of some subformula of F .

Proof. We argue the two parts separately.

Part 1. Assume without loss of generality that F has fanin 2, depends on all variables in V ,

and that the children of multiplication gates are variable disjoint with respect to V .

Use Lemma 3.10 to select a variable, x, such that ∂xF is the product of multilinear

sparse-substituted readV -once formulas on at most |V |
2

variables from V and possibly a

single sparse polynomial on more than |V |
2

variables from V (which originally depended on

x). If the large sparse factor is not present, the lemma is complete with P = {x} and Z = ∅.

Therefore, assume otherwise.

Let f be the large sparse polynomial factor of ∂xF . A sparse polynomial can be thought

of as a sparse sum of terms over the variables in V where the coefficients are sparse
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polynomials in F[[n]\V ] (the constant term counts). If the number of terms in f is less

than two, f can be represented as a product of multilinear sparse-substituted readV -once

formulas, each depending on a single variable from V . Also, for each variable in V that

f depends on, we can assume that variable is present in at least one term, but not all of

them. Otherwise, that variable can be pulled out as a factor multilinear sparse-substituted

readV -once formula. Therefore, we can assume that the number of terms in f is at least two

and every variable in V that f depends on is present in at least one term but not in every

term. Thus, for each variable y ∈ var(f) ∩ V , at least one of f |y←0 or ∂yf has at most half

as many terms as f . Since f has at most t terms, at most log t many partial derivatives and

zero-substitutions are sufficient to eliminate all but one of the terms in f . Therefore, there

are choices for disjoint sets P ′ and Z such that ∂P ′f |Z←0 becomes a term over V (which is

the product of univariate readV -once formulas). Choosing P
.
= {x} ∪ P ′ and Z, lifts the

required property to ∂PF |Z←0. Since F is multilinear, the operations we perform ensure

that ∂PF |Z←0 6≡ 0.

Part 2. Here the proof is essentially the same as the proof of Lemma 3.11. Since k ≥ 2,

the argument always halts at an internal gate and never reaches a sparse-substituted input.

Only the number of occurrences of each variable is relevant to the decisions the argument

makes. This implies that the argument does not change when sparse-substituted formulas

are considered (and is even independent of the sparsity parameter). Thus, this part of the

proof is immediate as a corollary to the proof of Lemma 3.11. �

Observe that the cost of applying the Fragmentation Lemma to a read-once formula is

log(t) + 1 partial derivatives and zero-substitutions, whereas applying it to a formula that is

not read-once requires only a single partial derivative (though the promised result is weaker

in this case).

It is useful to have a version of Part 2 of the Fragmentation Lemma generalized to
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structurally-multilinear formulas. The argument is the same as for the earlier version

except that in addition to selecting an appropriate x, we must pick an α ∈ F, such that

∂x,αF
.
= F |x←α − F |x←0 is nonzero. The directed partial derivative comes in here because

∂xF
.
= F |x←1−F |x←0 may be zero even when F depends on x, because F is not multilinear.

Lemma 3.13 (Fragmentation Lemma for Structurally-Multilinear Formulas).

Let ∅ ( V ⊆ [n], k ≥ 2, and let F be an n-variable structurally-multilinear sparse-substituted

readV -k formula that depends on at least one variable in V . Let t denote the maximum

number of terms in each substituted polynomial. There exists a variable x ∈ V and α ∈ F̄

such that ∂x,αF is nonzero and is the product of

1. subformulas of F each depending on at most |V |
2

variables from V (and possibly more

variables outside of V ), and

2. at most one structurally-multilinear sparse-substituted
∑2-readV -(k − 1) formula,

which is the derivative with respect to x and α of some subformula of F .

Proof. Repeat the proof of Lemma 3.12, Part 2, but add the following step. After selecting

an appropriate variable x that F depends on, select an α such that ∂x,αF 6≡ 0. By the

Schwartz-Zippel Lemma, such an α exists within the algebraic closure F̄ of F. Note that, in

fact, if |F| is larger than the degree of x in F such an α is present in F. �

3.5.4 Shattering Multilinear Formulas

The previous subsections establish a method for fragmenting multilinear sparse-substituted

read-k formulas. We now apply the Fragmentation Lemma (Lemma 3.12) to shatter

multilinear sparse-substituted
∑m-read-k formulas. Recall that shattering is the act of

simultaneously splitting all branches of a
∑m-read-k formula. When k = 1, that is, in the

case of multilinear sparse-substituted
∑m-read-once formulas, applying the Fragmentation



72

Lemma greedily to a factor that depends on the largest number of variables suffices to shatter

a multilinear sparse-substituted
∑m-read-once formula to an arbitrary level. To obtain an

α-split formula in the end, we need O(m (log(t)+1)
α

) partial derivatives and zero-substitutions.

In the case of arbitrary read-value k > 1 the Fragmentation Lemma is not immediately

sufficient for the task. As in the read-once case, we can apply the lemma greedily to

a largest factor of a read-k branch to α-split the branch within at most 2
α

applications.

However, this is assuming that Case 2b of the Fragmentation Lemma never occurs where the∑2-read-(k− 1) factor depends on more than half (possibly all) of the variables. When this

case occurs the fragmentation process fails to split the formula into pieces each depending

on few variables. To resolve the issue, we leverage the fact that this troublesome factor is

both large and a
∑2-read-(k − 1) formula.

Consider a specific read-k formula F on n variables. Apply the Fragmentation Lemma

to F . Suppose that Case 2b of the lemma occurs, producing a variable x, and that the

corresponding
∑2-read-(k − 1) factor of ∂xF depends on more than n

2
of the variables.

Without loss of generality, ∂xF = H · (H1 +H2), where H is a product of read-k formulas

each depending on at most n
2

variables, and both H1 and H2 are read-(k − 1) formulas.

Rewrite F by distributing the top level multiplication over addition:

F ′
.
= (H ·H1) + (H ·H2) ≡ H · (H1 +H2) = ∂xF.

Let V
.
= var(H1 +H2). F

′ is explicitly a
∑2-readV -(k − 1) formula and a readV -k formula.

However, F ′ is almost certainly not a read-k formula. By further restricting to the largest set

of variables that appear the exact same number of times in the larger of the two subformulas

H1 and H2, we can argue the existence of a subset V ′ ⊆ V that contains at least a 1
2k

fraction of the variables in V such that the read of H1 and H2 with respect to V ′ sum to at

most k. Note that prior to this restriction the upper bound on this sum is 2(k − 1). This
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action effectively breaks up the original formula F into two branches without increasing the

sum of the read values of the branches. Since |V | ≥ n
2
, the set V ′ is at most a factor 4k

smaller than n, and the number of branches increased by one.

This operation can be performed at most k − 1 times on a read-k formula before either:

(i) the attempted greedy splitting is successful, or (ii) the formula becomes the sum of k

read-once formulas with respect to some subset V of [n]. In the latter case we are effectively

in the situation we first described with k = 1, and all subsequent splittings will succeed. In

either case we obtain a formula that is shattered with respect to a subset V that is at most

a factor kO(k) smaller than n.

In summary, the Shattering Lemma splits multilinear sparse-substituted
∑m-read-k

formulas to arbitrary degree, albeit with some restriction of the variable set and an increase

in top fanin. Moreover, each of the branches in the shattered formula are present in the

original input formula, either as such or after taking some partial derivatives and zero-

substitutions. This technical property follows from the properties of the Fragmentation

Lemma and will be needed in the eventual application.
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Lemma 3.14 (Shattering Lemma). Let α : N → (0, 1] be a non-increasing function.

Let F ∈ F[x1, . . . , xn] be a formula of the form F = c +
∑m

i=1 Fi, where c is a constant,

and each Fi is a non-constant multilinear sparse-substituted read-ki formula. Let t denote

the maximum number of terms in each substituted polynomial. There exist disjoint subsets

P,Z, V ⊆ [n] such that ∂PF |Z←0 can be written as c′ +
∑m′

i=1 F
′
i , where c′ is a constant, and

• m′ ≤ k
.
=
∑m

i=1 ki,

• each F ′i is multilinear and α(m′ + 2)-splitV ,

• |P ∪ Z| ≤ (k −m+ 1) · 4k
α(k+2)

· (log(t) + 1), and

• |V | ≥
(
α(k+2)

8k

)k−m
· n− 8k

α(k+2)
· (log(t) + 1).

Moreover, the factors of each of the F ′i ’s are of the form ∂P̃f |Z←0, where f is some subformula

of some Fj and P̃ ⊆ P .

Proof. We iteratively construct disjoint subsets P,Z, V ⊆ [n], maintaining the invariant

that ∂PF |Z←0 can be written as F ′
.
= c′ +

∑m′

i=1 F
′
i where (1) each F ′i is a readV -k′i formula

and c′ is a constant, (2) m′ ≤ k, (3)
∑m′

i=1 k
′
i
.
= k′ ≤ k, and (4) each F ′i is the product of

factors of the form ∂P̃f |Z←0 where f is some subformula of some Fj and P̃ ⊆ P . Setting

P ← ∅, Z ← ∅, V ← [n] and F ′ ← F realizes the invariant initially. The fact that m′ ≤ k

follows because each Fi is non-constant.

The goal of our algorithm is to α(m′ + 2)-splitV the formula F ′. Each iteration (but the

last) consists of two phases: a splitting phase, and a rewriting phase. In the splitting phase

we attempt to split F ′ by greedily applying the Fragmentation Lemma (Lemma 3.12) on

each of the branches F ′i . The splitting phase may get stuck because of a
∑2-readV -(k′i − 1)

subformula that blocks further splitting. If not and the resulting F ′ is sufficiently split, the

algorithm halts. Otherwise, the algorithm enters the rewriting phase where it expands the
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subformula that blocked the Fragmentation Lemma and reasserts the invariant, after which

the next iteration starts. A potential argument shows that the number of iterations until a

successful splitting phase is bounded by k−m. We first describe the splitting and rewriting

phases in more detail, then argue termination and analyze what bounds we obtain for the

sizes of the sets P , Z, and V .

Splitting. Assume that F ′ is not α(m′+2)
2

-splitV , otherwise halt. Let F ′ij be a subformula

of F ′ that depends on the most variables in V out of all the factors of the F ′i ’s. Apply

the Fragmentation Lemma (Lemma 3.12) with respect to the set V ∩ var(F ′ij) to produce

sets P ′, Z ′ ⊆ [n]. By the Fragmentation Lemma exactly one of the following holds: (i) the

factors of ∂P ′F
′
ij|Z′←0 depend on at most

|V ∩var(F ′ij)|
2

variables in V , or (ii) ∂P ′F
′
ij|Z′←0 has

one multilinear sparse-substituted
∑2-readV -(k′i − 1) factor which depends on more than

|V ∩var(F ′ij)|
2

variables in V .

Repeatedly perform this greedy application, adding elements to the sets P ′ and Z ′ until

either case (ii) above occurs or ∂P ′F
′|Z′←0 is α(m′+2)

2
-splitV . In the former case we start a

rewriting phase and modify ∂P ′F
′|Z′←0 before we re-attempt to split. In the latter case

our goal has been achieved provided that |P ′ ∪ Z ′| ≤ |V |
2

: We can add P ′ to the set P we

already had, similarly add Z ′ to Z, and replace V by V ′
.
= V \ (P ′ ∪ Z ′). The assumption

that |P ′ ∪ Z ′| ≤ |V |
2

guarantees that |V ′| ≥ |V |
2

. Since ∂PF |Z←0 (which equals ∂P ′F
′|Z′←0)

is α(m′+2)
2

-splitV , the latter inequality implies that the formula is α(m′ + 2)-splitV ′ . If the

assumption that |P ′ ∪ Z ′| ≤ |V |
2

does not hold, then outputting V ′ = ∅ will meet the size

bound for that set and trivially make the formula ∂PF |Z←0 α(m′ + 2)-splitV ′ .

The splitting phase maintains the invariant. Regarding part (4) of the invariant, observe

that the factors produced by the Fragmentation Lemma are subformulas of the input to the

Fragmentation Lemma (for which the invariant initially held).

Rewriting. We now describe the rewriting phase. Let V refer to the situation at the start
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of the preceding splitting phase. Let F ′ij be the subformula the splitting phase blocked on,

and let H1 and H2 denote the two branches of the multilinear sparse-substituted
∑2-readV -

(k′i−1) subformula of ∂xF
′
i that caused the blocking Case 2b of the Fragmentation Lemma to

happen. We have that ∂P ′F
′
ij|Z′←0 = H · (H1 +H2), where H is some readV -k′i formula that

is independent of the variables in V ∩ var(H1 +H2). Let V ′
.
= V ∩ var(H1 +H2). Partition

V ′ into sets {V ′0 , ..., V ′k′i−1} based on the exact number of occurrences of each variable in H1.

Let V ′′ be any set from this partitioning excluding the set V ′0 (we will restrict the choice of

V ′′ later). This implies that H1 is readV ′′-k
′
i1 and H2 is readV ′′-k

′
i2 for some integers k′i1 and

k′i2 such that k′i1, k
′
i2 < k′i and k′i1 + k′i2 ≤ k′i.

Rewrite ∂P ′F
′|Z′←0 as a top fanin m′ + 2 formula by distributing multiplication over

addition in the term ∂P ′F
′
i |Z′←0:

∂P ′F
′|Z′←0 ≡ (H ·H1) + (H ·H2) +

∑
j 6=i

∂P ′F
′
j|Z′←0. (3.1)

Observe that
∑

j 6=i ∂P ′F
′
j|Z′←0 is a readV ′′-(

∑
j 6=i k

′
j) formula as partial derivatives and

substitutions do not increase the read-value, and V ′′ ⊆ V . The term (H ·H1) + (H ·H2)

may not be a readV -k′i formula, but it must be a readV ′-k
′
i formula. It is explicitly the sum

of a readV ′′-k
′
i1 formula and a readV ′′-k

′
i2 formula for some k′i1, k

′
i2 < k′i with k′i1 + k′i2 ≤ k′i.

The representation of ∂P ′F
′|Z′←0 in Equation (3.1) is therefore a readV ′′-k

′ formula with top

fanin m′ + 2.

Set F ′ to be this representation of ∂P ′F
′|Z′←0. Merge branches that have become constant

into a single constant branch. This maintains the invariant that m′ ≤ k′ ≤ k. Setting

V ← V ′′ makes F ′ a top-fanin-(m′ + 1) readV -k′ formula. As for part (4) of the invariant,

note that the subformula F ′ij which blocked the Fragmentation Lemma originally satisfied it

during the splitting phase. This means that with respect to the additional partial derivatives

and zero-substitutions performed for the attempted split, H1 and H2, as well as H, satisfy
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the invariant as new factors of the branches F ′i . Thus, the new F ′ satisfies the full invariant.

This completes the rewriting phase and one full iteration of the algorithm.

Correctness. We repeat the sequence of splitting and rewriting phases until a splitting phase

runs till completion. In that case the algorithm produces disjoint sets P,Z, V ⊆ [n] such

that ∂PF |Z←0 can be written as a α(m′ + 2)-splitV formula with top fanin m′ + 1 ≤ k + 1.

Apart from the size bounds on the sets P , Z, and V , all that remains to establish

correctness is termination. To argue the latter we use the following potential argument.

Consider the sum
∑m′

i=1 k
′
i and view it as m′ blocks of integer size, where k′i is the size of

the ith block. Over the course of the algorithm blocks can only stay the same, shrink, or

be split in a nontrivial way. The latter is what happens in a rewriting phase. As soon

as all blocks are of size at most 1, the splitting phase is guaranteed to run successfully

because Case 2b of the Fragmentation Lemma cannot occur for read-once formulas, and the

algorithm terminates. As we start out with m nontrivial blocks and a value of k for the

sum, there can be no more than k −m nontrivial splits. Therefore, there are no more than

k −m rewriting phases and k −m+ 1 splitting phases.

Analysis. We now bound the size of P ∪ Z. We first analyze how many times the

Fragmentation Lemma is applied in each splitting phase. The goal is to α(m′+2)
2

-splitV each

of the m′ branches. To α(m′+2)
2

-splitV one branch, 4
α(m′+2)

applications of the Fragmentation

Lemma are sufficient, since each application reduces the intersection of the factors with

V to at most half the original amount. Since the invariant maintains m′ ≤ k and α is

non-increasing, we can upper bound the number of applications of the Fragmentation

Lemma during an arbitrary iteration by 4m′

α(m′+2)
≤ 4k

α(k+2)
. Each single application of the

Fragmentation Lemma adds at most (log(t) + 1) variables to P ′ and Z ′. Since there are at

most k −m+ 1 splitting phases, across all iterations at most (k −m+ 1)(log(t) + 1) 4k
α(k+2)

variables are added to P ∪ Z.
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We finish by lower bounding the size of V . Consider the change in |V | over one combined

splitting/rewriting iteration. We have that |V ′| ≥ α(m′+2)
4
|V |, because F ′ was not α(m′+2)

2
-

splitV before attempting to split F ′ij (so the largest number of variables in V that a factor

depends on is at least α(m′+2)
2
· |V |), F ′ij was chosen for its maximal dependence on variables

from V , and |var(H1 +H2)∩ V | ≥ |var(F ′ij)∩ V |/2. If we pick V ′′ to be the largest set from

the partitioning {V ′0 , V ′1 , ..., V ′k′i−1} excluding V ′0 , and we assume without loss of generality

that |var(H1)| ≥ |var(H2)|, we have that |V ′′| ≥ 1
2(k′i−1)

|V ′|. Combining these inequalities

and using the facts that α is non-increasing and k ≥ k′i,m
′ gives:

|V ′′| ≥ 1

2(k′i − 1)
|V ′| ≥ α(m′ + 2)

8(k′i − 1)
|V | ≥ α(k + 2)

8k
|V |.

This means that |V | decreases by a factor of at most 8k
α(k+2)

in each combined splitting/rewrit-

ing iteration. At the end of the final splitting phase |V ′| ≥ |V | − 2|P ′ ∪ Z ′| because V ′ is

set to the empty set when |P ′ ∪ Z ′| ≥ |V |
2

. Recall that |P ′ ∪ Z ′| ≤ 4k
α(k+2)

(log(t) + 1). Since

there are at most k −m combined splitting/rewriting iterations, this gives the following

lower bound at the end:

|V | ≥
(
α(k + 2)

8k

)k−m
· n− 8k

α(k + 2)
· (log(t) + 1). �

3.6 Reducing Testing Read-(k + 1) Formulas to

Testing
∑2-Read-k Formulas

In this section we describe two methods of reducing identity testing structurally-multilinear

read-(k + 1) formulas to identity testing structurally-multilinear
∑2-read-k formulas. The

first reduction is non-blackbox and is elementary. The second reduction is blackbox and

makes use of the Fragmentation Lemma of the preceding section.
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3.6.1 Non-Blackbox Reduction

Recall that we only need to deal with multilinear sparse-substituted formulas, because we

can transform structurally-multilinear formulas into multilinear sparse-substituted formulas

in a non-blackbox way while preserving (non-)zeroness.

The intuition for this reduction is somewhat similar to that for the Fragmentation

Lemma. Consider a subformula g of a multilinear sparse-substituted read-(k + 1) formula

F where g is of the form g = g1 + g2 and g1 is read-(k + 1) but not read-k. There must

be some variable x that appears k + 1 times in g1 and nowhere else in F . If g1 actually

depends on x, then g is nonzero. This is irrespective of whether g2 is nonzero, because it

is not possible for g2 to cancel out the contribution of x present in g1. In general, if all

occurrences of a variable x are contained in an addition branch and that branch depends on

x, the addition gate must be nonzero. The polynomials computed by gates above g can

only be zero if the zero polynomial is multiplied in. Now, consider replacing g1 with a fresh

variable. The above reasoning shows that this transformation does not change whether the

overall formula is nonzero. If a branch contains all occurrences of x but does not depend on

x, setting x to 0 does not affect the value computed by the formula. This observation allows

us to eliminate variables that are read k + 1 times, and thereby transform a multilinear

sparse-substituted read-(k + 1) formula into a multilinear sparse-substituted read-k formula

without affecting the (non-)zeroness of the formula.

In order to execute the transformation, we need to be able to decide whether the

subformula g1 depends on the variable x. If we apply the transformation in a bottom-up

fashion, by the time we need to make that decision the formula g1 is multilinear, sparse-

substituted and
∑2-read-k. We can use a polynomial identity test for such formulas to

check whether ∂xg1 ≡ 0. This is the idea behind the non-blackbox reduction from identity

testing multilinear sparse-substituted read-(k + 1) formulas to identity testing multilinear
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sparse-substituted
∑2-read-k formulas.

Lemma 3.15 (Read-(k + 1) PIT ≤
∑2-Read-k PIT – Non-Blackbox). For an in-

teger k ≥ 1, given a deterministic identity testing algorithm for n-variate size-s multilinear

sparse-substituted
∑2-read-k formulas that runs in time T (k, n, s, t), where t denotes the

maximum number of terms in each substituted polynomial, there is a deterministic algorithm

that tests n-variate size-s multilinear sparse-substituted read-(k + 1) formulas that runs in

time O(kn2 · T (k, n, s, t) + poly(k, n, s, t)).

Proof. Let F be a multilinear sparse-substituted read-(k + 1) formula. The goal of the

algorithm is to transform the gates of F in a bottom-up fashion into read-k formulas while

preserving the (non-)zeroness of F . The transformation also eliminates variables which gates

do not depend on. Because F is multilinear, this second property ensures that multiplication

gates are explicitly variable disjoint. Once F is transformed in this way, the identity test is

immediate from the assumed identity testing algorithm.

As a first step we argue that the following transformation preserves the (non-)zeroness

of F . Consider a gate g in F that contains all occurrences of some variable x and depends

on x. Define F−g(x̄, y) as the formula where the gate g has been replaced by a new variable

y (note, F−g(x̄, g) = F ). F−g does not depend on x because all occurrences of x are in g.

Then, because F−g is a formula and y occurs only once, without loss of generality, write:

F ≡ F−g(x̄, g) ≡ P (x̄) +Q(x̄) · g,

for two polynomials P and Q that do not depend on x. If Q ≡ 0, then F is independent

of g, so F−g ≡ F . If Q 6≡ 0, then F is nonzero because g depends on x, but P does not

depend on x, so the x component cannot be canceled. By definition, F 6≡ 0 implies F−g 6≡ 0.

Therefore we can conclude that for such gates g, F ≡ 0 iff F−g ≡ 0.
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Algorithm 2 Transforming a read-(k + 1) gate into an “equivalent” read-k gate

Input: k ≥ 1, F is a multilinear sparse-substituted read-(k + 1) formula, g is a multilinear

sparse-substituted read-(k + 1) subformula of F whose children are read-k formulas

that depend on all variables that appear within them, and A is a deterministic identity

testing algorithm for multilinear sparse-substituted
∑2-read-k formulas.

Output: g is a read-k formula that depends on all variables that appear within it. Except

for variables that do not appear in F−g, the number of occurrences of a variable in g does

not increase. The (non-)zeroness of F is unchanged with respect to the transformation

of g.

1: case g = α(g1 + g2) + β

2: for all x ∈ var(g)

3: if ∂x(g1 + g2) ≡ 0 {Invoking the subroutine A} then

4: Replace g by g|x←0

5: else if x occurs k + 1 times in g then

6: Replace g by a new variable y

7: case g = α(g1 · g2) + β

8: if g1 ≡ 0 OR g2 ≡ 0 {Invoking the subroutine A} then

9: Replace g by β

10: case g is a sparse-substituted input

11: Simplify the list of terms

Now, process the gates g of F in a bottom-up fashion. Note that the algorithm realizes

the following properties: (1) the (non-)zeroness of F does not change, (2) g is a multilinear

sparse-substituted read-k formula, (3) except for variables that only appear in g, the number

of occurrences of a variable in g does not increase, and (4) g depends on all variables that
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appear in it. There are three possible cases for g.

1. Case g = α(g1+g2)+β. We first go over all original variables x that appear in g. Let x

be such a variable. Since the children g1 and g2 of g are read-k, g is a multilinear sparse-

substituted
∑2-read-k formula. Compute ∂xg as a multilinear sparse-substituted∑2-read-k formula. This is easy because the multiplication gates within g1 and g2 are

variable disjoint. Now, test whether ∂xg ≡ 0 using the hypothesized identity testing

algorithm. If ∂xg ≡ 0, replace g by g|x←0; otherwise, if x occurs k + 1 times in g,

replace g by a fresh variable y, if not, do nothing.

2. Case g = α(g1 · g2) + β. Because property (4) holds for the children of g, and g

is multilinear, g is a read-k formula. Check whether g1 or g2 are identically zero,

using the identity test for read-k formulas. If either formula is zero, replace g with β.

Otherwise, do nothing.

3. Case g is a sparse-substituted input. In order to realize properties (1-4), all we need

to do is to simplify the list of terms by collecting duplicate monomials and dropping

them if the coefficient is zero.

For clarity, the algorithm is described in Algorithm 2. Overall, it transforms F from a

multilinear sparse-substituted read-(k + 1) formula into a multilinear sparse-substituted

read-k formula without affecting the (non-)zeroness. The
∑2-read-k formula identity test is

applied at most n times at each gate to determine the dependence on the original variables.

Since F is in standard form, this takes at most O(kn2) identity tests overall. Adding

polynomial-time for computing the standard form, traversing F , computing the partial

derivatives, and doing the field arithmetic gives the running time claimed. �
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3.6.2 Blackbox Reduction

Let F be a structurally-multilinear read-(k + 1) formula. We construct a generator for F

using a generator G for structurally-multilinear
∑2-read-k formulas. If F is a read-k formula,

the assumed generator alone suffices. Otherwise, we apply the Fragmentation Lemma for

structurally-multilinear sparse-substituted formulas (Lemma 3.13) to show that there is

a partial derivative of F that has mostly small factors and, possibly, one factor that is a

large structurally-multilinear
∑2-read-k formula. In the former case the factors are small

enough to be hit recursively, and in the latter case the factor is hit by the assumed generator

for structurally-multilinear
∑2-read-k formulas. The properties of the SV-generator G

(Proposition 3.3 and Lemma 3.5) imply that if G is a generator for the partial derivative of

a polynomial, then G +G1 is a generator for the original polynomial.

Lemma 3.16 (Read-(k + 1) PIT ≤
∑2-Read-k PIT – Blackbox). For an integer

k ≥ 1, let G be a generator for n-variate structurally-multilinear sparse-substituted
∑2-read-

k formulas, and let F be a nonzero n-variable structurally-multilinear sparse-substituted

read-(k + 1) formula. Then G +Glog |var(F )| hits F .

Proof. First observe that if F is read-k, we are immediately done because F ◦ G 6≡ 0 and 0̄

is in the range of G (by Proposition 3.3, Part 1).

The proof goes by induction on |var(F )|. If |var(F )| = 0, the lemma holds trivially as

F is constant. If |var(F )| = 1, F is a read-once formula, which is covered by the above

observation. For the induction step, by the above observation we can assume that F is

read-(k + 1) and not read-k. Therefore, F meets the conditions to apply the structurally-

multilinear version of the Fragmentation Lemma (Lemma 3.13) with V = var(F ). The

lemma produces a variable x ∈ var(F ) and α ∈ F̄. The factors of ∂x,αF all depend on at

most |var(F )|
2

variables and are read-(k + 1) formulas, except for at most one which is a∑2-read-k formula. The induction hypothesis gives that the former factors of ∂x,αF are all
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hit by G +Glog(|var(F )|/2). The latter factor (if it occurs) is hit by G. Applying Lemma 3.5

gives that G + Glog(|var(F )|/2) + G1 hits F . Recalling Proposition 3.3, Part 3, implies that

G +Glog |var(F )| hits F . �

3.7 Reducing Testing
∑2-Read-k Formulas to

Testing Read-k Formulas

In this section we present two methods of reducing identity testing structurally-multilinear

sparse-substituted
∑2-read-k formulas to identity testing structurally-multilinear sparse-

substituted read-k formulas. We first develop those methods for multilinear rather than

structurally-multilinear sparse-substituted formulas, and then show how to translate them

to the latter setting.

Both reductions rely on a common theorem (Theorem 10) we prove in Section 3.7.2.

Informally, that theorem says that for a nonzero multilinear sparse-substituted
∑2-read-k

formula F and a shift σ̄ satisfying some simple conditions, the shifted formula F (x̄ + σ̄)

is hit by the SV-generator Gw with w = kO(k)(log(t) + 1), where t denotes the maximum

number of terms in each substituted polynomial.

Note that, since F is a nonzero polynomial, such a theorem is trivially true for a typical

shift σ̄, even with w = 0. The interesting part of the theorem is the simplicity of the

conditions on σ̄ that guarantee the hitting property. In particular, the properties needed

of σ̄ allow such a σ̄ to be computed efficiently either by an identity test for multilinear

sparse-substituted read-k formulas, or as an element in the range of a hitting set generator

for such formulas.

In Section 3.7.1 we argue that small sums of specially shifted multilinear sparse-

substituted read-k formulas cannot compute a term of high degree. This is the Key
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Lemma for multilinear sparse-substituted formulas and is a formalization of Lemma 3.2

from the introduction. Using the Key Lemma and the hitting property of the SV-generator

(Lemma 3.7), we prove, in Section 3.7.2, that the SV-generator hits small sums of specially

shifted multilinear sparse-substituted read-k formulas. In Sections 3.7.3 and 3.7.4 we use

Theorem 10 to argue reductions from identity testing multilinear sparse-substituted
∑2-

read-k formula to identity testing multilinear sparse-substituted read-k formulas in both

the non-blackbox and blackbox settings.

In Section 3.7.5 we present a transformation L which maps structurally-multilinear

read-k formulas to multilinear sparse-substituted read-k formulas while preserving the

nonzeroness of the formula. Combining this transformation with the non-blackbox reduction

for multilinear sparse-substituted formulas yields a non-blackbox reduction directly for

structurally-multilinear sparse-substituted formulas. In the blackbox setting, the extension

requires some more work. We first use the transformation to generalize the Key Lemma

to structurally-multilinear sparse-substituted formulas, and then argue how the other

ingredients transfer.

3.7.1 Proving the Key Lemma for Multilinear Formulas

In order to prove the Key Lemma, we first establish a similar lemma for split multilinear

sparse-substituted formulas, and then apply the Shattering Lemma to lift the result to the

bounded-read setting.

Let F =
∑m

i=1 Fi be a sufficiently split multilinear sparse-substituted formula on n

variables. By applying the structural witness for split formulas (Lemma 3.8) we can argue

that if none of the Fi’s are divisible by any variable then F cannot compute a term of the

form a ·Mn, where a is a nonzero constant and, recall, Mn denotes the monomial
∏n

i=1 xi.

The idea is to consider the formula F −a ·Mn and apply the structural witness to it in order
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to show that it is nonzero. The non-divisibility condition and the natural properties of Mn

immediately give simplicity. Minimality essentially comes for free because the argument is

existential. The splitting required by the structural witness immediately follows from the

splitting of F . Formalizing this idea yields the following lemma.

Lemma 3.17. Let F =
∑m

i=1 Fi be a multilinear sparse-substituted α(m+ 1)-split formula

on n ≥ 1 variables, where α
.
= 1

R
and R is the function given by Lemma 3.8. If no Fi is

divisible by any variable, then F 6≡ a ·
∏n

i=1 xi for any nonzero constant a.

Note that for a non-constant formula F on n variables to be α(m+ 1)-split, n needs to

be at least 1/α(m+ 1).

Proof. Suppose for the sake of contradiction that F ≡ a ·Mn for some nonzero constant a.

If there is some subsum of the branches of F that equals 0, eliminate all those branches.

Not all branches of F may be eliminated in this way as this contradicts a ·Mn 6≡ 0. Let

0 < m′ ≤ m be the remaining number of branches, and let F ′ denote the remaining branches.

The formula F ′ − a ·Mn is minimal and has top fanin m′ + 1.

Now, suppose that there is some non-constant polynomial P that divides every remaining

Fi. Since F ′ ≡ a ·Mn, then P also divides Mn. Because P is non-constant, some variable

x divides P and hence divides each remaining Fi. This contradicts the hypothesized non-

divisibility property of the Fi. Therefore F ′ − a ·Mn is simple as a formula with top fanin

m′ + 1.

The previous two paragraphs establish that the F ′ − a ·Mn is simple, minimal, and has

top fanin m′ + 1. Further, for every variable, there is some branch that depends on that

variable, because the Mn branch depends on every variable. Observe that the Mn branch

is trivially α(m′ + 1)-split and every other branch is also α(m′ + 1)-split as m′ ≤ m and

α
.
= 1

R
is decreasing. The structural witness for split formulas (Lemma 3.8) then implies
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that F ′ − a ·Mn 6≡ 0, and thus that F 6≡ a ·Mn. This contradicts the initial assumption

and concludes the proof. �

The property that the branches Fi are not divisible by any variable can be easily

established by shifting the formula by a point σ̄ that is a common nonzero of all the

branches Fi. Indeed, if we pick σ̄ such that Fi(σ̄) 6= 0 then no variable can divide Fi(x̄+ σ̄).

This reasoning is formalized in the following corollary.

Corollary 3.2. Let F =
∑m

i=1 Fi be a multilinear sparse-substituted α(m+ 1)-split formula

on n ≥ 1 variables, where α
.
= 1

R
and R is the function given by Lemma 3.8. If no Fi

vanishes at σ̄, then F (x̄+ σ̄) 6≡ a ·
∏n

i=1 xi for any nonzero constant a.

Proof. Since the branches of F are α(m + 1)-split, the branches of F (x̄ + σ̄) are also

α(m+ 1)-split. By assumption, Fi(σ̄) 6= 0. Therefore, for each branch i ∈ [m] and variable

x ∈ [n], Fi(x̄ + σ̄)|x←0 6≡ 0. This implies that no variables divide any branch Fi(x̄ + σ̄).

With this property established, apply Lemma 3.17 on F (x̄+ σ̄) to conclude the proof. �

We now show how to lift Corollary 3.2 from split multilinear sparse-substituted formulas

to sums of multilinear sparse-substituted bounded-read formulas. This yields our key lemma

– that for such formulas F and a “good” shift σ̄, F (x̄ + σ̄) is not divisible by a term of

large degree. For brevity, in the intuition below we discuss the simpler case of showing the

formula is, instead, not identical to a term of large degree.

For the sake of contradiction suppose the opposite, i.e., that F (x̄ + σ̄) ≡ a ·Mn for

some nonzero constant a and large n. Shatter F into F ′ = ∂PF |Z←0 using the Shattering

Lemma (Lemma 3.14), and apply the same operations that shatter F to Mn. Observe that

zero-substitutions are shifted into substitutions by σ̄, and that ∂PMn|Z←(−σ̄) is a nonzero

term of degree n− |P ∪Z| provided that no component of σ̄ vanishes. After an appropriate

substitution for variables outside of the set V from the Shattering Lemma, we obtain that
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F ′(x̄ + σ̄) ≡ a′ ·MV for some nonzero constant a′ and V ⊆ [n], where MV denotes the

product of the variables in V .

At this point we would like to apply Corollary 3.2 to derive a contradiction. However,

we need to have that |V | > 0 and that σ̄ is a common nonzero of all the branches of F ′.

The former follows from the bounds in the Shattering Lemma provided n is sufficiently

large. To achieve the latter condition we impose a stronger requirement on the shift σ̄ prior

to shattering so that afterward σ̄ is a common nonzero of the shattered branches. The

Shattering Lemma tells us that the factors of the branches of the shattered formula are

of the form ∂P̃f |Z←0 where f is some subformula of the Fi’s and P̃ ⊆ P . Therefore, we

require that σ̄ is a common nonzero of all such subformulas that are nonzero. This is what

we mean by a “good” shift.

One additional technical detail is that we must apply a substitution to the variables

outside of V that preserves the properties of σ̄ and does not zero Mn. This step is in the

same spirit as the argument in the proof of the structural witness for split formulas (Lemma

3.8), namely that a typical assignment suffices.

With these ideas in mind, the key lemma is as follows.

Lemma 3.18 (Key Lemma). Let F = c +
∑m

i=1 Fi, where c is a constant, and each

Fi ∈ F[x1, . . . , xn] is a non-constant multilinear sparse-substituted read-ki formula. If σ̄ is a

common nonzero of the nonzero formulas of the form ∂Pf |Z←0 where f is a subformula of

the Fi’s and |P ∪ Z| ≤ b
.
= (k −m+ 1) · 4k ·R(k + 2) · (log(t) + 1), then

F (x̄+ σ̄) 6∈ D`,

for ` ≥ w
.
= (8k ·R(k + 2))k−m+1(log(t) + 1), where k

.
=
∑m

i=1 ki, t denotes the maximum

number of terms in each substituted polynomial, and R is the function given by Lemma 3.8.
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Proof. Assume the contrary, without loss of generality, that F (x̄+ σ̄) ≡ Q ·M` for some

nonzero multilinear polynomial Q and ` ≥ w. If any variable divides Q, factor that variable

out and increase ` by one. This way we can assume Q is not divisible by any variables.

We first argue that, without loss of generality, var(Fi) ⊆ [`] for all i ∈ [m]. Suppose

that some Fi depends on a variable x 6∈ [`]. Replace F with F |x←σ̄, and observe this is

equivalent to substituting 0 for x in F (x̄ + σ̄). We have M`|x←0 = M`, because M` does

not depend on x, and Q′
.
= Q|x←0 6≡ 0, because x does not divide Q. The assignment σ̄

remains a common nonzero of the stated type of formulas, now with Fi replaced by Fi|x←σ̄.

If Q′ is divisible by any variables factor them out, and increase ` accordingly. Repeat this

procedure until var(Fi) ⊆ [`] for all i ∈ [m].

Note that these substitution may make some branches constant. In this case combine

these constant branches into a single constant branch. Since all Fi were originally non-

constant, the quantity k −m has not increased.

Define α
.
= 1

R
. Shatter F using Lemma 3.14. This produces the sets P,Z and V .

Let F ′
.
= ∂PF |Z←0. By the Shattering Lemma F ′ = c′ +

∑m′

i=1 F
′
i is a multilinear sparse-

substituted formula that has top fanin m′ + 1 ≤ k + 1, is α(m′ + 2)-splitV , and each F ′i

is a product of factors of formulas of the form ∂P̃f |Z←0 where f is a subformula of an Fi

and P̃ ⊆ P . Assume without loss of generality that each F ′i is nonzero. By the lemma,

|P ∪ Z| ≤ b. By hypothesis, the subformulas of the above form do not vanish at σ̄. These

properties imply that F ′i (σ̄) 6= 0 for each i ∈ [m′].

There is an assignment to the variables in [`]\V that: (1) preserves σ̄ as a nonzero of

the F ′i ’s on the remaining variables V , and (2) differs in every component from σ̄. In fact, a

typical assignment suffices. To see this, consider the polynomial:

Φ
.
=

(
m′∏
i=1

F ′i |V←σ̄

)
·
∏

j∈([`]\V )

(xj − σj).
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The polynomial Φ is nonzero because the F ′i ’s do not vanish at σ̄. Thus, a nonzero assignment

for Φ satisfies the requirements above. Pick β̄ to be any such assignment.

Let F ′′
.
= F ′|([`]\V )←β̄, where the F ′′i are defined similarly. By the first property of β̄,

F ′′i (σ̄) 6= 0. By the second property of β̄, M`|([`]\V )←(β̄−σ̄) is a nonzero term over the variables

V . Then using the initial assumption write

F ′′(x̄+ σ̄) ≡ F ′(x̄+ σ̄)|([`]\V )←(β̄−σ̄) ≡ a ·M`|([`]\V )←(β̄−σ̄) ≡ a′ ·MV ,

for some nonzero constant a′. Now, F ′′ ∈ F[V ] is a multilinear sparse-substituted α(m′ + 2)-

splitV formula with top fanin m′ + 1, where no branch vanishes at σ̄. Thus, we obtain

a contradiction with Corollary 3.2 as long as |V | > 0. By the bound on |V | given in

the Shattering Lemma and then condition that ` ≥ w, the latter is the case for w ≥

(8k ·R(k + 2))k−m+1(log(t) + 1). �

3.7.2 Generator for Shifted Multilinear Formulas

In this subsection we show that the SV-generator hits small sums of specially shifted

multilinear sparse-substituted bounded-read formulas. Our argument critically relies on the

property given in Lemma 3.7 – that the SV-generator hits any class of polynomials that is

closed under zero-substitutions and such that no term of high degree divides polynomials in

the class.

In order to prove a usable theorem for our applications, we use the Key Lemma

(Lemma 3.18) to construct a class of polynomials sufficient to apply Lemma 3.7. Let F

be a formula, σ̄ be a shift, and w be as in the statement of the Key Lemma. Consider

F (x̄+ σ̄). By the Key Lemma, F (x̄+ σ̄) 6∈ Dn, for n ≥ w. Now consider substituting 0 for

x in F (x̄+ σ̄), this equivalent to substituting σ for x in F then shifting all other variables

by σ̄. This means that the preconditions of the Key Lemma are satisfied for F |x←σ, and
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hence F (x̄+ σ̄)|x←0 6∈ Dn, for n ≥ w. This argument can be repeated to get that each zero

substitution of F (x̄+ σ̄) is not in Dn, for n ≥ w. The set of polynomials which corresponds

to all zero substitutions of F (x̄+ σ̄) serves as the set P in the application of Lemma 3.7.

This, in turn, implies that Gw hits F (x̄+ σ̄), since it is a member of this set of polynomials.

Theorem 10. Let F = c+
∑m

i=1 Fi, where c is a constant, and each Fi is a non-constant

multilinear sparse-substituted read-ki formula. If σ̄ is a common nonzero of the nonzero

formulas of the form ∂Pf |Z←0 where f is a subformula of the Fi’s and |P ∪ Z| ≤ b
.
=

(k −m+ 1) · 4k ·R(k + 2) · (log(t) + 1), then

F 6≡ 0⇒ F (Gw + σ̄) 6≡ 0

for w ≥ (8k ·R(k+2))k−m+1(log(t)+1), where k
.
=
∑m

i=1 ki, t denotes the maximum number

of terms in each substituted polynomial, and R is the function given by Lemma 3.8.

Proof. Define the classes of formulas

F .
= {F |S←σ̄ | S ⊆ [n]} , and F ′ .= {f(x̄+ σ̄) | f ∈ F} .

Observe that F ′ is closed under zero substitutions because f(x̄ + σ̄)|x←0 = f |x←σ(x̄ + σ̄)

and F is closed under substitutions by σ̄.

Without loss of generality each f ∈ F has at most one top level branch which is

constant, since constant branches can be collected into a single constant branch without

compromising any of the relevant properties of f . Observe that for each f ∈ F , the σ̄

remains a common nonzero subformulas of f under at least b partial derivatives and zero

substitutions, because we are performing a partial substitution of σ̄ itself. Therefore, for

each f ∈ F , the preconditions of Lemma 3.18 are met and hence f(x̄+ σ̄) 6∈ Dn, for n ≥ w.
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This implies that F ′ is disjoint from Dn, for n ≥ w. Lemma 3.7 then says that Gw hits F ′,

and F (x̄+ σ̄) in particular. �

3.7.3 Non-Blackbox Reduction

In this subsection we focus on giving a non-blackbox reduction from identity testing

multilinear sparse-substituted
∑m-read-k formulas to identity testing multilinear sparse-

substituted read-k formulas. The first step of the reduction is to compute an appropriate shift

σ̄ using an identity testing algorithm for multilinear sparse-substituted read-k formulas. A

technical complication is to ensure that the formula has gates that are explicitly multilinear,

so that partial derivatives can be computed efficiently. This can also be done using an

identity test for multilinear sparse-substituted read-k formulas. Once we have σ̄, we simply

evaluate F (Gw + σ̄) on sufficiently many points and see whether we obtain a nonzero value.

Lemma 3.19 (
∑m-Read-k PIT ≤ Read-k PIT – Non-Blackbox). For any integer

k ≥ 1, given a deterministic identity testing algorithm for multilinear sparse-substituted

read-k formulas that runs in time T (k, n, s, t), there is a deterministic algorithm that tests

multilinear sparse-substituted
∑m-read-k formulas that runs in time

k2m2nO(b) · T (k, n, s, t) + nO(wm,k·(log(t)+1)) poly(k, n, s, t),

where s denotes the size of the formulas, n the number of variables, and t the maximum

number of terms in each substituted polynomial, b
.
= ((k−1)m+1)·4km·R(km+2)·(log(t)+1),

wm,k
.
= (8km ·R(km+ 2))(k−1)m+1, and R is the function given by Lemma 3.8.

Proof. Let F
.
=
∑m

i=1 Fi, where each Fi is a multilinear sparse-substituted read-k formula.

Let b be sufficient to apply Theorem 10 with the parameters ki = k, m, and n.
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Process each of the Fi from the bottom up, making the children of multiplication gates

variable disjoint. To do this, at each gate g compute the set of variables that g depends on.

This can be done using the hypothesized identity test on the first order partial derivatives

of g with respect to each variable. These partial derivatives can be efficiently computed as

the children have been previously processed to have variable disjoint multiplication gates.

Set variables that g does not depend on to 0, though only within the subformula g. Note,

that this does not affect the polynomial computed at each gate of Fi; it merely removes

extraneous variable occurrences. As we can assume F to be in standard form, each Fi has

at most O(kn) gates and this step uses at most O(kmn2) applications of the identity test.

Let F be the set of all nonzero formulas of the form ∂Pf |Z←0 where f is a subformula

of one of the Fi’s and |P ∪ Z| ≤ b. Notice that the elements of F are multilinear sparse-

substituted read-k formulas because each f is of that type and that type of formulas is

closed under partial derivatives and substitutions.

There are at most O(kmn) gates in F , thus |F| = O(kmnb+1). The formulas in F can

be efficiently enumerated. To see this, observe that for a choice of a gate g in Fi, and

sets P and Z, the formula ∂Pg|Z←0 can be computed in time polynomial in the size of F ,

because we preprocessed the multiplication gates of F to be variable disjoint. Further, we

can determine efficiently whether each of these formulas is nonzero using the hypothesized

identity test for multilinear sparse-substituted read-k formulas.

Define the polynomial, Φ
.
=
∏

f∈F f . Since Φ 6≡ 0, there is a point in a finite extension

En ⊇ Fn that witnesses the non-zeroness of Φ. We can use trial substitution to determine a

point, σ̄ ∈ En where Φ is nonzero. F is multilinear and all the formulas in F are multilinear

as well. This means that Φ has total degree at most O(kmnb+2). By the Schwartz-Zippel

Lemma we only need to test elements from a subset W ⊆ E of size at most the degree of Φ

plus one (i.e., a set of size O(kmnb+2)). For each variable, in turn, determine a value from

W that keeps Φ nonzero. Fix the variable to this value, and then move on to consider the
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next variable. This uses O(kmnb+3) identity tests on a partially substituted version of Φ.

Each of these identity tests uses O(kmnb+1) identity tests on the component read-k formulas.

In total, our algorithm uses O(k2m2n2b+4) identity tests on multilinear sparse-substituted

read-k formulas to compute σ̄. This can be completed in O(k2m2n2b+4T (k, n, s, t)) time,

using the assumed identity test.

Using Theorem 10 gives thatGwm,k·(log t+1) hits F (x̄+σ̄). Therefore, F ≡ 0 iff F (Gw+σ̄) ≡

0. By multilinearity, the formula F has degree at most n and, by definition, Gw has degree

at most n. Applying Proposition 3.2 gives a test for F (Gw + σ̄) that runs in time O((n2)2w).

This completes the identity test. The cost of performing this part of the algorithm is at

most nO(w) · poly(k,m, s, t). Combining this with the preprocessing and the computation of

σ̄ gives the total running time claimed. �

3.7.4 Blackbox Reduction

We now describe a blackbox version of Lemma 3.19. The overall approach is the same as in

Section 3.7.3, though the details are somewhat simpler. With Theorem 10 in hand, all that

remains is to leverage a generator G for multilinear sparse-substituted read-k formulas to

generate an appropriate shift σ̄ and then apply the theorem to complete the reduction.

Let F =
∑m

i=1 Fi be a multilinear sparse-substituted
∑m-read-k formula. Let F be the

set of all nonzero formulas of the form ∂Pf |Z←0 where f is a subformula of the Fi’s and

P,Z are disjoint sets of variables with |P ∪ Z| ≤ b. F is composed of nonzero multilinear

sparse-substituted read-k formulas. Therefore, G hits the product
∏

f∈F f , and a suitable

shift σ̄ is in the image of G. Applying Theorem 10 then gives that G +Gw is a generator for

multilinear sparse-substituted
∑m-read-k formulas, where w is bounded as in the theorem.

Lemma 3.20 (
∑m-Read-k PIT ≤ Read-k PIT – Blackbox). For an integer k ≥ 1,

let G be a generator for n-variate multilinear sparse-substituted read-k formulas. Then
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G + Gwm,k·(log(t)+1) is a generator for n-variate multilinear sparse-substituted
∑m-read-k

formulas, where wm,k
.
= (8km ·R(km+2))(k−1)m+1, t denotes the maximum number of terms

in each substituted polynomial, and R is the function given by Lemma 3.8.

Proof. Let F be a multilinear sparse-substituted
∑m-read-k formula. Write F

.
=
∑m

i=1 Fi,

where each Fi is a multilinear sparse-substituted read-k formula. Let b
.
= ((k − 1)m +

1) · 4km · R(km + 2) · (log(t) + 1) and w
.
= wm,k · (log(t) + 1); in other words, sufficient

parameters for applying Theorem 10 with m and ki = k.

Let F be the set of all nonzero formulas of the form ∂Pf |Z←0 where f is a subformula

of the Fi’s and P,Z are disjoint sets of variables with |P ∪Z| ≤ b. Consider the polynomial

Φ
.
=
∏

f∈F f . Note that Φ 6≡ 0, and that f ∈ F is multilinear sparse-substituted read-k

formula with at most t terms in each substituted polynomial.

Since G is a generator for multilinear sparse-substituted read-k formulas and Φ is the

product of multilinear sparse-substituted read-k formula; G hits Φ. There is a point with

components in a finite extension E ⊇ F that witnesses the non-zeroness of Φ ◦ G. Let β̄ be

such a point and define σ̄
.
= G(β̄). Thus Φ(σ̄) 6= 0. This implies that all formula in F do

not vanish at σ̄. By Theorem 10, Gwm,k·(log(t)+1) hits F (x̄ + σ̄). Finally, since σ̄ is in the

image of G, G +Gwm,k·(log(t)+1) hits F , completing the reduction. �

3.7.5 From Multilinear to Structurally-Multilinear Formulas

In this subsection we exhibit a transformation L that takes a structurally-multilinear

formula and produces a multilinear sparse-substituted formula while preserving (non-

)zeroness. Combining this transformation with the non-blackbox reduction in Section 3.7.3

allows us to prove the non-blackbox part of Theorem 8 in Section 3.8.1. Additionally, the

transformation induces a natural generalization of the condition (from Lemma 3.18) on σ̄

as the common nonzero of some larger set of formulas. This allows us to generalize the Key
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Lemma (Lemma 3.18) to structurally-multilinear formulas, and then argue an analog of the

blackbox reduction from Section 3.7.4 for structurally-multilinear formulas.

We begin by formally defining the transformation L. Next, we observe some useful

properties of L, and, finally, we use L to generalize the Key Lemma for structurally-

multilinear formulas.

3.7.5.1 The Transformation L

For set of variables X
.
= {x1, . . . , xn} we define X

.
=
{
xj` | `, j ≥ 1

}
to be the set of all

positive powers of the variables in X. Consider a new set of variables Y
.
= {y`,j | `, j ≥ 1},

and observe that there is a bijection between X and Y . The transformation L maps elements

of X into variables of Y in a natural way.

Definition 3.7 (The transformation L).

Let X
.
= {x1, . . . , xn} and Y

.
= {y`,j | `, j ≥ 1}. Let f ∈ F[X] be a sparse-substituted

formula.

• For `, j ≥ 1, let L{xj
`}(f) be the result of replacing every occurrence of exactly xj` in

each term of a sparse-substituted input of f by the variable y`,j.

• Let A be a set of positive powers of variables in X. Let LA(f) be the result of applying

L{xj
`} to f for all xj` ∈ A. Furthermore, let L(f) denote the result of taking A to be

the set of all positive powers of every variable in X, e.g., the result of replacing all

positive powers of x`-variables by the corresponding y`,j’s.

• For any set P ⊆ Y , let X(P )
.
=
{
xj` | y`,j ∈ P

}
be the preimages of the y`,j’s under L.
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For concreteness we give a few examples of the transformation L being applied to structurally-

multilinear formulas:

f = x2
1x3 7→ L(f) = y1,2y3,1,

f = (x2
1x3 + x1x

6
3) · (x3

2x4 + 3) 7→ L(f) = (y1,2y3,1 + y1,1y3,6) · (y2,3y4,1 + 3).

The following lemma demonstrates the connection between a formula f and its trans-

formation L(f). The lemma exploits the fact that in a structurally-multilinear formula

variables are never multiplied with themselves outside a sparse-substituted input. This

implies that we can treat each degree of x` as if it is a distinct variable. Additionally, we

observe that setting x` ← a in f , for some a ∈ F, is equivalent to setting {y`,j ← aj | j ≥ 1}

in L(f).

Lemma 3.21. Let f ∈ F[X] be a structurally-multilinear sparse-substituted read-k formula.

Let P,Z ⊆ Y be two disjoint subsets of variables and let σ̄ ∈ Fn be an assignment. Then

the following holds:

1. L(f) is a multilinear sparse-substituted read-k formula.

2. f ≡ 0 if and only if L(f) ≡ 0.

3. ∂P (LX(P∪Z)(f))|Z←0 does not depend on any y`,j.

4. (∂P (L(f))|Z←0) |{y`,j←σj
` | `,j≥1} =

(
∂P (LX(P∪Z)(f))|Z←0

)
|{x`←σ` | `≥1}

Proof. We first demonstrate a useful property of L, and then show that it implies the

properties stated in the lemma. Consider a term T = c ·
∏n

`=1 x
d`
` in the expansion of

f . Each such term is produced by the sum of various products of terms from the sparse-

substituted inputs:

T ≡
∑
i

ci

n∏
`=1

xd`
` =

∑
i

∏
j

Tij,
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where each Tij is a term from a sparse-substituted input. We can assume that for each i, the

terms Tij are all from different sparse-substituted inputs. Since f is structurally multilinear,

for each i, the terms Tij are variable disjoint, and hence each variable may occur in at most

one factor Tij.

Consider Lxd
`
(T ). If xd` | T , but xd+1

` - T , then Lxd
`
(T ) = y`,d · T/xd` . Otherwise

Lxd
`
(T ) = T . This is a 1-1 mapping on terms, and linearly extends to the sum of terms

forming the expansion of a structurally-multilinear sparse-substituted formula f . Moreover,

for any set of variable powers A, LA maps the terms of a structurally-multilinear sparse-

substituted formula in a 1-1 way.

We now prove the properties claimed by the lemma.

Part 1. L(f) is multilinear, because for each term and variable power in the expansion

of f , the exact variable power xd` is replaced by a y`,d. L(f) is a multilinear sparse-

substituted formula because the transformation is performed on each sparse-substituted

input individually. L(f) is read-k because each y`,d occurs in no more sparse-substituted

inputs of L(f) than x` does in f .

Part 2. We demonstrated that L induces a 1-1 correspondence between the terms of f and

L(f). Moreover, nonzero terms are mapped to nonzero terms. Hence f ≡ 0 iff L(f) ≡ 0.

Part 3. By definition the y variables in LX(P∪Z)(f) are in P ∪ Z. The conclusion follows

because partial derivatives and substitutions eliminate all dependence on the variables they

act over.

Part 4. This property follows from two claims, which hold for any structurally-multilinear

sparse-substituted formula g:

(i) L(g)|{y`,j←σj
` | `,j≥1} ≡ g|{x`←σ` | `≥1}, and

(ii) ∂PL(g)|Z←0 ≡ L(∂PLX(P∪Z)(g)|Z←0).
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Claim (i) follows immediately from the 1-1 mapping between terms of g and L(g) established

above. To see claim (ii) we argue that for all constants c:

L(g)|y`,d←c ≡ L(Lxd
`
(g)|y`,d←c). (3.2)

This essentially says that substitutions for y variables can be moved ahead of most of the

transformation done by L. Consider a term T in the expansion of g. If xd` | T , but xd+1
` - T ,

then Lxd
`
(T ) = y`,d · T/xd` and

L(T )|y`,d←c ≡ (y`,d · L(
T

xd`
))|y`,d←c ≡ c · L(

T

xd`
) ≡ L(c · T

xd`
) ≡ L((y`,d ·

T

xd`
)|y`,d←c)

≡ L(Lxd
`
(T )|y`,d←c).

Otherwise, L(T ) does not depend on y`,d, then L(T |y`,d←c) = L(T ), and therefore T

contributes equally to both sides of Equation (3.2). By linearity we have Equation (3.2).

Claim (ii) follows by performing similar analysis for partial derivatives. This completes the

proof of Part 4 and the lemma. �

3.7.5.2 Generalizing the Key Lemma

Recall that our goal is to prove a version of the Key Lemma that works with structurally-

multilinear formulas. The statement of the generalization is almost identical to the original,

except that σ̄ must be the common nonzero of more formulas. The proof is via a reduction

to Lemma 3.18, and is sketched in the following paragraph.

Let F be a structurally-multilinear formula. Suppose that F (x̄ + σ̄) ∈ Tn for some

assignment σ̄. By a hybrid argument we show that for each variable x` there is a degree

d` such that substituting the appropriate power of σ` into the variables y`,j, for j < d`,

makes the multilinear sparse-substituted formula L(F ) divisible by the linear polynomial

(y`,d`
− σd`

` ). Doing this to L(F ) for each ` ∈ [n] produces a formula which is divisible by a
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shifted monomial in the y`,d`
variables. The only variables y`,j that remain have j = d`, or

j > d`. The variables y`,d`
will be the “x” variables when we apply the Key Lemma. We

fix the variables y`,j, for j > d`, to a typical substitution, so that the relevant properties

are preserved. The result is a multilinear sparse-substituted formula in the variables y`,d`

which computes a shifted monomial. This allows us to reach a contradiction by applying

Lemma 3.18.

The remaining question is: What are the conditions on σ̄? σ̄ must be a common nonzero

of all the nonzero subformulas that may be considered by the Key Lemma when the above

process is complete. However, we do not know a priori which choices our proof makes

for the d`, and hence which variables remain when applying the Key Lemma. Therefore,

we require that σ̄ be a common nonzero with respect to all possible choices of the d`. In

particular, we want σ̄ to be the common nonzero of the nonzero ∂P (LX(P∪Z)(f))|Z←0 where

f is a subformula of F , and P and Z are sets of y variables. This way, independent of the

choices the proof makes for the d` the conditions of the Key Lemma can be satisfied.

This intuition is formalized the following lemma.

Lemma 3.22 (Generalized Key Lemma). Let F = c+
∑m

i=1 Fi, where c is a constant,

and each Fi is a non-constant structurally-multilinear sparse-substituted read-ki formula. If

σ̄ is a common nonzero of the nonzero formulas of the form ∂P (LX(P∪Z)(f))|Z←0 where f

is a subformula of the Fi’s and P,Z ⊆ Y
.
= {y`,j | `, j ≥ 1}, |P ∪ Z| ≤ b

.
= (k −m + 1) ·

4k ·R(k + 2) · (log(t) + 1), then

F (x̄+ σ̄) 6∈ Dn,

for n ≥ w
.
= (8k ·R(k + 2))k−m+1(log(t) + 1), where k

.
=
∑m

i=1 ki, t denotes the maximum

number of terms in each substituted polynomial, and R is the function given by Lemma 3.8.
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Proof. Assume the contrary, without loss of generality, that F (x̄+ σ̄) ≡ Q ·Mn for some

nonzero polynomial Q and n ≥ w. Observe that for each ` ∈ [n], F |x`←σ`
≡ 0. Denote

F̂ =
∑m

i=1 F̂i
.
= L(F ). By Lemma 3.21, Part 2, and the definition of L:

0 ≡ L(F |x`←σ`
)

= L(F )|{y`,j←σj
` | j≥1}

= F̂ |{y`,j←σj
` | j≥1}

As F̂ 6≡ 0 and F̂ |{y`,j←σj
` | j≥1} ≡ 0 there must exist j′ ≥ 1 such that

F̂ |{y`,j←σj
` | j∈[j′−1]} 6≡ 0

and has (y`,j′ − σj
′

` ) as a factor. By repeating this argument sequentially for every ` ∈ [n],

and using the fact that substitutions on multilinear polynomials commute, we obtain a

sequence (d1, . . . , dn) ∈ Nn such that

F̂ ′ =
m∑
i=1

F̂ ′i
.
= F̂ |{y`,j←σj

` | `≥1 , j∈[d`−1]} 6≡ 0.

Moreover, F̂ ′ is a multilinear sparse-substituted m-sum of read-ki formulas and

F̂ ′ ≡ Q′ ·
∏
`∈[n]

(y`,d`
− σd`

` )

for some nonzero polynomial Q′. Partition Y = {y`,j | `, j ≥ 1} into three sets depending

on whether j < d`, j = d`, or j > d`. Call these three sets Y <, Y =, and Y > respectively.

Consider a subformula f̂ ′ of some F̂ ′i and let f and f̂ , respectively, be the corresponding

subformulas of Fi and F̂i. Let P,Z ⊆ Y = be such that |P ∪ Z| ≤ b and ∂P f̂
′|Z←0 6≡ 0. By
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Lemma 3.21, Part 4, and the definition of σ̄:

(
∂P f̂ |Z←0

)
|{y`,j←σj

` | `,j≥1} =
(
∂P (LX(P∪Z)(f))|Z←0

)
|{x`←σ` | `≥1} 6≡ 0.

The substitution on the LHS of the above equation can be partitioned corresponding

to the sets Y <, Y =, and Y >. We drop the substitutions associated with Y >; this keeps

the formula nonzero. Since f̂ is multilinear, P,Z ⊆ Y =, and Y = is disjoint from Y <,

the substitutions of variables from Y < commutes with partial derivatives on P and zero-

substitutions on Z. This fact allows us to push the substitutions over Y < closer to f̂ (to

form f̂ ′), and reach the following conclusion

(
∂P f̂

′|Z←0

)
|n
y`,d`

←σd`
` | `≥1

o ≡ (∂P f̂ |Z←0

)
|{y`,j←σj

` | `≥1 , j∈[d`]} 6≡ 0.

This argument shows that substituting σ̄′
.
= (σd`

` ) for Y = does not zero the formula

∂P f̂
′|Z←0. Moreover, this argument is generic with respect to the choice of f̂ ′, P and Z,

so the substitution σ̄′ for Y = does not zero ∂P f̂
′|Z←0 for any subformula f̂ ′ of F̂ ′, and any

choice of disjoint P,Z ⊂ Y = satisfying |P ∪ Z| ≤ b.

However, the resulting formulas are over Y > ∪ Y = not just Y =. Observe that Q′ may

only depend on variables from Y > because F̂ ′ is multilinear. Fix the variables of Y > so that

σ̄′ is a common nonzero of the formulas ∂P f̂
′|Z←0, and Q′ is not zeroed (for this, a typical

substitution suffices). Let F̂ ′′ be the result of applying this substitution to F̂ ′. We have that

F̂ ′′ = a ·
∏
`∈[n]

(y`,d`
− σ′`),

for some nonzero constant a, is a multilinear sparse-substituted formula over only the

variables in Y =. Set x̄′
.
= (y`,d`

) then F̂ ′′(x̄′ + σ̄′) is a term of degree n. Furthermore, we
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argued that for all subformulas f̂ ′′ of F̂ ′′ and disjoint P,Z ⊂ Y =, with |P ∪ Z| ≤ b, we have

that σ̄′ does not zero ∂P f̂
′′|Z←0. Collect the constant branches of F̂ ′′ into a single constant

branch; the resulting formula satisfies all preconditions of Lemma 3.18, and a contradiction

immediately follows. �

Note, that if the given structurally-multilinear formula is in fact a multilinear formula,

then the conditions of the lemma are equivalent to the conditions of Lemma 3.18 (up to a

relabeling of the variables). Also note the proof of Lemma 3.22 only used sets P and Z

that are disjoint, and that contain at most one y variable that corresponds to each x`, so

we could have relaxed the statement of the lemma accordingly.

3.7.5.3 Blackbox Reduction

In this subsection we give a generalization of Lemma 3.20 to structurally-multilinear formulas.

We first observe that Theorem 10 generalizes to structurally-multilinear formula.

Theorem 11. Let F = c+
∑m

i=1 Fi, where c is a constant, and each Fi is a non-constant

structurally-multilinear sparse-substituted read-ki formula. If σ̄ is a common nonzero of the

nonzero formulas of the form ∂P (LX(P∪Z)(f))|Z←0 where f is a subformula of the Fi’s and

P,Z ⊆ {y`,j | `, j ≥ 1}, |P ∪ Z| ≤ b
.
= (k −m+ 1) · 4k ·R(k + 2) · (log(t) + 1), then

F 6≡ 0⇒ F (Gw + σ̄) 6≡ 0,

for w ≥ (8k ·R(k+2))k−m+1(log(t)+1), where k
.
=
∑m

i=1 ki, t denotes the maximum number

of terms in each substituted polynomial, and R is the function given by Lemma 3.8.

Proof. Observe that the statement of this theorem is the same as Theorem 10 except that

it takes on the conditions associated with Generalized Key Lemma (Lemma 3.22). To prove
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this theorem follow the proof of Theorem 10, but use the stronger preconditions to apply

Lemma 3.22 instead of Lemma 3.18. �

With Theorem 11 in hand, we can argue the following generalization of Lemma 3.20.

The statement is identical to the original except that “multilinear sparse-substituted” is

replaced by “structurally-multilinear sparse-substituted”.

Lemma 3.23 (
∑m-Read-k PIT ≤ Read-k PIT – Blackbox). For an integer k ≥ 1,

let G be a generator for n-variate structurally-multilinear sparse-substituted read-k formulas.

Then G+Gwm,k·(log(t)+1) is a generator for n-variate structurally-multilinear sparse-substituted∑m-read-k formulas, where wm,k
.
= (8km · R(km + 2))(k−1)m+1, t denotes the maximum

number of terms in each substituted polynomial, and R is the function given by Lemma 3.8.

Proof. The proof is the same as in the original version except that Theorem 11 is applied

instead of Theorem 10. This means that the class F of polynomials which σ̄ is a common

nonzero of must be larger to account for the stronger preconditions of the theorem. �

3.8 Identity Testing Read-k Formulas

Before moving on to prove our main theorems, we briefly stop to recall the overall approach.

For clarity we only state the non-blackbox approach; the blackbox approach follows a similar

pattern. We construct an identity test for structurally-multilinear read-k formulas using

four tools.

Lemma 3.15 – a reduction from identity testing multilinear sparse-substituted read-(k+1)

formulas to identity testing multilinear sparse-substituted
∑2-read-k formulas.

Lemma 3.19 – a reduction from identity testing multilinear sparse-substituted
∑2-read-k

formulas to identity testing multilinear sparse-substituted read-k formulas.
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Lemma 3.24 – an identity test for multilinear sparse-substituted read-once formulas.

Lemma 3.21 (Parts 1 & 2) – a reduction from identity testing of structurally-multilinear

read-k formulas to identity testing multilinear sparse-substituted read-k formulas.

Observe that combining the first two reductions reduces identity testing multilinear sparse-

substituted read-(k + 1) formulas to identity testing multilinear sparse-substituted read-k

formulas. Applying this observation recursively and combining it with Lemma 3.24 as the

base case, establishes our main theorem – an identity test for multilinear sparse-substituted

read-k for arbitrary k. We then plug in Lemma 3.21 to lift this result to structurally-

multilinear formulas. Lemma 3.24 and its corresponding blackbox version are proved in the

following subsections immediately before the corresponding main theorem. In the blackbox

setting we deal directly with structurally-multilinear formulas. In the last subsection we

develop a specialized blackbox identity test for structurally-multilinear sparse-substituted

read-k formulas of constant depth.

3.8.1 Non-Blackbox Identity Test

We begin by describing a simple identity test for multilinear sparse-substituted read-

once formula. Note that here multilinear is not a redundant qualifier because the sparse

substitutions could make the read-once formula non-multilinear.

Lemma 3.24. There is a deterministic algorithm for identity testing multilinear sparse-

substituted read-once formulas that runs in time poly(n, s, t), where s denotes the size of the

formula, n the number of variables, and t the maximum number of terms in each substituted

polynomial.

Proof. First, consider how to identity test sparse polynomials. Examine the list of terms

and merge duplicate monomials. The sparse polynomial is nonzero iff any term remains
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(with a nonzero coefficient). Notice that the same procedure can be used to determine

whether a sparse polynomial is constant. This process takes time polynomial in the number

of variables and the bound on the sparsity of the substitutions.

To identity test multilinear sparse-substituted read-once formulas, first apply the above

procedure to each sparse substitution. If a sparse substitution is non-constant, replace it

with a unique new variable; otherwise, replace it with the constant value. The resulting

formula is read-once because each variable only occurs in one sparse input. This procedure

does not affect the (non-)zeroness of the formula. Moreover, the procedure runs in time

polynomial in the size of the formula and reduces the problem to testing read-once formulas.

There can be no additive cancellation of variables in read-once formulas, therefore the

only way for such a formula to be zero is if it is multiplied by the constant zero. Thus,

(non-)zeroness can be determined by traversing the read-once formula from the bottom up,

simplifying gates over constants and eliminating gates that have a multiplication by zero.�

Combining Lemmas 3.15, 3.19, and 3.24 in the way suggested above proves the following

main result.

Theorem 12. There exists a deterministic polynomial identity testing algorithm for multi-

linear sparse-substituted formulas that runs in time sO(1) · nkO(k)(log(t)+1), where s denotes

the size of the formula, n the number of variables, k the maximum number of substitutions

in which a variable appears, and t the maximum number of terms a substitution consists of.

Proof. We proceed by induction on k. The base case is k = 1, which is handled by the

identity test from Lemma 3.24. Consider the induction step for arbitrary k + 1. Assume

there is an identity test for multilinear sparse-substituted read-k formulas that runs in

time T (k, n, s, t). Lemma 3.19 implies there is a deterministic algorithm that runs in time

k2nb · T (k, n, s, t) + nw · poly(k, n, s, t)) that tests multilinear sparse-substituted
∑2-read-k

formulas. The lemma bounds b = O(k4 log k · (log(t) + 1)) and w = kO(k)(log(t) + 1). Given
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this identity test for multilinear sparse-substituted
∑2-read-k formulas, Lemma 3.15 results

in an identity test for multilinear sparse-substituted read-(k + 1) formulas that runs in time

T (k + 1, n, s, t) = O(kn2(k2nb · T (k, n, s, t) + nw · poly(k, n, s, t)) + poly(k, n, s, t)). Solving

this recurrence results in the bound claimed. �

This gives an identity test for structurally-multilinear bounded-read formulas.

Proof (of Theorem 8 – Non-blackbox). Consider a structurally-multilinear read-k formula

F . In time polynomial in the size of F compute L(F ). By Lemma 3.21, Parts 1 and 2,

L(F ) is a multilinear sparse-substituted read-k formula, and L(F ) ≡ 0 iff F ≡ 0. Determine

whether L(F ) is zero by applying the algorithm from Theorem 12. �

This proves the non-blackbox part of Theorem 8, and yields the following corollary for

constant read.

Corollary 3.3. There exists a deterministic polynomial identity testing algorithm for

structurally-multilinear sparse-substituted constant-read formulas that runs in time sO(1) ·

(nd)O(log t), where s denotes the size of the formula, n the number of variables, t the maxi-

mum number of terms a substitution consists of, and d the maximum degree of individual

variables in the substitutions.

When t is constant the algorithm is runs in polynomial time. In particular, we obtain the

following corollary.

Corollary 3.4. There exists a deterministic polynomial-time algorithm for identity testing

multilinear constant-read formulas.

Using transformations different from L (Definition 3.7) it is possible to attain alternate

(often incomparable) running-time parameterizations in the main theorem.
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3.8.2 Blackbox Identity Test

We proceed analogously to the previous subsection. We first argue that the SV-generator G

works for structurally-multilinear sparse-substituted read-once formulas – this extends the

argument in [SV09], which worked for read-once formulas. Additionally, the argument is

stated with respect to a depth parameter to make a later specialization to constant-depth

more concise.

The idea is the following. We recurse on the structure of the structurally-multilinear

sparse-substituted read-once formula F and argue that the SV-generator takes non-constant

subformulas to non-constant subformulas. There are three generic cases, based on the top

gate of F : (i) addition, (ii) multiplication, and (iii) a sparse-substituted input.

In case (i), the fact that F is read-once implies that addition branches are variable

disjoint. This means that there is a variable whose partial derivative eliminates at least half

of the formula and reduces the depth by one. Combining this fact with Lemma 3.5 completes

the case. In case (ii), the fact that the SV-generator takes non-constant subformulas to

non-constant subformulas immediately implies that if G hits the children of a multiplication

gate it also hits the gate itself. In case (iii) we can immediately conclude using Lemma 3.6.

Lemma 3.25. Let F be a nonzero structurally-multilinear sparse-substituted depth-D read-

once formula. Then Gw hits F for w
.
= min {dlog |var(F )|e, D} + dlog te + 1, where t

denotes the maximum number of terms in each substituted polynomial. Moreover, if F is

non-constant then so is F ◦Gw.

Proof. We proceed by structural induction on F . When F is constant, F ◦Gw = F and the

lemma trivially holds. When F is a non-constant sparse-substituted input with t terms,

F ◦ Gw is non-constant for w > dlog te + 1 by Lemma 3.6. In the induction step F is

non-constant and not a sparse-substituted input. There are two induction cases.
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Case 1: The top gate of F is an addition gate. Say F = α ·
∑m

i=1 Fi + β, where the Fi are

structurally-multilinear sparse-substituted depth-(D − 1) read-once formulas. Because F is

in standard form, it has at least two non-constant branches F1 and F2. Then, because F is

read-once: F1 and F2 are variable disjoint, without loss of generality |var(F1)| ≤ |var(F )|
2

, and

for any x ∈ var(F1) there exists γ ∈ F̄ such that ∂x,γF = ∂x,γ(α·
∑m

i=1 Fi+β) = α·∂x,γF1 6≡ 0.

Thus, ∂x,γF has depth at most D − 1 and depends on at most |var(F )|
2

variables. Observe

that

min

{⌈
log
|var(F )|

2

⌉
, D − 1

}
+ dlog te+ 1 = w − 1.

The induction hypothesis immediately gives that the ∂x,γF 6≡ 0 is hit by Gw−1. Applying

Lemma 3.5 implies that F ◦ (Gw−1 +G1) is non-constant. By the Proposition 3.3, Part 3,

Gw−1 +G1 = Gw, completing this case.

Case 2: The top gate of F is a multiplication gate. Say F = α ·
∏m

i=1 Fi + β, where the Fi

are structurally-multilinear sparse-substituted depth-(D − 1) read-once formulas. The fact

that F is in standard form implies that each Fi is non-constant. The induction hypothesis

immediately implies that Gw′ hits each Fi, where w′ = min{dlog |var(F )|e, D−1}+dlog te+1.

Further, each Fi ◦Gw′ is non-constant. Combining this with the fact that w ≥ w′ implies

that α · (
∏m

i=1 Fi) ◦Gw + β is non-constant, completing this case. �

We formally conclude using Lemmas 3.16, 3.23, and 3.25 to prove the following main

result.

Theorem 13. For some function wk = kO(k), the polynomial map Gwk·(log(t)+1)+k logn is a

hitting set generator for n-variate structurally-multilinear sparse-substituted read-k formulas,

where t denotes the maximum number of terms a substitution consists of.

Proof. We proceed by induction on k and argue that we can set wk equal to the value w2,k

from Lemma 3.23. The base case is immediate from Lemma 3.25. Consider the induction
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step for arbitrary k. Assume that G .
= Gwk·(log(t)+1)+k logn is a generator for structurally-

multilinear sparse-substituted read-k formulas. Lemma 3.23 with m = 2 implies that

G + Gwk·(log(t)+1) is a generator for structurally-multilinear sparse-substituted
∑2-read-k

formulas. Apply Lemma 3.16 to G ′ .= G +Gwk·(log(t)+1). This gives that Gwk·(log(t)+1)+k logn +

Gwk·(log(t)+1) +Glogn is a generator for structurally-multilinear read-(k + 1) formulas. Apply

the basic properties of G from Proposition 3.3, Part 3, to get that a total seed length of

2wk · (log(t) + 1) + (k + 1) log n suffices to hit structurally-multilinear read-(k + 1) formulas.

As we can assume without loss of generality that 2wk ≤ wk+1, the theorem follows. �

A structurally-multilinear formula F on n variables, with individual degree d, has total

degree at most dn. The SV-generator Gw with output length n has total degree at most n.

Combining these facts and Proposition 3.2 with the previous theorem establishes the blackbox

part of Theorem 8. In particular, it gives a quasi-polynomial-time blackbox algorithm for

identity testing structurally-multilinear sparse-substituted constant-read formulas.

Corollary 3.5. There exists a deterministic blackbox polynomial identity testing algorithm

for structurally-multilinear sparse-substituted constant-read formulas that runs in time

(dn)O(log(n)+log(t)) and queries points from an extension field of size O(dn2), where n denotes

the number of variables, t the maximum number of terms a substitution consists of, and d

the maximum degree of individual variables in the substitutions.

3.8.3 Special Case of Constant-Depth

We can improve the running time of our blackbox constant-read identity test by further

restricting formulas to be constant-depth. We consider only the blackbox case because

that is where we can get a substantial improvement. In the constant-depth setting we

allow addition and multiplication gates that have arbitrary fanin. In order to specialize our

previous argument to the constant depth case, we first give a version of the structurally-
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multilinear Fragmentation Lemma (Lemma 3.13) parameterized with respect to the depth.

We then carry through the different parameterization in Lemma 3.16 and Theorem 13.

Lemma 3.26 (Bounded-Depth Fragmentation Lemma). Let ∅ ( V ⊆ [n], k ≥ 2,

and let F be a depth-D n-variable structurally-multilinear sparse-substituted readV -k formula

that depends on at least one variable in V . Let t denote the maximum number of terms in

each substituted polynomial. There exists a variable x ∈ V and α ∈ F̄ such that ∂x,αF is

nonzero and is the product of

1. subformulas of F that have depth at most D − 1, and

2. at most one structurally-multilinear sparse-substituted
∑2-readV -(k − 1) formula,

which is the derivative with respect to x and α of some subformula of F .

The proof of this lemma is quite similar to the original (Lemma 3.13), however, we make

some different choices based on the depth.

Proof. Given the original Fragmentation Lemma, we only need to argue the second part.

Assume without loss of generality that V only contains variables on which F depends, and

that the children of multiplication gates are variable disjoint with respect to V .

If none of the variables in V occur k times in F , any choice of variable x ∈ V does the

job. So, let us assume that at least one variable in V occurs k times.

The algorithm recurses through the structure of F , maintaining the following invariant:

The current gate being g visited, g, contains below it k occurrences of some variable in V .

Setting g to be the output gate of F satisfies this invariant initially.

If g is a multiplication gate, recurse on a child of g that depends on a variable from

V that occurs k times in g. Such a child must exist by the invariant and because F is

multilinear.
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If g is an addition gate, and at least one of its children, gi, has a variable in V that

occurs k times in gi, recurse to gi. Otherwise, select a variable x ∈ V that occurs k times

in g ending the recursion. In this case all of the children of g are structurally-multilinear

sparse-substituted readV -(k− 1) formulas. Since F depends on x, there is a α ∈ F̄ such that

∂x,αF is nonzero. Since g has at most k children that contain x, ∂x,αg can be represented

as a
∑k-readV -(k − 1) formula.

In the partial derivative ∂x,αF , all unvisited addition branches along the path from the

output gate of F to the final g have been eliminated. Also, all unvisited multiplication

branches along the path become factors of ∂x,αF together with ∂x,αg. More formally,

∂x,αF = (∂x,αg)
∏

i Fi, where the Fi are the unvisited multiplication branches. The Fi’s are

structurally-multilinear readV -k formulas that have depth at most D − 1, because they are

the children of some multiplication gate in F . When the process stops at an addition gate,

∂x,αg is a structurally-multilinear
∑k-readV -(k − 1) formula that may depend on many

variables from V . �

Lemma 3.26 leads to the following variant of Lemma 3.16 in the bounded-depth setting.

Lemma 3.27. For an integer k ≥ 1, let G be a generator for n-variate structurally-

multilinear sparse-substituted depth-D
∑k+1-read-k formulas and let F be a nonzero n-

variable structurally-multilinear sparse-substituted depth-D read-(k + 1) formula. Then

G +GD hits F .

Proof. First observe that if F is read-k, we are immediately done because F ◦ G 6≡ 0 and 0̄

is in the range of G (by the first item of Proposition 3.3).

The proof goes by induction on d. If D = 0, the lemma holds trivially as F is constant.

If D = 1, F is a read-once formula, which is covered by the above observation. For the

induction step, by the above observation we can assume that F is read-(k+1) and not read-k.

Therefore, F meets the conditions to apply the second part of the Fragmentation Lemma
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for bounded depth formulas (Lemma 3.26). The lemma produces a variable x ∈ var(F ) and

α ∈ F̄. The factors of ∂x,αF all have depth at most D − 1 and are structurally-multilinear

read-(k + 1) formulas, except for at most one which might be a
∑k+1-read-k formula. The

induction hypothesis gives that the former factors of ∂x,αF are all hit by G +GD−1. The

latter factor (if it occurs) is hit by G. Applying Lemma 3.5 gives that G +GD−1 +G1 hits

F . Recalling Proposition 3.3, Part 3, implies that G +GD hits F . �

We can use the previous lemma with Lemmas 3.23 and 3.25 to construct a hitting

set generator specialized to bounded depth. The proof is almost identical to Theorem 13,

except that fanin of the reduced instance increases to k + 1 from 2. This weakens the

parameterization of the seed length with respect to k.

Theorem 14. For some function wk = kO(k2), the polynomial map Gwk·(log(t)+1)+kD is a

hitting set generator for n-variate structurally-multilinear sparse-substituted depth-D read-k

formulas, where t denotes the maximum number of terms a substitution consists of.

Proof. We proceed by induction on k and argue that we can set wk equal to the value wk+1,k

from Lemma 3.23. The base case is immediate from Lemma 3.25. Consider the induction step

for arbitrary k. Assume that G .
= Gwk·(log(t)+1)+kD is a generator for structurally-multilinear

depth-D read-k formulas. Lemma 3.23 with m = k + 1 implies that G +Gwk·(log(t)+1) is a

generator for structurally-multilinear depth-D
∑k+1-read-k formulas. Apply Lemma 3.27

to G ′ .= G+Gwk·(log(t)+1). This gives that Gwk·(log(t)+1)+kD +Gwk·(log(t)+1) +GD is a generator

for structurally-multilinear depth-D read-(k + 1) formulas. Apply the basic properties of G

from Proposition 3.3, Part 3, to get that a total seed length of 2wk+1 · (log(t)+1)+ (k+1)D

suffices to hit structurally-multilinear depth-D read-(k + 1) formulas. As we can assume

without loss of generality that 2wk ≤ wk+1, the theorem follows. �
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Analogous to the unbounded depth setting, combining Theorem 14 with Proposition 3.2

establishes the following theorem.

Theorem 15 (Improvement for Bounded-Depth Formulas). There exists a deter-

ministic blackbox polynomial identity testing algorithm for structurally-multilinear sparse-

substituted formulas with unbounded fanin that runs in time (dn)k
O(k2)(log(t)+1)+O(kD) and

queries points from an extension field of size O(dn2), where n denotes the number of vari-

ables, D the depth of the formula, k the maximum number of substitutions in which a

variable appears, t the maximum number of terms a substitution consists of, and d the

maximum degree of individual variables in the substitutions.

When the read of a formula is constant we obtain the following corollary.

Corollary 3.6. There exists a deterministic blackbox polynomial identity testing algorithm

for structurally-multilinear sparse-substituted constant-depth constant-read formulas that

runs in time (dn)O(log t) and queries points from an extension field of size O(dn2), where n

denotes the number of variables, t the maximum number of terms a substitution consists of,

and d the maximum degree of individual variables in the substitutions.

The important difference between the above corollary and Corollary 3.5 is that the

exponent no longer depends on n. Additionally, if the sparsity of substituted polynomials is

constant the algorithm becomes polynomial-time. In particular, we obtain the following

corollary.

Corollary 3.7. There is a deterministic polynomial-time blackbox algorithm for identity

testing multilinear constant-depth constant-read formulas.
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3.9 Further Research

The obvious big question remains: Are there polynomial-time deterministic identity tests for

general arithmetic formulas? The more tenable open questions that are immediately raised

by our work are: Can we get more efficient – polynomial-time – algorithms in the blackbox

setting or in non-blackbox setting for sparse-substituted formulas? In fact, it is still open

whether there is a polynomial-time blackbox test for read-once formulas. Multilinearity is

used essentially in our arguments. Can this requirement be removed? Our work has spurred

further improvements; a recent paper by Agrawal et al. provides partial answers to some

of these questions for the special case of constant-depth: [ASSS11] give a polynomial-time

blackbox test for constant-read constant-depth sparse-substituted formulas over fields of

large characteristic. Their paper also gives more insight into the connections between the

bounded-read and the bounded-top-fanin requirements of the past depth-three and -four

results [SS11, SV11].

One direction where we have some partial results is in applying our techniques to

arithmetic circuits of a more general type, namely, algebraic branching programs. Using our

techniques, we can replicate the identity tests for read-once branching programs in [JQS10].

Another direction is formula reconstruction, that is, the problem of efficiently learning

an arithmetic formula for a polynomial from examples given by blackbox. Shpilka and

Volkovich do this efficiently for read-once formulas [SV08, SV09] using their identity tests

for sums of read-once formulas. Can we leverage our identity tests and structural results

for constant-read multilinear formulas to reconstruct formulas of the same type? Finally,

it would be interesting to explore the hardness-randomness connection for constant-read

formulas as has been done for other classes of formulas [KI04, DSY08].
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4 Locality from
Circuit Lower Bounds

The art of doing mathematics consists in finding that special case which contains

all the germs of generality.

— David Hilbert

In this chapter we describe our results on the locality for first-order formulas. We begin

with an overview of our techniques in Section 4.1. We discuss related work in Section 4.2.

In Section 4.3 we present general background concerning neighborhoods and locality. In

Section 4.4 we formally introduce our notion of Arb-invariance and describe its connection

to AC0. Section 4.5 contains our results for Gaifman locality, Section 4.6 our results for

Hanf locality on strings, and Section 4.7 our application to regular languages. We conclude

in Section 4.8 with some suggestions for further research.

4.1 Overview

Our proof of the upper bound on Gaifman locality in Theorem 3 exploits the tight connection

between Arb-invariant FO formulas and the complexity class AC0: Given an Arb-invariant

FO formula ϕ that distinguishes two points of the universe whose neighborhoods up to

distance r are of the same type, we construct a circuit on 2m = Θ(r) bits that distinguishes

inputs with exactly m ones from inputs with exactly m + 1 ones. In the special case where

the neighborhoods of the two points are disjoint the circuit actually computes parity. The

depth of the circuit is a constant depending on ϕ, and its size is polynomial in n. The known

exponential circuit lower bounds [H̊as86] then imply that r is bounded by a polylogarithmic

function in n. This argument establishes the upper bound in Theorem 3 for the case of



117

formulas with a single free variable. In order to handle an arbitrary number k of free

variables, we show how to reduce any case with k > 1 free variables to one with fewer

variables in a way that is conceptually similar to (but technically different from) [GS00].

See Section 4.2 for a more detailed discussion of this related work.

As mentioned before, we do not know how to extend the upper bound of Theorem 3 to

the stronger notion of Hanf locality in general, but we can establish it in Theorem 4 for

the special case of strings. The reason the latter case is simpler is because on strings being

Hanf local is equivalent to closure under swapping substrings whose endpoints have the

same neighborhood type — a condition that has much of a Gaifman locality flavor. In fact,

to prove that closure under such swaps holds for Arb-invariant FO(Succ) formulas, we use a

reduction to the upper bound for Gaifman locality from Theorem 3.

The lower bounds in Theorems 3 and 4 follow because arithmetic predicates like addition

and multiplication allow one to define a bijection between the elements of a first-order

definable set S of polylogarithmic size and an initial segment of the natural numbers

[DLM07]. Thus, the binary representation of a single element of the entire domain can be

used to represent a list of elements of S. By exploiting this, Arb-invariant FO can express,

e.g., reachability between two nodes in S by a path of polylogarithmic length.

For the proof of Theorem 5 we use a characterization from [SS10b] stating that a regular

language is definable in addition-invariant FO iff it is definable in FO(Succ, lm) iff it is

closed under two operations called “swap” and “transfer”. By applying a pumping argument

we obtain that Hanf locality and regularity imply closure under “swaps”. Furthermore, a

reduction from circuit lower bounds, similar to the one used for the upper bound proof

of Theorem 3, along with a pumping argument shows that regular languages definable in

Arb-invariant FO are closed under “transfers”.
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4.2 Related Work

We now give a brief overview of related work.

Invariant logics. The expressiveness of order-invariant FO was considered in various

places, cf., e.g., [AHV95, Lib04, EF99, GS00, BS09]. Logics allowing invariant uses of

predicates weaker than the linear order were considered in [Ros07, Ott00], concentrating

on successor-invariant FO and epsilon-invariant FO, respectively. Logics allowing invariant

uses of arbitrary numerical predicates were formally introduced in [Mak97], pointing out, in

particular, that the graph properties definable in Arb-invariant FO are precisely the graph

properties computable in AC0. Similarly, [Mak98] showed that the graph properties definable

in Arb-invariant least fixed-point logic coincide with the graph properties computable in

P/poly. By results of [Imm87, Imm86, Var82] it is known that (+, ∗)-invariant FO (i.e.,

Arb-invariant FO where the formulas only use the numerical predicates + and ×) and

order-invariant least fixed-point logic precisely capture the graph properties computable in

uniform AC0 and in polynomial time, respectively.

Quite a number of articles in the circuit complexity literature and the finite model

theory literature concentrated on graph properties (or queries) computable in AC0 or

definable in Arb-invariant FO (or variants thereof), without explicitly mentioning the

notion of Arb-invariance. For example, [Raz85, And85, AB87] showed an exponential lower

bound on the size of monotone circuits computing the k-clique problem on n-vertex graphs.

Recently, [Ros08, Ros10] established a strong lower bound on the size of constant-depth

circuits computing the k-clique problem, and applied this to show that the bounded variable

hierarchy inside FO is strict on the class of finite ordered graphs and on the class of finite

graphs enriched by arbitrary numerical predicates. [Ajt89] showed that the query selecting

all pairs (x, y) of nodes in a graph that are connected by a path of length at most f(n), where

n is the size of the graph and f is an unbounded function, is not definable in Arb-invariant
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FO. In [Ajt83] it was shown that the class of graphs having an even number of edges is

not definable in the Arb-invariant version of the extension of FO called existential monadic

second-order logic (EMSO). [FSV95, Sch96] proved that connectivity of graphs is not

definable in EMSO with numerical predicates of moderate degree.

Locality. The notions of Hanf and Gaifman locality were introduced in [FSV95, HLN99],

going back to results from [Han65, Gai82]. Showing that a logic is Hanf or Gaifman local

provides insight into the limitations of its expressiveness and constitutes a high-level tool

for proving that certain properties or queries cannot be expressed by formulas of this logic.

Hanf and Gaifman locality results have been obtained for FO and for various extensions of

FO (e.g., by counting quantifiers). For an overview on locality results and their applications

in complexity theory we refer to [LN00]. Most locality results obtained in the literature

deal with locality radii of constant size (cf., the example on FO mentioned at the beginning

of the introduction, and the results mentioned in [HLN99, LN00, GS00, Lib04]). In their

concluding sections, the articles [HLN99, GS00], however, proposed to also consider notions

of locality where the radius of the neighborhoods grows with the size of the structures —

this is what we do in the present paper. As pointed out in [HLN99, GS00], an analogue of

our Theorem 3 for order-invariant first-order logic with counting quantifiers would lead to a

separation of the complexity classes TC0 and LOGSPACE.

The notion of locality in logic has a somewhat similar flavor to the notion of sensitivity

in circuit complexity. The sensitivity of a Boolean function f at an input x is the number

of bit positions i in x such that if we flip the ith bit in x, then the value of f changes.

The average sensitivity of every function f in AC0 over all inputs of length n is known to

be polylogarithmically bounded in n [LMN93]. The latter result is closely related to the

exponential lower bounds for parity on constant-depth circuits [H̊as86]. Rather than going

through sensitivity, our argument for proving Theorems 3 and 4 directly uses those circuit

lower bounds to establish a polylogarithmic upper bound on the locality of Arb-invariant
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FO.

Comparison with [GS00]. Our Theorem 3 can be viewed as an analogue of the main result of

[GS00]. While their result states that order -invariant FO queries are Gaifman local with a

constant locality radius r (depending on the query), our result states that Arb-invariant FO

queries are Gaifman local with a locality radius (log n)c where c is a constant (depending on

the query) and n is the size of the underlying structure. Our proof of the upper bound in

Theorem 3 has the same overall structure as the proof of [GS00]: It first considers queries

of arity k = 1 for the case of disjoint neighborhoods, then for the case of overlapping

neighborhoods, and afterwards it gives a reduction from queries of arbitrary arity k > 1

to queries of arity k−1. Our method for handling the case of overlapping neighborhoods

uses techniques from [GS00]; however, our overall argument for treating queries of arity

k = 1 gives a reduction to lower bounds in circuit complexity, while the argument of [GS00]

relies on Ehrenfeucht-Fräıssé games. Our proof for the arity reduction from k > 1 to k−1 is

conceptually similar to the proof of [GS00], but involves substantial technical differences. On

the one hand, the notion of Arb-invariance allows us to give a non-uniform reduction (while

the order-invariance of [GS00] requires uniformity). On the other hand, Arb-invariance

requires us to construct a reduction that does not change the size of the universe of the

structures considered (while the reduction of [GS00] changes the size of the universe and

builds on the fact that this preserves order-invariance).

4.3 Background

In this section we briefly review relevant background material on neighborhoods, Gaifman

locality, and Hanf locality. Recall that in Sections 2.3-2.4.1 we presented background on

circuit complexity, finite model theory, and first-order logic.

Neighborhoods. To each structure M we associate an undirected graph G(M), known as
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the Gaifman graph of M , whose vertices are the elements of the domain of M and whose

edges relate two elements of M whenever there exists a tuple in one of the relations of M

in which both appear. For example, consider a relational schema τ consisting of one binary

relation symbol E. Each τ -structure M is then a directed graph in the standard sense, and

G(M) coincides with M when ignoring the orientation. Given two elements u and v of a

structure M , we denote as distM (u, v) the distance between u and v in M , which is defined

as their distance in the Gaifman graph G(M). If ā and b̄ are tuples of elements of M , then

distM(ā, b̄) denotes the minimum distance between any pair of elements (one from ā and

one from b̄).

For every r ∈ N and tuple ā ∈ dom(M)k, the r-ball around ā in M is the set

NM
r (ā)

.
=

{
v ∈ dom(M) : distM(ā, v) ≤ r

}
,

and the r-neighborhood around ā in M is the structure

NM
r (ā)

.
=

(
M|NM

r (ā) , ā
)
.

That is, NM
r (ā) is the induced substructure of M on NM

r (ā) with k distinguished elements

ā. Two neighborhoods NM
r (ā) and NM ′

r (b̄) are isomorphic, if there is an isomorphism

π : M|NM
r (ā)
∼= M ′

|NM′
r (b̄)

that maps ā to b̄.

Locality. Let φ(x̄) be a logical formula with k free variables. We consider two notions of

locality of φ(x̄) (the precise definitions are basically taken from [Lib04]). We first define the

notions with respect to fixed structures and then with respect to all structures.
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Definition 4.1 (Gaifman Locality). A formula φ(x̄) is Gaifman r-local with respect to

a τ -structure M , if for all tuples ā, b̄ ∈ dom(M)k we have

NM
r (ā) ∼= NM

r (b̄) =⇒ M |= φ(ā) iff M |= φ(b̄). (4.1)

For any two τ -structures M,M ′ and any tuples ā ∈ dom(M)k and b̄ ∈ dom(M ′)k we write

(M, ā) ≡r (M ′, b̄) if there is a bijection h : dom(M)→ dom(M ′) such that for every element

c in the domain of M , NM
r (cā) ∼= NM ′

r (h(c)b̄). Equivalently, the various isomorphism types

(i.e., distinct local neighborhoods of radius r) occur with the same cardinality in M and M ′.

Definition 4.2 (Hanf Locality). A formula φ(x̄) is Hanf r-local with respect to a pair

of τ -structures (M,M ′), if for all tuples ā ∈ dom(M)k and b̄ ∈ dom(M ′)k

(M, ā) ≡r (M ′, b̄) =⇒ M |= φ(ā) iff M ′ |= φ(b̄). (4.2)

For either notion of locality and every function r : N → R≥0, we call a formula φ(x̄)

r(n)-local if there exists a constant nφ such that φ(x̄) is r(n)-local with respect to all

τ -structures of size n ≥ nφ.

As for the relationship between the two notions of locality, there are two differences:

(i) Hanf locality considers two structures that can be different, whereas Gaifman locality

considers only one structure, and (ii) Hanf locality requires the existence of a global bijection,

whereas Gaifman locality does not. Difference (i) makes Hanf locality a more powerful

notion. In particular, Hanf locality is meaningful for sentences, whereas Gaifman locality

for sentences trivially holds. When considering a single structure M , difference (ii) seems

to make Hanf locality weaker than Gaifman locality but this is not the case (modulo a

small loss in the distance parameter r). Intuitively, a global bijection can be constructed

from an isomorphism between a pair of large-radius neighborhoods and the trivial global
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isomorphism between two identical structures in such a way that the isomorphism types up

to some smaller distance are preserved. One can formalize this argument to show that if a

formula is Hanf r-local w.r.t. (M,M) then it is Gaifman (3r + 1)-local w.r.t. M [HLN99].

4.4 Arb-Invariant First-Order Logic

In this section we introduce our notion of Arb-invariance and give a precise statement of

the strong connection between Arb-invariant FO and the queries computable in AC0.

Arb-invariance. We fix an infinite schema σarb, containing a binary symbol < together with

a symbol for each numerical predicate (the “arb” in σarb comes from allowing arbitrary nu-

merical predicates). For instance, σarb contains a symbol + for addition, ∗ for multiplication,

and so on. Each numerical predicate is implicitly associated, for every n ∈ N, with a specific

interpretation as a relation of the appropriate arity over the domain [n]
.
= {1, 2, . . . , n}.

For instance, + is associated with the classical relation of addition over N restricted to [n].

Conversely, for each such family of relations, σarb contains an associated predicate symbol.

Let M be a τ -structure and n = |dom(M)|. An Arb-expansion of M is a structure M ′

over the schema consisting of the disjoint union of τ and σarb such that dom(M) = dom(M ′),

M and M ′ agree on all relations in τ , and < is interpreted as a linear order over dom(M).

This interpretation induces a bijection between dom(M) and [n], identifying each element

of M ′ with its index relative to <. All the numerical predicates are then interpreted over

dom(M ′) via this bijection and their associated interpretation over [n]. For instance, + is

the ternary relation containing all tuples (a, b, c) of dom(M ′)3 such that i+ j = k, where

a, b, and c are respectively the ith, jth and kth elements of dom(M ′) relative to <. Note that

M ′ is completely determined by M and the choice of the linear order < on dom(M).

We denote by FO(τ,Arb) the set of first-order formulas using the schema τ ∪ σarb.

A k-ary formula φ(x̄) of FO(τ,Arb) is said to be Arb-invariant with respect to a finite
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τ -structure M , if for any k-tuple ā of elements of M , and any two Arb-expansions M ′ and

M ′′ of M we have

M ′ |= φ(ā) ⇐⇒ M ′′ |= φ(ā). (4.3)

When φ(x̄) is Arb-invariant with respect to all finite structures M over a schema, we

simply say that φ(x̄) is Arb-invariant. Note that this is a semantic property which is not

decidable (cf., e.g., [Lib04]).

A k-ary Arb-invariant formula defines a k-ary query over τ -structures as follows. When

φ(x̄) is an Arb-invariant formula of FO(τ,Arb) on M , we write M |= φ(ā) whenever there

is an Arb-expansion M ′ of M such that M ′ |= φ(ā). Hence we view Arb-invariant formulas

as formulas over τ -structures, and so we consider the Gaifman graph of M ′ to contain edges

derived only from the relations in τ (i.e., G(M ′) = G(M)). We denote by Arb-invariant

FO(τ ) the set of Arb-invariant formulas of FO(τ,Arb), or simply Arb-invariant FO if τ is

clear from the context. When the formula uses only the predicate < of σarb, we have the

classical notion of order-invariant FO (cf., e.g., [GS00, Lib04]).

Arb-invariance and AC0. There is a strong connection between AC0, FO(τ,Arb), and

Arb-invariant FO. For ordered structures, AC0 and FO(τ,Arb) are equivalent, i.e., they

can describe exactly the same sets of bit-strings [Imm87]. This means that for every circuit

family F = (Cm)m∈N of constant depth and polynomial size there is a FO(τ,Arb)-sentence

φF (over a schema τ that uses a unary relation specifying the positions of the string that

carry the letter 1) that is satisfied by exactly those bit-strings that are accepted by F . And

vice versa, for every FO(τ,Arb)-sentence φ there exists a corresponding AC0 circuit family

Fφ.

For unordered τ -structures, a query is computable in AC0 iff it is definable in Arb-

invariant FO(τ,Arb). Recall that, by definition, a k-ary query q on τ -structures is com-

putable in AC0 iff there is a circuit family (Cm)m∈N of constant depth and polynomial size
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such that for all τ -structures M , all ā ∈ dom(M)k, and all Γ ∈ Rep(M, ā): C|Γ|(Γ) = 1 iff

ā ∈ q(M). We only need one direction of this equivalence, namely the one that is implied

by the following lemma.

Lemma 4.1 (Implicit in [Imm87]). For each k-ary FO(τ,Arb) formula φ(x̄) with alter-

nation depth d, there exists a family of depth-(d+ 3) polynomial-size circuits (Cm)m∈N such

that for each τ -structure M , for each linear order < on M and the Arb-expansion M ′ of M

induced by <, for each tuple ā ∈ dom(M)k, and for the string Γ = enc<(M, ā),

C|Γ|(Γ) = 1 ⇐⇒ M ′ |= φ(ā).

Note that for a circuit family F = (Cm)m∈N to compute the query defined by the

k-ary formula φ over τ -structures, it has to be the case that for all τ -structures M and all

ā ∈ dom(M)k, C|Γ|(Γ) is the same for every Γ ∈ Rep(M, ā). The latter condition exactly

corresponds to the formula φ in Lemma 4.1 being Arb-invariant.

4.5 Gaifman Locality

We now prove the main result of the chapter – the upper bound in Theorem 3. Recall, our

theorem claims that every Arb-invariant FO formula is Gaifman (log n)c-local, for some

constant c which depends only on the formula. In fact, we prove the following slightly

stronger version.

Theorem 16. For each FO(τ,Arb) formula φ(x̄) with alternation depth d and any constant

c > d+ 2, there exists a constant nφ,c such that if φ(x̄) is Arb-invariant with respect to a

τ -structure M with n
.
= |M | ≥ nφ,c, then φ(x̄) is Gaifman (log n)c-local with respect to M .
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We now briefly sketch the overall proof of Theorem 16. Suppose we have two tuples, ā

and b̄, on a τ -structure M , with domain size n, such that their r-neighborhoods, NM
r (ā)

and NM
r (b̄), are isomorphic (for some big enough r). Further suppose that there is an

FO(τ,Arb) formula φ(x̄) which is able to distinguish between ā and b̄ on M while being

Arb-invariant with respect to M . Using the link between Arb-invariant FO(τ,Arb) formulas

and AC0 circuits from Lemma 4.1, we can view the formula φ(x̄) as a small constant-depth

circuit C.

Using the hypothesis that φ(x̄) is Arb-invariant and distinguishes between ā and b̄ on

M , we can construct from the circuit C and structure M another circuit C̃ that for a

(2m)-length binary string w distinguishes between the cases where w contains m occurrences

of 1 and m+1 occurrences, for some m depending on r. This is the key step in our argument.

If this happens for large enough m, we get a small circuit computing the promise problem

described in Lemma 2.1. We can argue that C̃ has size polynomial in n and depth a constant

d′ depending only on the alternation depth of φ(x̄). Therefore, if m > b(log n)d
′−1 for a

large enough constant b, the circuit C̃ we construct violates Lemma 2.1, hence φ(x̄) cannot

distinguish between tuples which have isomorphic r-neighborhoods. Our construction is

such that m is linearly related to r and therefore φ(x̄) is Gaifman (log n)c-local for any

constant c > d′ − 1 and sufficiently large n.

4.5.1 Upper Bound for Unary Formulas

In this subsection we consider only unary FO formulas φ(x). For didactic reasons we first

assume that the r-neighborhoods of the elements a and b are disjoint. We argue that we

can perform the key step in this setting, and consider the general unary case afterward.

For clarity we describe the intuition with respect to structures that are graphs. Let

M be a graph G = (V,E) and take two vertices a, b ∈ V such that π : NG
r (a) ∼= NG

r (b).
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Figure 4.1: Diagram for swapping the neighborhoods of a and b of radius i, conditioned on
wi = 1.

Suppose, for the sake of contradiction, that there is a unary FO formula φ(x) which is

Arb-invariant with respect to G and such that G |= φ(a) ∧ ¬φ(b). Applying Lemma 4.1 to

φ gives us a circuit C which, for any vertex c ∈ V , outputs the same value for all strings in

Rep(G, c), and distinguishes Rep(G, a) from Rep(G, b).

4.5.1.1 Disjoint Neighborhoods

Let us assume that NG
r (a) ∩ NG

r (b) = ∅. In this setting it turns out we can pick m = r.

The neighborhood isomorphism, π : NG
r (a) ∼= NG

r (b), implies that the balls of radius i < r

around a and b are isomorphic and disjoint in G. Consider the following procedure, depicted

in Figure 4.1. For some i ∈ [m], cut all the edges linking nodes at distance i− 1 from a or b

to nodes at distance i. Now, swap the positions of the (i− 1)-neighborhoods around a and

b and reconnect the edges in a way that respects the isomorphism π. The resulting graph is

isomorphic to G, but the relative positions of a and b have swapped.

Using this intuition we construct a new graph Gw from G, a, and b that depends on a

string of m Boolean variables w
.
= w1w2 · · ·wm. We construct Gw so that for each variable

wi, we swap the relative positions of the (i− 1)-radius balls around a and b iff wi is 1. The

number of such swaps is |w|1. The m-neighborhood isomorphism between a and b implies

that Gw
∼= G. When |w|1 is even, (Gw, a) ∼= (G, a), and when |w|1 is odd, (Gw, a) ∼= (G, b).

Using the above construction of Gw we derive a circuit C̃ from C that computes parity on
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m bits. The circuit C̃ first computes a representation Γw ∈ Rep(Gw, a), and then simulates

C on input Γw. The above distinguishing property then implies that C̃ accept m-bit strings

with even parity. To construct Γw we start with a fixed string in Rep(G, a) and transform

it into an element of Rep(Gw, a) by modifying the edges to switch between the shells in the

manner suggested above. Observe that the presence of each edge in Gw depends on at most

a single bit of w. This property implies that Γw consists of constants, and variables in w or

their negations. This means that C̃ is no larger or deeper than C.

We formalize this intuition for general structures and obtain the following lemma.

Lemma 4.2. Let m ∈ N. Let M be a τ -structure. Let a, b ∈ dom(M) such that

distM(a, b) > 2m and NM
m (a) ∼= NM

m (b). Let C be a circuit that accepts all strings in

Rep(M,a), and rejects all strings in Rep(M, b). There is a circuit C̃ with the same size

and depth as C that computes parity on m bits.

Proof. For every r ∈ N and a ∈ dom(M), the r-shell around a in M is the set

SMr (a)
.
=

{
v ∈ dom(M) : distM(a, v) = r

}
.

Let π be an isomorphism from NM
m (a) to NM

m (b). Extend π to take NM
m (b) back to NM

m (a)

(that is, extend the domain of the map to the elements of NM
m (b) and act as π−1 for those

elements). This is well-defined because distM(a, b) > 2m and the m-neighborhoods are

disjoint. Note that, in particular, π(a) = b, and for all i ∈ [m], π
(
SMi (a)

)
= SMi (b). Let

Si
.
= SMi (a) ∪ SMi (b) for i ≤ m. Note, that S0 = {a, b}.

Let w
.
= w1w2 · · ·wm be a string of m Boolean variables. We design a structure Mw that

has the following property:

If |w|1 is even, then (Mw, a) ∼= (M,a).

If |w|1 is odd, then (Mw, a) ∼= (M, b).
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When |w|1 is even, C(Mw, a) accepts, because (Mw, a) ∼= (M,a). Similarly, when |w|1 is

odd C(Mw, a) rejects because (Mw, a) ∼= (M, b). Thus, the above property is sufficient to

claim that C(Mw, a) accepts iff the parity of w is even. We show how to construct Mw.

Consider a tuple v̄ = (v1, ..., vk) that belongs to a relation RM , for some symbol R ∈ τ

of arity k, that intersects the shells Si−1 and Si for some i ∈ [m]. (Note that other tuples

are wholly contained in single shells, because the pairwise distances between the elements

of v̄ are at most one.) For clarity we reorder the components of v̄ so that v̄
.
= (v̄1, v̄2) where

v̄1 ⊆ Si−1 and v̄2 ⊆ Si. Each tuple v̄ of this type in RM induces a set of two potential tuples

in RMw : v̄ and (v̄1, π(v̄2)). If wi = 0 we copy the tuple v̄ from RM into RMw ; if wi = 1 we

add the tuple (v̄1, π(v̄2)) to RMw .

Observe that, by construction, for any i ∈ [m], when wi = 1, each tuple intersecting

SMi−1(a) and SMi (a) is replaced with a tuple intersecting SMi−1(a) and π(SMi (a)) = SMi (b),

and each tuple intersecting SMi−1(b) and SMi (b) is replaced with a tuple intersecting SMi−1(b)

and π(SMi (b)) = SMi (a). Note this is general because the m-neighborhoods around a and b

are disjoint (hence, “cross tuples” are not present in M). Further, for every i where wi = 1,

the construction interchanges the roles of the elements in NM
i−1(a) with their images under

π in NM
i−1(b). This implies the relative positions of the elements a and b themselves are

swapped once for each bit of w that is one. This argument also implies that Mw
∼= M .

Therefore, when the parity of w is odd (Mw, a) ∼= (M, b) because a and b swap positions an

odd number of times. When the parity of w is even (Mw, a) ∼= (M,a) by the same token.

This is the property claimed. We conclude the proof by constructing a Boolean circuit C̃,

using Mw and C, which computes parity.

Fix an arbitrary string Γ ∈ Rep(M,a). We derive a new input string Γw, with |Γw| = |Γ|,

from w and Γ. We want Γw to be a binary representation of the structure Mw paired with

the element a. With this in mind, we copy the encoding of the distinguished element a from

Γ into Γw. It remains to determine the encoding of Mw in Γw.
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For each i ∈ [m], each relation R ∈ τ , and each tuple v̄ ∈ RM crossing between shells

Si−1 and Si, we encode the corresponding tuple in Γw in the following way: Set the bit of

Γw corresponding to the tuple v̄ and relation R to ¬wi, and the bit of Γw corresponding

to the tuple (v̄1, π(v̄2)) and relation R to wi. That is, we modify the encoding so that

v̄ ∈ RMw when wi = 0 and (v̄1, π(v̄2)) ∈ RMw when wi = 1. For all other bits in Γ specifying

relations, we copy them verbatim from Γ into Γw. Observe that the bits of Γw are drawn

from {0, 1, wi,¬wi}. This completes the construction of Γw ∈ Rep(Mw, a).

Finally, define the circuit C̃(w)
.
= C(Γw). Observe that C̃ is an m-input circuit that has

size and depth no more than C because each component of Γw is either a constant or a

literal of w. �

4.5.1.2 General Neighborhoods

We now develop the transformation corresponding to Lemma 4.2 for the general unary case,

where the r-neighborhoods around a and b may overlap. As before, we describe the intuition

in terms of structures that are graphs.

Consider the iterated application of the isomorphism π to a. We distinguish between

two cases. The first case occurs when this iteration travels far from a. That is, for some

t ∈ N, πt(a) is a point c that is far from a. Suppose r is large enough that the isomorphism

π implies that a large neighborhood around c is isomorphic to the neighborhood around a.

By the triangle inequality, since a is far from c, either (i) b is far from a, or else (ii) c is far

from a and b (see Figure 4.2(i),(ii)). We claim that in each case there is a pair of vertices

that are distinguished by C, and whose neighborhoods are isomorphic and disjoint. In case

(i), a and b are such a pair; in case (ii), C must distinguish either a and c, or b and c, so a

and c, or b and c form such a pair. For this pair of vertices, we are in the disjoint case and

Lemma 4.2 can be applied to produce a small circuit that computes parity.

The other case occurs when the iterated application of π to a stays close to a (and b).
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Figure 4.2: Diagram for the general unary case. (r is the radius of the domain of π.)

Let S0 be the orbit of a under π (i.e., S0
.
= {πz(a)|z ∈ N}) (see Figure 4.2(iii)), and let Si

be the vertices at distance i from S0, for i ∈ [2m]. Because π(S0) = S0 and π is a partial

isomorphism on G, the shells Si are closed under π.

We now play a game similar to the disjoint case. Consider the following procedure,

depicted in Figure 4.3. For some i ∈ [2m] cut all edges between the shells Si−1 and Si.

“Rotate” the radius i−1 ball around S0 by π relative to Si, and reconnect the edges. Because

the shells are closed under π, the resulting graph is isomorphic to G. Further, the positions

of a and b have shifted relative to an application of π.

As before, we encode this behavior into a modified graph Gw depending on a string of 2m

Boolean variables w
.
= w1w2 · · ·w2m. When wi = 0, we preserve the edges between the shells

Si−1 and Si. When wi = 1 we rotate the edges by π. That is, an edge (v1, v2) ∈ (Si−1×Si)∩E

becomes the edge (v1, π(v2)) in Gw. The neighborhood isomorphism between a and b implies

that G ∼= Gw. We can argue that

(Gw, a) ∼= (G, π|w|1(a)). (4.4)

We define the circuit C̃ to simulate C on an input Γw ∈ Rep(Gw, a). The above distinguish-
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Figure 4.3: Diagram for rotating the shell of radius i around S0 when wi = 1.

ing property implies that C̃ distinguishes between |w|1 ≡ 0 mod |S0| and |w|1 ≡ 1 mod |S0|.

(Note, this is non-trivial because |S0| ≥ 2 since a and b are distinct and in S0.) This is not

quite the promise problem defined in Lemma 2.1. For this reason we modify the construction

to shift a by m applications of π−1 in Γw. This means that Γw ∈ Rep(Gw, π
−m(a)) and C̃

can distinguish between |w|1 ≡ m mod |S0| and |w|1 ≡ m+ 1 mod |S0|. This is ruled out

by Lemma 2.1, completing the argument.

For general structures, the idea is formalized in the following lemma, where we achieve

r = 10m.

Lemma 4.3. Let m ∈ N. Let M be a τ -structure. Let a, b ∈ dom(M) such that NM
10m(a) ∼=

NM
10m(b). Let C be a circuit that accepts all strings in Rep(M,a) and rejects all strings in

Rep(M, b), and for each c ∈ dom(M), C has the same output for each string in Rep(M, c).

There is a circuit C̃ with the same size and depth as C that distinguishes |w|1 = m and

|w|1 = m+ 1 for w ∈ {0, 1}2m.

Proof. Let π be an isomorphism between NM
10m(a) and NM

10m(b). There are two cases:

Case 1. The iterated isomorphism takes a far from a.

More specifically, there exists t ∈ N such that

distM(a, πt(a)) > 8m. (4.5)
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Let t be the minimal value such that (4.5) holds. Let c
.
= πt(a). Hence distM(a, c) > 8m.

Since t is minimal, distM(a, πj(a)) ≤ 8m for all j < t. Because the isomorphism π

preserves neighborhoods contained in NM
10m(a), it follows that for all j < t, NM

2m(πj(a)) ⊆

NM
8m+2m(a), and π induces an isomorphism from NM

2m(πj(a)) to NM
2m(πj+1(a)). This implies

that NM
2m(a) ∼= NM

2m(b) ∼= NM
2m(c).

As distM(a, c) > 8m, the triangle inequality implies that either distM(a, b) > 4m or

distM(b, c) > 4m. In the former case, we complete by applying Lemma 4.2 and observing

that parity on 2m bits distinguishes between inputs with m ones and inputs with m + 1

ones. In the latter case, depending on whether C accepts Rep(M, c) or not, we can proceed

either with the pair b and c or the pair a and c. In either case, from the above we see

that this pair of points have isomorphic 2m-neighborhoods and are more than 4m apart.

Therefore Lemma 4.2 again suffices to reach the required conclusion.

Case 2. The iterated isomorphism keeps a close to a.

More specifically, for all t ∈ N, distM(a, πt(a)) ≤ 8m.

Let S0 ⊆ dom(M) be the orbit of a under π. Note that π(S0) = S0 and b ∈ S0. We

define Si as the set of elements of M at distance i from S0. Because π is an isomorphism

from NM
10m(a) to NM

10m(b), each Si is also closed under π for i ≤ 2m.

Let w
.
= w1w2 · · ·w2m be a string of 2m Boolean variables. We proceed similarly to the

proof of Lemma 4.2 when constructing a structure Mw and representation Γw. We construct

Mw and a distinguished element a′ so that the following property holds:

If |w|1 ≡ m mod |S0|, then (Mw, a
′) ∼= (M,a).

If |w|1 ≡ m+ 1 mod |S0|, then (Mw, a
′) ∼= (M, b).

When |w|1 = m, C(Mw, a
′) accepts, because (Mw, a

′) ∼= (M,a). Similarly, when

|w|1 = m+ 1, C(Mw, a
′) rejects, because (Mw, a

′) ∼= (M, b). This property is sufficient to
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claim that C(Mw, a
′) distinguishes between |w|1 = m and |w|1 = m+ 1, because |S0| > 1

since a and b are distinct and in S0. We now show how to construct Mw and a′.

Let the structure Mi denote the result of performing the construction from Lemma 4.2

only for the tuples intersecting shells Sj and Sj+1, for all j < i. Note M0 = M and

(M0, v) = (M, v) for all v ∈ S0. When wi = 0, we have Mi−1 = Mi, hence (Mi−1, v) = (Mi, v)

for any v ∈ S0, because the construction makes no modifications to the structure between

shell Si−1 and Si in this case. When wi = 1, we are rotating the neighborhood below shell

Si by π−1 relative to Si. Since the shells are closed under the action of π, we can conclude

that Mi
∼= Mi−1 for i ∈ [2m]. This also implies that when wi = 1, (Mi, v) ∼= (Mi−1, π(v)).

It follows that for any v ∈ S0 and i ∈ [2m]: (Mi, v) ∼= (Mi−1, π
wi(v)). By applying this fact

2m times we reach the conclusion that for all v ∈ S0,

(Mw, v)
.
= (M2m, v) ∼= (M0, π

|w|1(v)) = (M,π|w|1(v)).

The length of the orbit of a with respect to π is |S0|. Define a′
.
= π−m(a). Since

a′ ∈ S0, it follows that when |w|1 ≡ 0 mod |S0|, (Mw, a
′) ∼= (M,a′) and when |w|1 ≡

1 mod |S0|, (Mw, a
′) ∼= (M,π(a′)). Observe this implies that when |w|1 ≡ m mod |S0|,

(Mw, a
′) ∼= (M,πm(π−m(a))) = (M,a) and when |w|1 ≡ m + 1 mod |S0|, (Mw, a

′) ∼=

(M,πm+1(π−m(a))) = (M, b). This is the property claimed. It remains to construct the

circuit C̃.

We construct the string Γw in the same way as in the proof of Lemma 4.2 with respect to

M , w, π, and the shells {Si}i≤2m defined above. Note that in the case where the construction

would assign both wi and ¬wi to a bit of Γw corresponding to some tuple in a relation of

Mw we instead set the corresponding bit of Γw to 1. The string Γw represents the pairing

of the structure Mw with the element a. Form Γ′w from Γw by replacing the encoding of

distinguished element a with an encoding of a′. Note that Γ′w ∈ Rep(Mw, a
′). Setting
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C̃(w)
.
= C(Γ′w) completes the proof. �

Notice that the idea behind the proof of this lemma is quite similar to the disjoint case.

When the neighborhoods are disjoint, the above construction gives S0 = {a, b}. In this case

the “rotation” by π becomes a swap. Further, since |S0| = 2, the promise problem we solve

is distinguishing between |w|1 ≡ m mod 2, and |w|1 ≡ m+ 1 mod 2 – this is exactly parity!

Thus, in the case of disjoint neighborhoods, the construction in the proof of Lemma 4.3

reduces to the one from Lemma 4.2.

With Lemma 4.3 in hand, we are ready to finish the proof of Theorem 16 in the unary

case.

Proof (of Theorem 16 for the case k = 1). Assume that φ(x) is a unary FO(τ,Arb) formula

with alternation depth d that is Arb-invariant with respect to a τ -structure M with n
.
= |M |.

Since φ(x) is FO(τ,Arb), it is computable by a family of circuits in AC0 (cf. Lemma 4.1).

That is, there are a constant e and a circuit C with depth d+ 3 and size ne such that, C

computes φ(x) on size n τ -structures. Since φ(x) is Arb-invariant with respect to M , for

each fixed a ∈ dom(M), C has the same output for all strings in Rep(M,a).

Now, for the sake of contradiction, suppose φ(x) is not Gaifman (log n)c-local with

respect to M , for some constant c > d+ 2.This implies that φ(x) distinguishes between two

elements a, b ∈ dom(M) having isomorphic (log n)c-neighborhoods.

Let m
.
= b (logn)c

10
c. Therefore NM

10m(a) ∼= NM
10m(b). The circuit C then satisfies the

assumptions of Lemma 4.3. From the lemma, we obtain a circuit C̃ of depth d + 3 and size

ne that distinguishes between |w|1 = m and |w|1 = m+ 1 for w ∈ {0, 1}2m.

From Lemma 2.1 we obtain that ne > 2αm
1/(d+3−1)

, which is equivalent to e log n >

αm1/(d+2). The latter condition is violated if we set m = (log n)c whenever c is a constant

larger than d+ 2 and n is sufficiently large (depending on φ and c). This yields the required

contradiction, completing the proof. �
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4.5.2 Reducing the Arity

To argue Theorem 16 in the case of formulas with an arbitrary number of free variables, we

prove the following reduction. Given a k-ary FO(Arb) formula φ that is Arb-invariant with

respect to the structure M and distinguishes two k-tuples ā and b̄ that have isomorphic

r-neighborhoods, we produce, for some k′ < k, a k′-ary FO(Arb) formula φ′ that is Arb-

invariant with respect to an extended structure M ′ and distinguishes between two k′-tuples

ā′ and b̄′ that have isomorphic r′-neighborhoods. Furthermore, r′ is only slightly smaller

than r.

Repeated application of this idea transforms a distinguishing k-ary formula into a

distinguishing unary formula with slightly weaker parameters. For large enough initial

radius r this is sufficient to contradict the Gaifman locality of unary formulas.

We first give an intuitive description of the reduction argument. Let φ(x̄) be a k-ary

formula as above, and let π : NM
r (ā) ∼= NM

r (b̄) denote a neighborhood isomorphism. The

main idea is to transfer some of the information present in the initial k-tuples ā and b̄ into a

new marking relation R such that we can recover ā and b̄ from k′ < k of their components

ā′ and b̄′ as extensions of ā′ and b̄′ that satisfy R. In that case, the formula

φ′(ȳ) = (∃z̄)R ∧ φ(ȳ, z̄) (4.6)

has arity k′ < k, and distinguishes the tuples ā′ and b̄′ over the extension M ′ of M with

R, where R is a relation of arity at most k evaluated over some of the variables in ȳ and

z̄. The formula φ′ is Arb-invariant over M ′ since φ is Arb-invariant over M , the domain

of M ′ is the same as of M , and R does not use the Arb relations. Moreover, provided

the marking relation R is invariant under π, π also induces a neighborhood isomorphism

NM ′

r′ (ā′) ∼= NM ′

r′ (b̄′) in the new structure, albeit possibly for a smaller radius r′, e.g., due to

the effect of the introduction of R on the Gaifman graph.



137

We start by considering three situations in which it is relatively simple to obtain a

π-invariant marking relation R, and then see how to handle the remaining case. Throughout,

we assume without loss of generality that ā is accepted by φ and b̄ is rejected by φ, and we

use the notation ā
.
= (a1, a2, . . . , ak) and b̄

.
= (b1, b2, . . . , bk).

Case 1. The tuples ā and b̄ have a component in common.

Say ak = bk. Then the fact that φ distinguishes ā and b̄ is independent of the last component

of the tuples. To exploit this redundancy we mark the element ak and derive a (k − 1)-ary

formula φ′(ȳ) as in (4.6), where R checks whether z̄ equals ak. Since ak = bk and π has to

map ak to bk, ak is a fixed point of π, which guarantees that the marking relation is invariant

under π. In this case the original isomorphism π remains a neighborhood isomorphism with

the same radius r′ = r.

Case 2. The elements in the orbit of ā stay well within the isomorphism neighborhood of ā.

The orbit of ā is the set of tuples πt(ā) for all t ∈ N. We now use the relation R to mark all

tuples in the orbit of ā. The relation R is π-invariant because the entire orbit stays within

the domain of the neighborhood isomorphism π.

This marking allows us to reduce the arity as follows. First, note that we can apply Case

1 whenever there is a pair of marked tuples that is distinguished by φ and has a component

in common. Therefore, we can assume that φ does not distinguish any marked tuples that

share a component.

This observation allows us to recover the tuples ā and b̄ (or equivalent ones) from their

first components only. Let ā′
.
= (a1) and b̄′

.
= (b1). Since φ accepts ā and ā is marked,

existentially guessing the remaining components consistent with ā and R shows that φ′

defined by (4.6) accepts ā′. On the other hand, since φ rejects b̄, φ rejects all marked

tuples that share the first component with b̄. Therefore, no marked tuples with b1 as
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Figure 4.4: Diagram for Case 3.

first component are accepted by φ, and hence φ′ rejects b̄′. This establishes the required

distinguishing property of φ′.

We already mentioned that the marking relation R is π-invariant. The fact that the

entire orbit of ā stays well within the isomorphism neighborhood guarantees that the new

isomorphism radius r′ is not too much smaller than the original radius r.

Case 3. All components of ā are close to each other.

Because of Case 2, we only need to consider the situation where the iterates of π take some

component of ā far from ā. Without loss of generality we can assume that b̄ has a component

that is far from ā. Also, since π preserves distances, we know that all components of b̄

are close to each other. This allows us to choose a relatively large r′ ≤ r such that the

r′-neighborhoods of ā and b̄ do not intersect. So, the situation is as sketched in Figure 4.4.

In this case, simply marking the tuples ā and b̄ yields a relation R that is invariant

under π on NM
r′ (ā) for the relatively large radius r′. The π-invariance follows from the fact

that ā and b̄ = π(ā) are far apart, as the range of π on NM
r′ (ā) falls entirely outside of

NM
r′ (ā), so no tuple other than ā needs to be marked in NM

r′ (ā) in order for the marking to

be π-invariant.

With this marking, knowledge of one component of ā and b̄ suffices to recover the full
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Figure 4.5: Diagram for the hybrid isomorphism from Case 4 that maps h̄ = (b1, a2, . . . , ak)
to b̄ = (b1, b2, . . . , bk).

tuples, so we can reduce the arity to k′ = 1 following (4.6).

Case 4. Hybrid case.

In the remaining case we can assume without loss of generality that some component of

b̄, say b1, is far from ā, and that a1 is far from some other component of ā. Due to the

isomorphism π, the latter is equivalent to b1 being far from some other component of b̄.

In this case, we do not know how to apply the π-invariant marking strategy to the given

tuples ā and b̄. However, we can construct a “hybrid” tuple h̄ that has some components in

common with ā and some with b̄ such that Case 1 applies to either ā and h̄, or to h̄ and b̄.

For simplicity, let us first consider the situation where b1 is far from all other components

of b̄. Recall that b1 is also far from ā. These two facts imply that for a large radius

the neighborhood around b̄ is isomorphic to the neighborhood around the tuple h̄
.
=

(b1, a2, . . . , ak). To see this, consider the map which acts as the identity map on the elements

near b1 and acts as π on the elements near a2, . . . , ak. Figure 4.5 illustrates the construction.

The distance between b1, and both ā and the rest of b̄ ensures that no tuples that are

in a relation of M straddle the neighborhood of b1 as well as the neighborhood of some

other component. Therefore, on such a tuple our map either acts like the identity on

all components, or like π on all components. Since both the identity and π preserve the

relations of M , so does our map.
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a1

b1aIc

aI bIc

bI

Figure 4.6: Diagram for Case 4 when b1 is close to some component of b̄.

By transitivity, we also have a neighborhood isomorphism between ā and h̄. We also know

that φ distinguishes h̄ from one of ā and b̄ because those tuples are themselves distinguished

by φ. Thus, there is some pair of tuples which have large isomorphic neighborhoods, are

distinguished by φ, and share components (since h̄ is a hybrid of ā and b̄). We conclude by

applying Case 1 to reduce the arity of the formula, while only slightly decreasing the radius

of the neighborhood isomorphism.

Finally, consider the case where b1 is close to some components of b̄ and far from others.

We iteratively group the components of b̄ closest to b1 to form the set b̄I , until all remaining

components are far from b̄I . So, by construction the elements of b̄I are far from the other

components of b̄ and far from ā, since b1 is far from ā. Viewing the component b̄I as a

single element allows us to apply the argument from the previous paragraph to reduce the

instance, albeit with some further loss in the isomorphism radius. This loss is caused by

the distortion in distance from grouping elements in this way. See Figure 4.6 for a diagram

of this case.

These ideas are formalized in the proof of the following lemma.
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Lemma 4.4. Let k, d, r ∈ N and τ be a schema. Let M be a τ -structure with tuples

ā, b̄ ∈ dom(M)k. Let φ(x̄) be a k-ary FO(τ,Arb) formula with alternation depth d > 0 which

is Arb-invariant with respect to M . Suppose:

1. M |= φ(ā) ∧ ¬φ(b̄), and

2. π : NM
r (ā) ∼= NM

r (b̄).

There is a k′ < k, a schema τ ′ ⊇ τ , a τ ′-structure M ′ with tuples ā′, b̄′ ∈ dom(M ′)k
′
and

a k′-ary FO(τ ′,Arb) formula φ′(ȳ) with alternation depth d which is Arb-invariant with

respect to M ′ such that:

1′. M ′ |= φ(ā′) ∧ ¬φ(b̄′), and

2′. π′ : NM ′

r′ (ā′) ∼= NM ′

r′ (b̄′),

where

r′ =
r

9k
. (4.7)

Proof. Since d > 0, we can assume without loss of generality that the first quantifier of φ is

existential, otherwise, we can work with the formula ¬φ instead and swap the labels of ā

and b̄.

Let ā
.
= (a1, a2, · · · , ak) and b̄

.
= (b1, b2, · · · , bk). There are three main cases. In each of

the cases, the resulting formula φ′(ȳ) is of the form

φ′(ȳ) = (∃z̄ ∈ dom(M ′)k−k
′
) R ∧ φ(ȳ, z̄),

where R is a new relation on some subset of the variables ȳ and z̄ added to the structure

M to form M ′ that does not depend on the order or the arbitrary numerical predicates. It

follows that since φ is Arb-invariant with respect to M , φ′ is Arb-invariant with respect
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to M ′. The form of φ′ also implies that φ′ has alternation depth d since φ begins with an

existential quantifier. We use two distance parameters ` and s, in addition to r′, which we

establish conditions on in the course of the proof. We optimize their value at the end. It

remains to show that properties 1′ and 2′ hold for radius r′ in all cases.

Case 1. There exists i ∈ [k] such that ai = bi.

Assume without loss of generality that i = k. Expand the structure M to M ′ by adding a

new unary predicate R 6∈ τ where R is satisfied only by the element ak. Construct a new

formula:

φ′(y1, y2, . . . , yk−1)
.
= (∃zk) R(zk) ∧ φ(y1, y2, . . . , yk−1, zk).

Let ā′
.
= (a1, a2, . . . , ak−1) and b̄′

.
= (b1, b2, . . . , bk−1). Property 1′ holds because of Property

1. To see that Property 2′ holds, observe that the isomorphism π is a bijection between

∪j<kNM
r (aj) and ∪j<kNM

r (bj). For all relations in τ , π is an isomorphism between these

two sets. Further π preserves R on these sets because π maps ak to itself. From this, it

follows that π : NM ′

r′ (ā′) ∼= NM ′

r′ (b̄′) and Property 2′ holds for any radius r′ ≤ r.

In summary, the isomorphism radius of this case satisfies r′ ≤ r, the isomorphism π is

not modified, the structure gains one new relation, and the arity of the formula is reduced

by one.

Case 2. For all t ∈ N and i ∈ [k], distM(ā, πt(ai)) ≤ 2`.

For all t ∈ N, πt(ā) is a tuple in NM
2` (ā). It follows that NM

r′ (π
t(ā)) ⊆ NM

2`+r′(ā). If

r ≥ 2`+ r′, (4.8)

these r′-neighborhoods of πt(ā) are contained in the domain of π and we have a chain of

r′-neighborhood isomorphisms resulting in NM
r′ (ā) ∼= NM

r′ (πt(ā)).
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Suppose that there is t ∈ N and i ∈ [k] such that bi = πt(bi), and M |= φ(πt(b̄)). In

this case, we finish via the argument in Case 1, because φ distinguishes the tuples b̄ and

πt(b̄), these tuples share a component, and NM
r′ (b̄) ∼= NM

r′ (πt(b̄)). Thus, assume otherwise,

i.e., for all t ∈ N and i ∈ [k],

bi = πt(bi)⇒M |= ¬φ(πt(b̄)). (4.9)

We expand the structure M to M ′ by adding a new k-ary relation R 6∈ τ containing

the tuples ∪t∈N{πt(b̄)}. Define a new formula:

φ′(y1)
.
= (∃z2, z3, . . . , zk) R(y1, z2, . . . , zk) ∧ φ(y1, z2, . . . , zk).

Let ā′
.
= (a1) and b̄′

.
= (b1). We now establish Property 1′. First, observe that

M ′ |= φ′(ā′) via the witness (a2, a3, . . . , ak). We now argue that M ′ |= ¬φ′(b̄′). Suppose

the contrary, that M ′ |= φ′(b̄′), then there exists (c2, c3, . . . , ck) ∈ dom(M)k−1 and t ∈ N

such that M |= φ(b1, c2, c3, . . . , ck) and πt(b̄) = (b1, c2, c3, . . . , ck). This contradicts (4.9).

Therefore M ′ |= φ′(ā′) ∧ ¬φ′(b̄′), hence Property 1′ holds.

We now establish Property 2′. Observe that R ⊆ (NM
2` (ā))k. This implies that for all

t ∈ N, NM ′

r′ (πt(ā′)) ⊆ NM
2`+r′(ā) and further that NM ′

r′ (πt(ā′)) is within the domain of π.

Hence when π acts on NM ′

r′ (πt(ā′)) all relations in τ are preserved. The mapping π also

preserves R on NM ′

r′ (πt(ā′)) because R is exactly the orbit of ā under π. From this, it

follows that for all t ∈ N, NM ′

r′ (ā′) ∼= NM ′

r′ (πt(ā′)). In particular, NM ′

r′ (ā′) ∼= NM ′

r′ (b̄′) and

Property 2′ holds with r′ ≤ r − 2` (see (4.9)).

In summary, the isomorphism radius is reduced to r′ ≤ r − 2`, the structure gains a

new relation, and the arity is reduced to one.
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Cases 3 & 4 There exists t ∈ N and i ∈ [k] such distM(ā, πt(ai)) > 2`.

Select t minimal and assume without loss of generality that i = 1. Let c̄
.
= πt(ā). Thus,

distM(ā, c1) > 2`. We argue that we can assume with loss of generality that we have a

pair of tuples ā∗ and b̄∗ such that for a large distance s (to be determined later):

(i) φ |= φ(ā∗) ∧ ¬φ(b̄∗),

(ii) NM
s (ā∗) ∼= NM

s (b̄∗), and

(iii) distM(ā∗, b∗1) > `.

Suppose distM(b̄, c1) ≤ `. Since distM(ā, c1) > 2` it follows that distM(ā, bj) > `, for

some j ∈ [k]. Therefore ā and b̄ satisfy condition (iii) with coordinate j permuted to 1.

Conditions (i), and (ii) with

s ≤ r (4.10)

follow by properties 1 and 2 in the hypothesis of the lemma.

Otherwise, distM (b̄, c1) > `. Because t is selected minimally, for all j < t, NM
s (πj(ā)) ⊆

NM
2`+s(ā). If

r ≥ 2`+ s, (4.11)

these s-neighborhoods of πj(ā) are contained in the domain of π and we have a chain of

s-neighborhood isomorphisms resulting in NM
s (ā) ∼= NM

s (c̄). Since φ distinguishes ā and

b̄, φ must be able to distinguish between either ā and c̄, or b̄ and c̄. Therefore, for some

pair, all three conditions (i), (ii), and (iii) are met.

Thus, we have a pair of tuples ā∗ and b̄∗ that satisfy conditions (i), (ii), and (iii) with

s ≤ r − 2`. Let π relabel the isomorphism between the s-neighborhoods for this new pair.

There are two subcases.
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Figure 4.7: Diagram for Case 3.

Case 3. For all j ∈ [k], distM(b∗1, b
∗
j) ≤ s.

See Figure 4.7 for a diagram of this case. Because of property (ii) and since isomorphisms

preserve distance, for all j ∈ [k], distM(a∗1, a
∗
j) ≤ s.

Expand the structure M to form M ′ by introducing a new k-ary relation R 6∈ τ

containing only the tuples ā∗ and b̄∗. Let ā′
.
= (a∗1) and b̄′

.
= (b∗1). Construct a new

formula:

φ′(y1)
.
= (∃z2, z3, . . . , zk) R(y1, z2, . . . , zk) ∧ φ(y1, z2, . . . , zk).

By Property (iii), a∗1 and b∗1 are distinct. This means that ā′ and b̄′ correspond with the

distinct elements of R, and, with Property (i), we determine that M ′ |= φ′(ā′) ∧ ¬φ′(b̄′),

hence Property 1′ holds.

To establish Property 2′, consider radius r′, with

r′ ≤ s. (4.12)

The tuple ā∗ ∈ R is fully contained in NM ′

r′ (ā′), because, due to the addition of R when

going from M to M ′, the distance between any two distinct points in ā∗ is reduced to
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Figure 4.8: Diagram for Case 4.

1. Thus, if the sets NM ′

r′ (ā′) and NM ′

r′ (b̄′) are disjoint, there is no intersection between

ā∗ and NM ′

r′ (b̄′) (similarly for the tuple b̄∗ and NM ′

r′ (ā′)). The fact that R = {ā∗, b̄∗},

Property (ii) holds, and (4.12) imply that π preserves R on the domain NM ′

r′ (ā′). Hence,

π : NM ′

r′ (ā′) ∼= NM ′

r′ (b̄′). Thus Property 2′ holds for r′. It remains to establish a sufficient

condition for such disjointness.

First, observe that distM(ā∗, b̄∗) > `− s, because all elements of b̄∗ are within s of b∗1

and distM(ā∗, b∗1) > `. This implies that distM
′
(ā∗, b̄∗) > ` − s, because the tuples in R

cannot contribute an edge in a shortest path between ā∗ and b̄∗. Further, since ā′ and b̄′

are elements in ā∗ and b̄∗, distM
′
(ā′, b̄′) > `− s. Therefore, if we select

r′ ≤ `− s
2

, (4.13)

the r′-neighborhoods of ā′ and b̄′ are disjoint in M ′.

In summary, the structure gets one new relation, the isomorphism radius reduces to

r′ ≤ min( `−s
2
, s), and the arity reduces to one.

Case 4. There exists j ∈ [k], such that distM(b∗1, b
∗
j) > s.

See Figure 4.8 for a diagram of this case. In this case we can construct a hybrid tuple h̄
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from ā∗ and b̄∗ such that φ distinguishes h̄ from one of ā∗ or b̄∗ and the r′-neighborhoods

of all three tuples are isomorphic, where the term “hybrid” means that h̄ has components

from both ā∗ and b̄∗. As this pair of tuples shares some common components we can

apply Case 1 to conclude.

For an index set I ⊆ [k], let the tuple b̄I consist of only the components of b̄∗ with indices

in I. Start with I
.
= {1}. While there is an i ∈ [k]\I such that distM(b∗i , b̄I) ≤ 2r′ + 1,

add i to I. If

(k − 1)(2r′ + 1) ≤ s, (4.14)

b̄I cannot contain every component of b̄∗ (by the hypothesis of this case). Let Ic be the

complement of I (i.e., Ic
.
= [k]\I) and define h̄

.
= (b̄I , āIc). We argue that we can construct

an isomorphism

ρ : NM
r′ (b̄∗) = NM

r′ (b̄I , b̄Ic) ∼= NM
r′ (b̄I , āIc) = NM

r′ (h̄).

This implies that

ρ ◦ π : NM
r′ (ā∗) ∼= NM

r′ (h̄).

Together this implies that the r′-neighborhoods of ā∗, b̄∗ and h̄ are isomorphic. Since one

of M |= φ(h̄) or M |= ¬φ(h̄) holds we can conclude by applying Case 1 with h̄ and one of

ā∗ and b̄∗. This establishes properties 1′ and 2′ for radius r′.

It remains to argue the isomorphism ρ exists. If NM
r′ (b̄I) is at least distance two from

both NM
r′ (b̄Ic) and NM

r′ (āIc), it suffices to define ρ to be identity map on the domain

NM
r′ (b̄I) and act as π−1 on the domain NM

r′ (b̄Ic), since no tuple in a relation can straddle

both parts of the domain. By construction distM(b̄I , b̄Ic) > 2r′ + 1. This implies that

distM(NM
r′ (b̄I), N

M
r′ (b̄Ic)) > 1. It remains to argue distM(b̄I , āIc) > 2r′ + 1. Suppose

otherwise, distM (b̄I , āIc) ≤ 2r′+1. Then distM (b∗1, ā
∗) ≤ (k−2)(2r′+1)+distM (b̄I , āIc) ≤
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(k − 1)(2r′ + 1). This contradicts Property (iii) as long as we choose,

` ≥ (k − 1)(2r′ + 1). (4.15)

Therefore ρ exists and the case is concluded.

In summary, during Case 4 the isomorphism π and the structure are modified, and

the isomorphism radius is reduced to r′ satisfying (4.10), (4.11), (4.14), and (4.15).

This completes the case analysis.

Choosing ` = k(2r′ + 1) and s = (k− 1)(2r′ + 1) we see that the conditions (4.8), (4.10),

(4.11), (4.12), (4.13), (4.14), and (4.15) are satisfied for r ≥ (3k − 1)(2r′ + 1). Since the

lemma holds trivially when r′ < 1, selecting r = 9kr′ = (3k)(3r′) ≥ (3k− 1)(2r′+ 1) suffices.

This is (4.7) in the statement of the lemma which completes the proof. �

4.5.3 Upper Bound for General Formulas

In this section we prove the general case of Theorem 16, which implies the upper bound in

Theorem 3. The critical cases are the ones with positive alternation depth. In those cases,

the idea is to iteratively apply Lemma 4.4 to reduce to the unary version of Theorem 16.

Suppose that a k-ary formula φ with alternation depth d > 0 is Arb-invariant and not

(log n)c-local with respect to a structure M , where c is some positive constant. This means

that there exists a violation in M to the (log n)c-locality of φ. Iteratively applying Lemma 4.4

yields a violation of the (γk · (log n)c)-locality of some unary formula φ′ of alternation depth

d on some structure M ′ with |M ′| = |M | = n, where γk only depends on k. For c′ a constant

such that d + 2 < c′ < c, and n sufficiently large such that (γk · (log n)c) ≥ (log n)c
′
, we

obtain a contradiction with the unary version of Theorem 16 as long as n ≥ nφ′,c′ . Thus, if

we can upper bound the values nφ′,c′ that can arise in the reduction from φ, we are done.
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The upper bound follows because the number of different formulas φ′ that can arise from

φ is bounded. This is because in each case of the proof of Lemma 4.4, the resulting formula

φ′ consists of (i) an existential quantification over the marking relation to construct a tuple,

and (ii) an evaluation of φ on the quantified tuple. The number of such formulas depends

only on how the free variables are situated. This means that in the end the reduction

produces only a bounded number of unary formulas, depending on φ.

We now formalize this argument.

Proof (of Theorem 16). We first remark that the case d = 0 in Theorem 16 trivially holds.

To see this, consider a k-ary quantifier-free formula φ(x̄) of FO(τ,Arb) that is Arb-invariant

on a τ -structure M . We show that φ(x̄) is 0-local with respect to M . This implies that φ(x̄)

is (log n)c-local with respect to M for any constant c. Let n
.
= |M |. Assume that M |= φ(ā)

and consider a tuple b̄ such that NM
0 (ā) ∼= NM

0 (b̄). Consider any Arb-expansion M ′ of M .

By Arb-invariance we have M ′ |= φ(ā). Recall that the linear order of M ′ induces a bijection

h′ between dom(M) and [n]. Let h′′ be any bijection between dom(M) and [n] such that

h′(ā) = h′′(b̄). This bijection induces a new linear order on M and a new Arb-expansion

M ′′ of M . We claim that M ′′ |= φ(b̄). By Arb-invariance this implies M |= φ(b̄) as desired.

From NM
0 (ā) ∼= NM

0 (b̄) we get that each atom of φ involving a relation in τ is true on M

(and therefore on M ′ and M ′′) for ā iff it is true for b̄. From h′(ā) = h′′(b̄) we get that each

atom of φ involving a numerical predicate is true for ā on M ′ iff it is true for b̄ on M ′′.

As φ(x̄) is quantifier free we conclude that M ′ |= φ(ā) iff M ′′ |= φ(b̄), which finishes the

quantifier-free case.

Consider now the case of alternation depth d > 0. Suppose that φ(x̄) is a k-ary

alternation-depth-d formula of FO(τ,Arb) that is Arb-invariant with respect to a τ -structure

M . Further suppose that φ(x̄) is not (log n)c-Gaifman local with respect to M , where

n
.
= |M | ≥ nφ,c (nφ,c will be determined later). The non-locality of φ is witnessed by two
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tuples ā and b̄ on M . To φ and the witness (M, ā, b̄) we can apply Lemma 4.4 at most k− 1

times to produce a unary formula φ′ with alternation depth d which is Arb-invariant and

non-local with respect to a structure M ′. This non-locality is witnessed by the elements a′

and b′ distinguished by φ′, and an isomorphism between the b (logn)c

(9k)k−1 c-neighborhoods of a′

and b′. Let c′ be any constant such that d+ 2 < c′ < c.

If we select nφ,c satisfying b (lognφ,c)
c

(9k)k−1 c ≥ (log nφ,c)
c′ and nφ,c ≥ nφ′,c′ we have a structure

M ′, with |M ′| = n ≥ nφ′,c′ , where φ′ is Arb-invariant on M ′, but not (log n)c
′
-local with

respect to M ′. This contradicts the unary version of this theorem. Therefore, it suffices

to pick nφ,c to be the maximum of 2(9k)
k−1
c−c′

and nφ′,c′ for each φ′ that may result from the

iterated applications of Lemma 4.4. We now argue that the number of such formulas φ′ is

bounded by a constant.

Claim 4.1. For a given formula φ, the number of different formulas φ′ that can be produced

by Lemma 4.4 for different choices of M , ā, and b̄ is upper bounded by a function of k only.

Proof. Consider each case of the proof of Lemma 4.4 and the formula produced. In all cases

except Case 1, the formula is of the form

φ′(ȳ) = (∃z̄ ∈ dom(M ′)k−k
′
) R(ȳ, z̄) ∧ φ(ȳ, z̄).

This induces at most k − 1 different formulas because the range of k′ is 1 ≤ k′ ≤ k − 1.

Note that Case 1 is slightly different in that R is a unary predicate, not a k-ary relation.

So, taken together we have at most k basic formula types. However, we often (implicitly)

relabeled the free variables for convenience of notation. These variations may induce distinct

formulas as well. This relabeling can increase the number of distinct formulas by a factor

of at most k! (one for each ordering of the variables). We conclude that there are at most

k · k! different formulas that the proof may produce. Note that bound is independent of M ,
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ā, b̄, the Arb relations and even |M |. �

Since the number of possible φ′ is bounded by a constant (depending on φ), nφ,c can be

selected to be such a constant as well. This concludes the proof. �

4.5.4 Lower Bound

For c = 1, the lower bound of Theorem 3 is implicit in [DLM07, Corollary 2]. For generalizing

the result to arbitrary c ≥ 1, the proof idea is as follows: We consider graphs represented

as τE-structures, where τE is the schema consisting of a binary relation symbol E. We

construct an Arb-invariant formula φc(y) which, when evaluated in a graph G, expresses

that (i) G has less than (log n)c+1 non-isolated nodes (where n denotes the total number of

nodes of G), and (ii) y is reachable from a node that lies on a triangle. To note that φc is

not Gaifman (log n)c-local, consider, for a sufficiently large n, the graph G that consists of

the disjoint union of

• a triangle, connected to a path of length (log n)c + 1,

• a path of length (log n)c + 1, and

• enough isolated nodes such that the total number of nodes of G is exactly n.

Let b and b′ be the last nodes on the two paths present in G. Obviously, their (log n)c-

neighborhoods are isomorphic. But b is reachable from a node that lies on a triangle, and

b′ is not. Since n is sufficiently large, the total number of non-isolated nodes is less than

(log n)c+1. Thus, G |= φc(b) and G 6|= φc(b
′). In summary, φc is not Gaifman (log n)c-local.

For the construction of the formula φc, we use the following lemma. This lemma will

also be used later on, in Section 4.6, for the proof of the lower bound of Theorem 4.
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Lemma 4.5. Let τES be the schema consisting of a binary relation symbol E and a unary

relation symbol S. For every integer d ≥ 1 there is an Arb-invariant FO(τES,Arb)-formula

reachd(x, y) such that the following is true for all finite τES-structures M , all elements a, b

in SM , and n := |dom(M)|:

M |= reachd(a, b) ⇐⇒ |SM | < (log n)d and

there is a path from a to b in the induced subgraph

of G := (dom(M), EM) on SM .

Proof. For the proof, we use the following technical result of [DLM07].

Lemma 4.6 (Corollary 1 in [DLM07]). Let τS be the schema consisting of a unary

relation symbol S. For every integer d ≥ 1 there is a FO(τS,Arb)-formula bijd(x, y) such

that the following is true for all τS-structures M , all Arb-expansions M ′ of M , all elements

a, b in dom(M), and n := |dom(M)|:

M ′ |= bijd(a, b) ⇐⇒ |SM | < (log n)d and

a is the ith largest element w.r.t. <M ′ in SM ,

where i is the index of b in dom(M ′) w.r.t. <M ′.

Note that the formula bijd(x, y) of Lemma 4.6 constitutes a bijection from the set SM

to an initial set of elements of dom(M ′) (initial, with respect to the linear order present

in the structure M ′), and thus to the natural numbers 1, 2, . . . , |SM |. This enables us to

represent elements of SM by natural numbers of size ≤ |SM | < (log n)d. Using its binary

representation, we encode each such number by a binary string of length (exactly) d log log n.

Hence a sequence of elements of SM of size bounded by `(n) := logn
d log logn

can be represented

using log n bits, i.e., a natural number < n or, equivalently, an element of M . Given an

element of M , using the appropriate numerical predicates present in the Arb-expansion M ′
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of M , we can extract from this element any of its blocks of length d log log n and, using

bijd(x, y), retrieve the corresponding element of SM .

We can use this to construct an FO(τES,Arb)-formula %(x, y) which, when evaluated

in M ′, expresses that x and y are elements in SM such that there is a path of length at

most `(n) in SM from x to y: The formula %(x, y) simply guesses the path by existentially

quantifying over the element of M representing its sequence and then checks that there is

indeed an edge between any two consecutive nodes of this path. From the discussion above,

this can be expressed in FO(τES,Arb).

In summary, %(x, y) is an FO(τES,Arb) formula such that the following is true for

all finite τES-structures M , all Arb-expansions M ′ of M , all elements a, b in SM , and

n := |dom(M)|:

M ′ |= %(a, b) ⇐⇒ |SM | < (log n)d and

there is a directed path from a to b of length ≤ `(n) in the

induced subgraph of G := (dom(M), EM) on SM .

Thus, obviously, %(x, y) is Arb-invariant.

We iterate %(x, y) for a suitable number of times in order to obtain a formula for

reachability reachd(x, y) by paths of length up to (log n)d: Let ψ1(x, y) := %(x, y), and for

i ≥ 2, let ψi(x, y) be the formula obtained from %(x, y) by replacing every atom of the form

E(z, z′) by the formula ψi−1(z, z
′). It is straightforward to see that ψi(x, y) states that there

is a path of length at most `(n)i in SM from x to y.

For i := d+1, there exists an n0 such that for all n > n0 we have `(n)i ≥ (log n)d > |SM |.

Therefore, we can choose reachd(x, y) to be the formula stating that either |dom(M)| > n0

and ψi(x, y) holds, or, for some ` ∈ {1, . . . , n0}, we have |dom(M)| = ` and |SM | ≤ (log `)d,

and x and y are nodes in SM such that y is reachable from x by a path of length ≤ ` that

uses only nodes in SM (note that for each fixed ` this can be expressed in FO(τES)). This
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concludes the proof of Lemma 4.5. �

Remark 4.1. Note that the formula bijd(x, y) of Lemma 4.6 only relies on the numerical

predicates + and ×. Furthermore, the rest of the above proof can be accomplished by using

just the linear order < and the predicates for addition and multiplication, cf., e.g., the

textbook [Imm99]. This means that the lower bound of Theorem 3 actually holds for uniform

AC0.

We are now ready for the proof of the lower bound of Theorem 3.

Proof (of Theorem 3 – Lower Bound). Let τE be the schema consisting of a binary relation

symbol E, let d := c + 1, and let reachd(x, y) be the Arb-invariant formula provided by

Lemma 4.5. Let %(x, y) be the formula obtained from reachd(x, y) by replacing every

atomic formula of the form S(z) by a formula stating that z is a non-isolated node (i.e.,

by the formula ∃z′
(
E(z, z′) ∨ E(z′, z)

)
). Clearly, when evaluated in a τE-structure M , the

formula %(x, y) states that there are less than (log n)d non-isolated nodes in M , x and y are

non-isolated, and there is a path from x to y.

Let φc(y) be the formula

∃x∃x1∃x2

(
E(x, x1) ∧ E(x1, x2) ∧ E(x2, x) ∧ %(x, y)

)
.

Obviously, φc is Arb-invariant, since % is Arb-invariant. Furthermore, when evaluated in a

τE-structure M , the formula φc expresses that (i) there are less than (log n)d non-isolated

nodes (where n denotes the size of dom(M)), and (ii) y is reachable from a node that lies

on a triangle.

By the reasoning given at the beginning of Section 4.5.4, φc is not Gaifman (log n)c-local.

This completes the proof of the lower bound in Theorem 3. �
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4.6 Hanf Locality for String Structures

In Section 4.5 we showed that Arb-invariant FO formulas are Gaifman (log n)O(1)-local.

We are not able to prove that Arb-invariant FO formulas are also Hanf (log n)O(1)-local in

general but are able to do so in the special case when the structures represent strings.

Fix a finite alphabet A and consider structures over the schema τs containing one unary

predicate per element of A and one binary predicate E. Let S be the class of τs-structures

M that interpret E as a successor relation and where each element of M belongs to exactly

one of the unary predicates in τs. Each structure in S represents a string in the obvious

way and we blur the distinction between a string w and its actual representation as a

structure. We then consider FO(τs∪σarb) formulas that are Arb-invariant over all structures

in S and denote the corresponding set of formulas by Arb-invariant FO(Succ). We say

that a language L ⊆ A∗ is definable in Arb-invariant FO(Succ) if there is a sentence of

Arb-invariant FO(Succ) whose set of models in S is exactly L.

The goal of this section is to prove Theorem 4. The lower bound part will be proved in

Section 4.6.4. For the upper bound part we actually show the following result:

Theorem 17. Arb-invariant FO(Succ) formulas with alternation depth d are Hanf (log n)c-

local for any constant c > d+ 2.

The crux of Theorem 17 is the case where the formula is a sentence. For that reason, we

only consider sentences in Sections 4.6.1 and 4.6.2. We return to the general case in Section

4.6.3.

The proof of Theorem 17 for sentences consists of two parts. In Section 4.6.1 we

introduce a closure property of languages allowing to swap substrings inside a string without

affecting membership in the language as long as the neighborhoods around the endpoints

of the substrings look similar. We then show that a language being closed under swaps is

equivalent to the language being Hanf local, where the size of the boundary neighborhoods
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Figure 4.9: r-swapping w = xuyvz to w′ = xvyuz.

is essentially the isomorphism radius. In Section 4.6.2 we show that languages definable in

Arb-invariant FO(Succ) are closed under this swap operation for boundary neighborhoods

of radius (log n)O(1). We conclude in Section 4.6.3 by combining the two previous results

and derive Theorem 17.

4.6.1 Connection with Closure under Swaps for Sentences

In this section we introduce the key notion of a swap. It is an operation that exchanges

two substrings inside a string as long as the neighborhoods around the endpoints of the

substrings look similar. Our notion of a swap is somewhat related to a similar notion that

was introduced in [TW85] for regular languages (see also [BP89, BS10]).

Let w ∈ A∗, i, j ∈ N, define w[i, j] to be the substring of w starting at position i of w

and ending at position j. Let n = |w| and r > 0, then the r-suffix of w is w[n− r + 1, n]

and the r-prefix of w is w[1, r]. Notice that if i is the last position of u in the string w = uv

then Nw
r (i) is the concatenation of the (r + 1)-suffix of u with the r-prefix of v.

Let r ∈ N and w ∈ A∗. A string w′ ∈ A∗ is obtained from w by a r-swap operation if

w = xuyvz, Nw
r (i) ∼= Nw

r (i′) and Nw
r (j) ∼= Nw

r (j′) where i, j, i′, and j′ are, respectively,

the positions in w immediately before the substrings u, y, v, and z, and w′ = xvyuz. See

Figure 4.9 for a diagram.

Let r : N→ R≥0. A language L is said to be closed under r(n)-swaps if there exists a
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n0 ∈ N such that for all strings w,w′ ∈ A∗, with |w| = n > n0, if w′ is obtained from w by

a r(n)-swap operation then we have:

w ∈ L iff w′ ∈ L.

Informally, a language is closed under swaps if the language is unable to distinguish the

relative order of substrings whose local neighborhoods look the same.

There are tight connections between closure under swaps and Hanf locality. The first

one is that an r-swap operation does not change the ≡r-class of a string. This follows

from the observation that an r-swap preserves r-neighborhoods. The second one concerns

the opposite direction: If two strings are in a same ≡r-class then there is a sequence

of (r − 1)-swap operations transforming one into the other. Intuitively this is shown as

follows. Assuming that w ≡r w′, we transform w′ into w using (r − 1)-swaps to embed

larger and larger prefixes of w within the transformed string. Here an embedding is a

partial function on string positions preserving r-neighborhoods and the string order (i.e.,

the relative ordering of the positions in the prefix of w is preserved by the embedding).

Eventually, the entirety of w embeds into the transformed string, and because |w| = |w′|

this implies that the transformed string coincides with w. Thus, we have transformed w′

into w via a sequence of (r − 1)-swaps.

We now sketch the transformation procedure. See Figure 4.10 for a diagram of this

construction. In the ith step of the procedure, we consider the i-prefix of w that we assume

embeds into the string wi ≡r w via the embedding hi. Our goal is to extend the embedding

to the (i + 1)-prefix of w while preserving the ≡r-class. Let j
.
= hi(i). Because w ≡r wi,

there is a position j′ in wi, outside the image of hi, that has the same r-neighborhood as

i+ 1. If j′ > j, mapping i+ 1 to j′ preserves the ordering of w and extends the embedding

hi to the (i + 1)-prefix of w. Otherwise, we have j′ < j. Let i1 be the maximal position
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Figure 4.10: Constructing hi+1 from hi and wi.

in the i-prefix of w such that hi(i1) < j′. By maximality of i1, we have the following

relative positions within wi: hi(i1) < j′ < hi(i1 + 1) ≤ j. The key observation is that

because i and j = hi(i) have the same r-neighborhood then j′ − 1 and j have the same

(r− 1)-neighborhood. As the same consequence can be derived for hi(i1) + 1 and hi(i1 + 1),

we can (r − 1)-swap the substrings of wi with these endpoints (i.e., substrings u and v in

Figure 4.10). We then observe that the (i+ 1)-prefix of w embeds into the resulting string

wi+1 and that wi+1 ≡r wi, so wi+1 remains in the same ≡r-class as w. Initializing w1 = w′

and h1 : w ≡r w′ establishes the conditions required to start the procedure.

Lemma 4.7. Let r ∈ N, and w,w′ ∈ A∗.

1. If w′ is obtained from w by a r-swap operation then w ≡r w′.

2. If w ≡r w′ then there is a finite sequence of (r − 1)-swap operations transforming w

into w′.

Proof. Fix r ∈ N.

Part 1.

Assume w = xuyvz, w′ = xvyuz, and for i, j, i′ and j′ which are, respectively, the posi-

tions immediately before u, y, v, and z in w, we have Nw
r (i) ∼= Nw

r (i′) and Nw
r (j) ∼= Nw

r (j′).

Let h be a bijection from w to w′ that sends each block x, u, y, v, z to its corresponding

block in w′. In other words, h sends the first letter of x in w to the first letter of x in w′
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and so on; h acts on the other substrings u, y, v, and z in a similar fashion. We show that h

preserves r-neighborhoods. It is enough to show this for the harder cases, i.e., the boundary

cases. By symmetry we only need to consider the boundaries of y.

Recall that j is the position immediately before y, i.e., the last position of u. Let

k
.
= h(j) be the last position of u in w′. We want to show Nw′

r (k) ∼= Nw
r (j). First consider

the right part of the respective neighborhoods. In w this is the r-prefix of yvz while in w′ it

is the r-prefix of z. By hypothesis, Nw
r (j) ∼= Nw

r (j′), and the r-prefix of z is the same as

the r-prefix of yvz, so we are done.

Now consider the left part of the respective neighborhoods. In w it is xu while in w′ it

is xvyu. We need to show that they have the same (r + 1)-suffix. From Nw
r (i) ∼= Nw

r (i′)

we know that x and xuy have the same (r + 1)-suffix; this implies that xv and xuyv

have the same (r + 1)-suffix. From Nw
r (j) ∼= Nw

r (j′) we get that xuyv and xu have the

same (r + 1)-suffix. By combining these two facts we see that xu and xv have the same

(r + 1)-suffix. Therefore xuy and xvy have the same (r + 1)-suffix. Hence x and xvy have

the same (r + 1)-suffix, and thus xu and xvyu do as well, as desired.

The other boundary of y, position i′, is treated similarly.

Part 2.

Let w and w′ be two strings of A∗ such that w ≡r w′ and |w| = n. Let h be a bijection

witnessing w ≡r w′.

We construct by induction a sequence of strings w1, · · · , wn such that (i) w1 = w′, (ii)

for i ≤ n, w ≡r wi via a bijection hi verifying ∀j < j′ ≤ i, hi(j) < hi(j
′), and (iii) wi+1 is

either wi or is obtained from wi via a (r− 1)-swap operation. Note that (ii) implies that hn

is the identity and therefore wn = w. Properties (i) and (iii) imply that w = wn is obtained

from w′ = w1 by a finite sequence of (r − 1)-swap operations, proving the result.

The base case is immediate by setting w1
.
= w′ and h1

.
= h.
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Suppose we have constructed wi and hi satisfying the inductive properties (i), (ii), and

(iii) up to i. Let j
.
= hi(i) and j′

.
= hi(i+1). If j′ > j, (ii) is already satisfied and we are done.

Assume now that j′ < j. Let i1 < i be the position in w such that hi(i1) < j′ < hi(i1 + 1),

and let j1
.
= hi(i1) and j′1

.
= hi(i1 + 1). Note an index i1 such that hi(i1) < j′ exists because

hi preserves r-neighborhood-types, and therefore must map the element of w with index 1

to the element of wi with index 1 (i.e., 1 = hi(1) < j′). See Figure 4.10 for a diagram of the

construction.

Now, notice that because hi preserves r-neighborhood-types and j1, j
′
1 are the images of

consecutive positions in w, Nwi

(r−1)(j1)
∼= Nwi

(r−1)(j
′
1−1). For the same reason, Nwi

(r−1)(j
′−1) ∼=

Nwi

(r−1)(j).

Hence our string wi can be decomposed as xuyvz where (in the case where j′ = j1 + 1,

u is the empty string):

x
.
= wi[1, j1],

u
.
= wi[j1 + 1, j′ − 1],

y
.
= wi[j

′, j′1 − 1],

v
.
= wi[j

′
1, j],

z
.
= wi[j + 1, n]

and the conditions for a (r − 1)-swap hold. Note that this swap induces a permutation h′

on the positions of wi.

We set wi+1
.
= xvyuz and condition (iii) holds. We now set hi+1

.
= h′◦hi, the composition

of hi and h′. We have the following claim.

Claim 4.2. hi+1 : w ≡r wi+1
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Proof. We show that h′ : wi ≡r wi+1. The claim then follows because hi : w ≡r wi. We

argue that the r-neighborhoods of the substrings x, u, y, v, and z are identical in both wi

and wi+1, hence wi ≡r wi+1.

We start by deriving a few identities from our hypothesis. For a string s, we use the

notation P (s) to denote the r-prefix of s and S(s) to denote the r-suffix of s. Consider

S(x). Because Nw
r (i1) ∼= Nwi

r (j1), S(x) = S(w[1, i1]). Moreover, as Nw
r (i1 + 1) ∼= Nwi

r (j′1),

we have S(w[1, i1]) = S(xuy). Hence S(x) = S(xuy). Similarly the known neighborhood

isomorphisms give us the following facts, where the text in the square brackets indicates

which neighborhoods the identities address, e.g., “left nbh of v” means that the identity

shows that the strings of length r preceding v in w and w′ are the same.

S(x) = S(xuy) [left nbh of v] (4.16)

S(xu) = S(xuyv) (4.17)

P (z) = P (yvz) [right nbh of u] (4.18)

P (vz) = P (uyvz) (4.19)

We can derive a number of implications using (4.16)-(4.19).

(4.16) ∧ (4.17)⇒ S(xv) = S(xuyv) = S(xu) [left nbh of y] (4.20)

⇒ S(xuy) = S(xvy)⇒(4.16) S(x) = S(xvy) [left nbh of u] (4.21)

⇒ S(xu) = S(xvyu)⇒(4.17) S(xuyv) = S(xvyu) [left nbh of z]

(4.18) ∧ (4.19)⇒ P (uz) = P (uyvz) = P (vz) [right nbh of y] (4.22)

⇒ P (yvz) = P (yuz)⇒(4.18) P (z) = P (yuz) [right nbh of v]

⇒ P (vz) = P (vyuz)⇒(4.19) P (uyvz) = P (vyuz) [right nbh of x] (4.23)
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With these facts in hand we can argue that the r-neighborhoods of each substring x, u, y, v, z

are identical in wi and wi+1. As before we only prove it for the boundary cases.

Consider first x and its last position j1. Notice that h′(j1) = j1. In order to show that

Nwi
r (j1) ∼= Nwi+1

r (j1) it remains to show that the r-prefix of uyvz is the same as the r-prefix

of vyuz. This is (4.23).

Now consider u. If u is empty, h′ trivially preserves the r-neighborhoods of the elements

in u. Otherwise, assume that u is not empty and consider its first position j1 + 1 and

let k
.
= h′(j1 + 1). In order to show that Nwi

r (j1 + 1) ∼= Nwi+1
r (k) we need to show that

S(x) = S(xvy) and that the (r+1)-prefix of uyvz is the same as the (r+1)-prefix of uz. The

former is (4.21) and the latter is immediate from (4.18) as u is not empty. Consider now the

last position j′−1 of u and let k′
.
= h′(j′−1). In order to show that Nwi

r (j′−1) ∼= Nwi+1
r (k′)

we need to show that the (r + 1)-suffix of xu is the same as the (r + 1)-suffix of xvyu and

that P (yvz) = P (z). The latter is (4.18) while the former is immediate from (4.21) as u is

not empty.

Finally consider the first position j′ of y. Let k
.
= h′(j′). In order to show that

Nwi
r (j′) ∼= Nwi+1

r (k) we need to show that S(xu) = S(xv) and that the (r+ 1)-prefix of yvz

is the same as the (r + 1)-prefix of yuz. The former is (4.20) while the latter is immediate

from (4.22) as y is not empty.

The other cases are treated similarly by symmetry. (Claim 4.2)�

Observe that for all k ≤ i1, hi(k) maps into x, and for all k ∈ [i1 + 1, i], hi(k) maps into

v. Since hi(k) is monotone for k ≤ i and hi+1(i+ 1) maps onto j′, hi+1(k) is monotone for

k ≤ i+ 1. Combining this fact with the claim implies that we have extended property (ii)

to i+ 1. With all properties satisfied the induction step is complete. �
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4.6.2 Closure under Swaps

We now show that a language definable by a sentence of Arb-invariant FO(Succ) is closed

under (log n)c-swaps for some constant c.

Lemma 4.8. If L is a language definable by an Arb-invariant FO(Succ) sentence with

alternation depth d then L is closed under (log n)c-swaps for any constant c > d+ 2.

To prove this lemma we observe that it suffices to consider swaps where the various

neighborhoods are disjoint. This is because (i) when the isomorphic neighborhoods involved

have substantial overlap, the swap operation has no effect and trivially preserves membership

to L, and (ii) when the isomorphic neighborhoods have small overlap, restricting their radius

slightly yields isomorphic neighborhoods that are disjoint. In Section 4.6.2.1 we show that

Arb-invariant FO(Succ) is closed under disjoint swaps, and in Section 4.6.2.2 we formalize

(i) and (ii) by showing that closure under disjoint swaps implies closure under general swaps

modulo a small constant factor increase in the isomorphism radius. We combine these two

steps to prove Lemma 4.8.

4.6.2.1 Disjoint Swaps

We weaken the condition for closure under r-swaps slightly by only considering neighborhoods

Nw
r (i), Nw

r (i′), Nw
r (j), and Nw

r (j′) which are pairwise disjoint. We call this closure under

disjoint r-swaps. We argue that languages definable in Arb-invariant FO(Succ) are closed

under disjoint (log n)c-swaps, for some constant c depending on the alternation-depth of

the language. One way to prove this fact is by mimicking our proof of Gaifman locality for

the special case of string structures. Alternatively, we can use our Gaifman locality result

as a blackbox. We follow the latter approach. The idea is that given a pair of strings w

and w′ of length n which witness the violation of the closure-under-(log n)c-swaps property

for a sentence φ, we can derive: (i) a τ -structure M of size n with two tuples that have
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isomorphic neighborhoods up to distance Ω((log n)c), and (ii) an FO(τ,Arb) formula ψ

distinguishing these tuples that is Arb-invariant with respect to M . We instantly conclude

by applying our Gaifman locality theorem (Theorem 16) to produce a contradiction.

Proposition 4.1. If L is a language definable by an Arb-invariant FO(Succ) sentence with

alternation depth d then L is closed under disjoint (log n)c-swaps for any constant c > d+2.

Proof. Let φ be an Arb-invariant FO(Succ) sentence with alternation depth d defining

L. Suppose that L is not closed under disjoint r-swaps, where r
.
= (log n)c and c is a

large enough constant depending only on φ that will become apparent during the proof.

Then there exists an infinite class of equal-length string pairs W, such that for every pair

〈w,w′〉 ∈ W, the conditions for disjoint r-swaps are satisfied for the pair, but w ∈ L and

w′ 6∈ L.

Consider one such pair 〈w,w′〉 ∈ W and let n
.
= |w| = |w′|. Let u, v, x, y, z be as in the

definition of r-swaps, with w = xuyvz and w′ = xvyuz. Let i, i′, j, j′ denote the positions

in w supplied by the definition of r-swaps. Using the assumed disjointness property, the

neighborhoods Nw
r (i), Nw

r (i′), Nw
r (j), and Nw

r (j′) are all disjoint, and i, i′, j, and j′ are

distinct positions in w.

Recall that w and w′ can be seen as labeled graphs where the edge relation is called E.

Consider the schema containing three extra binary relations E1, E2, and E3. We construct a

structure M from w over this extended schema by slightly modifying E. This construction

is diagrammed in Figure 4.11. The purpose of the relations E1, E2, and E3 is to mark the

boundary vertices of u and v so that the boundaries can easily be recovered, and at the

same time ensure that the neighborhoods around u and v in M appear identical. Note that

the E-edges leaving i, j, i′, and j′ in w are eliminated in M , and all other E-edges of w are

unchanged. M has the following property.
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Figure 4.11: Constructing the structure M from the string w.

Claim 4.3. NM
r−1(i, j, i

′, j′) ∼= NM
r−1(i

′, j′, i, j).

Proof. To show this, we describe a witnessing isomorphism π. Let π act as the identity

on (r − 1)-prefixes of u, y, v, and z. Let π take the r-suffix of x to the r-suffix of y and

vice versa. Let π take the r-suffix of u to the r-suffix of v and vice versa. This mapping is

well-defined because the r-neighborhoods around i, j, i′, and j′ are all disjoint. It is now

routine to verify that π is an isomorphism as claimed using the facts that Nw
r (i) ∼= Nw

r (i′),

Nw
r (j) ∼= Nw

r (j′), and that these neighborhoods are disjoint. �

We can use the Arb-invariant FO(Succ) sentence φ to construct a formula ψ with four free

variables x1, y1, x2, y2 that does the following: When evaluated in M , ψ(i, j, i′, j′) simulates

φ on w while ψ(i′, j′, i, j) simulates φ on w′, and for all other tuples ψ rejects. The formula

ψ is constructed from φ as follows. In φ, replace all atoms E(x, y) with

θ(x, y, x1, y1, x2, y2)
.
= E(x, y) ∨ ((x = x1 ∨ x = y1) ∧ E1(x, y))

∨ ((x = x2 ∨ x = y2) ∧ E2(x, y)).

In order to ensure that on M ψ rejects when the tuple is not (i, j, i′, j′) or (i′, j′, i, j),
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we explicitly test for these inputs using the E3-edge and reject if not found.

ψ(x1, y1, x2, y2)
.
= E3(x1, y1) ∧ E3(x2, y2) ∧ x1 6= x2

∧ φE(x,y)←θ(x,y,x1,y1,x2,y2)(x1, y1, x2, y2).

Here the notation indicates that we are replacing all occurrences of the relation E(x, y) in

φ by the relation θ(x, y, x1, y1, x2, y2). ψ is Arb-invariant with respect to M . To see this,

observe that when the input tuple is not (i, j, i′, j′) or (i′, j′, i, j), the formula always rejects.

In the other case φ is effectively evaluated on either w or w′, which are strings, hence the

action of φ is Arb-invariant by hypothesis.

Observe that ψ is a 4-ary formula that is defined only with respect to φ, and has the

same alternation depth as φ. Applying Theorem 16 to ψ we see that for any constant

c′ > d + 2 and for n ≥ nψ,c′ , ψ is Gaifman (log n)c
′
-local for structures for which it is

Arb-invariant. Now, the infinite class of r-swap closure violations W with respect to φ

induces an infinite class of structuresM with Gaifman (r−1)-locality violations with respect

to the formula ψ, where each violation is of the form 〈M, ā
.
= (i, j, i′, j′), b̄

.
= (i′, j′, i, j)〉,

and ψ is Arb-invariant with respect to the structures inM. If we pick c′ < c, this infinite

class of violations allows us to select an input length n which is at least nψ,c′ and large

enough to make r − 1 = (log n)c − 1 ≥ (log n)c
′
. This violates Theorem 16, and completes

the proof. �

4.6.2.2 From Disjoint Swaps to General Swaps

We now argue that languages which are closed under disjoint swaps are also closed under

swaps. Consider a language L which is closed under disjoint r′(n)-swaps and a pair of

sufficiently long strings w = xuyvz and w′ = xvyuz which satisfy the isomorphism conditions

of an r(n)-swap. It suffices to argue that L does not distinguish w and w′.
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We observe that when the neighborhoods of the substrings overlap a large amount the

neighborhood isomorphisms induce periodic behavior within the r(n)-neighborhoods, so

much so that the substrings uyv and vyu become identical. This implies that w = w′, and

hence w ∈ L iff w′ ∈ L. This takes care of the case of large neighborhood overlap. We

then focus on the case where the r(n)-neighborhoods of the substrings only overlap a small

amount and show that there is freedom to select slightly smaller neighborhoods (of radius

r′(n)) that are pairwise disjoint, though still induce the same effective swapping. This

allows us to apply the closure of L under disjoint r′(n)-swaps to conclude that L does not

distinguish w and w′. We now formalize this approach.

Proposition 4.2. Let L be a language and r be a function N→ R≥0. If L is closed under

disjoint r(n)
14

-swaps then L is closed under r(n)-swaps.

Proof. Suppose that L is closed under disjoint r′(n)-swaps, where r′(n) = r(n)/c for some

constant c to be determined later. Let n0 be the associated constant. Fix a length n ≥ n0,

and a pair of length n strings w
.
= xuyvz and w′

.
= xvyuz whose substrings satisfy the

isomorphism conditions for a r(n)-swap. To prove the lemma it suffices to argue that w ∈ L

iff w′ ∈ L. We drop the parameter to r′ and r in what follows.

The isomorphism conditions of r-swaps imply it suffices to consider |x| ≥ r. Otherwise,

to satisfy the conditions it must be that |u| = |y| = |v| = 0, and hence w = xz = w′, and

we trivially conclude w ∈ L iff w′ ∈ L. Analogously, |z| ≥ r.

We proceed by case analysis on the sizes of u, y, and v relative to r′. If the lengths of

u, y, and v are all short relative to r′, then their respective neighborhoods overlap and u, y,

and v are present in each neighborhood. The neighborhood isomorphisms drag these three

substrings around implying that uyv = vyu, and hence that w = w′. This is Case 0.

In the three remaining cases we use the closure of L under disjoint r′-swaps to conclude

that L does not distinguish w and w′. In each of these cases, we determine a set of disjoint
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x u y v z

︷ ︸︸ ︷

si sj si′ sj′

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

x u y v z

︷ ︸︸ ︷

si sj si′ sj′

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

x u y v z

︷ ︸︸ ︷

si sj si′ sj′

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

y
︷︸︸︷

Case 1:

Case 2:

Case 3:

x u y v z
︸ ︷︷ ︸

u

︷ ︸︸ ︷

yu

Case 0:

Figure 4.12: The cases in the proof of Lemma 4.8.

substrings si, sj, si′ , sj′ occurring in this order in w, each of length 2r′. We show that si = si′

and sj = sj′ . Let i, j, i′, j′ be the respective middle positions of these substrings, then the

r′-neighborhoods of i and i′, and of j and j′ are isomorphic. We argue that the result of

swapping the substrings w[i+ 1, j] and w[i′ + 1, j′] in w yields w′, and thus w and w′ are

separated by a disjoint r′-swap. Since L is closed under disjoint r′-swaps and n ≥ n0, w ∈ L

iff w′ ∈ L, concluding the proof in each case. See Figure 4.12 for a diagram of the four cases.

Case 0. |u|, |y|, |v| < 4r′.

Let i, i′, j, and j′ be the positions in w preceding the substrings u, y, v, and z, respectively.

We claim that if r ≥ 12r′ then uyv = vyu. This implies that w = w′ and hence w ∈ L iff

w′ ∈ L. To see the claim, notice first that because r ≥ 4r′ and |u| < 4r′, the right part of

the r-neighborhood around i starts with u. Therefore, as Nw
r (i) ∼= Nw

r (i′), u is a prefix of

vz. A similar reasoning around j and j′, using the fact that r ≥ 8r′, shows that z and yvz

have the same prefix of length 8r′. As u is a prefix of vz and |yu| < 8r′, this implies that yu

is a prefix of z. Therefore vyu is a prefix of vz. Now, because r ≥ 12r′ and Nw
r (i) ∼= Nw

r (i′),

uyvz and vz have the same prefix of length 12r′. Because |vyu| < 12r′, this implies that

vyu is a prefix of uyvz and therefore vyu = uyv.

We now consider the cases with less overlap between neighborhoods.
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Case 1. |y| ≥ 4r′.

Let si be the 2r′-suffix of x and si′ be the 2r′-suffix of y. Let sj be the 2r′-prefix of y and

sj′ be the 2r′-prefix of z. Since 2r′ ≤ |y|, sj and si′ do not overlap. Since |x|, |z| ≥ r > 2r′,

si and sj′ are fully realized. The given neighborhood isomorphisms imply that si = si′ and

sj = sj′ . Inspection shows that swapping w[i+1, j] with w[i′+1, j′] produces w′, completing

the case.

Case 2. |u|, |v| ≥ 4r′.

Let si be the 2r′-prefix of u and si′ be the 2r′-prefix of v. Let sj be the 2r′-suffix of u

and sj′ be the 2r′-suffix of v. Since |u|, |v| ≥ 4r′ these substrings si, si′ , sj, sj′ are pairwise

disjoint. Further, using the known neighborhood isomorphisms, si = si′ and sj = sj′ .

Inspection shows that swapping w[i + 1, j] with w[i′ + 1, j′] produces w′, completing the

case.

Case 3. |v|, |y| < 4r′, |u| ≥ 4r′ (analogously, |u|, |y| < 4r′, |v| ≥ 4r′).

Let si be the 2r′-suffix of x and si′ be the 2r′-suffix of uy. Using the given neighborhood

isomorphisms and the fact |u| ≥ 4r′, si and si′ are disjoint and equal. Let sj be the 2r′-prefix

of u. Since |u| ≥ 4r′, sj and si′ are disjoint. Let sj′
.
= z[|y|, |y| + 2r′]. Since |z| ≥ r and

|y| < 4r′, sj′ is fully realized if 6r′ < r. We need to argue that sj = sj′ .

Observe that the last element of u and the first element of z are within 8r′ of each

other. Without loss of generality |yv| > 0, because otherwise w = xuz = w′. The fact

that r-neighborhoods around the point at the end of u and the point immediately before

z are isomorphic implies that the neighborhood following v contains a sequence of many

repetitions of the string yv. This string yv repeats up to distance at least r − 8r′ into z.

Therefore, if 14r′ ≤ r, the string sj′ starts with v followed by repetitions of yv for the entire

length of sj′ , and is the same as 2r′-prefix of vz. Hence the neighborhood isomorphism

between the last point of x and the point preceding v implies that sj = sj′ .
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Write z = yz′, then w = xuyvyz′. Swapping the substring vy with the empty string

between x and u produces xvyuyz′ = xvyuz = w′. This completes the case.

Choosing c = 14 suffices to satisfy the assumptions made in each case and completes the

proof. �

Combining Proposition 4.1 and Proposition 4.2 yields a proof of Lemma 4.8.

Proof (of Lemma 4.8). Let L be a language definable by an Arb-invariant FO(Succ) sentence

with alternation depth d. For any constant c′ > d+ 2 we have, by Proposition 4.1, that L is

closed under disjoint (log n)c
′
-swaps. By Proposition 4.2, L is closed under 14(log n)c

′
-swaps.

If we pick c′ < c, then 14(log n)c
′
< (log n)c for n sufficiently large. It follows that L is

closed under (log n)c-swaps. �

4.6.3 Upper Bound

We are now ready to prove Theorem 17. It is essentially a combination of Lemma 4.8 and

Lemma 4.7 with a reduction from general formulas to sentences.

Proof (of Theorem 17). We first prove the case of sentences. Let L be a language definable

by an Arb-invariant FO(Succ) sentence with alternation depth d. Let c > c′ > d+ 2. By

Lemma 4.8 L is closed under (log n)c
′
-swaps. Consider now a pair of strings w,w′ such

that |w| = |w′| = n for a sufficiently large n. Assume that w ≡(logn)c w′. By Lemma 4.7

there is a sequence of ((log n)c − 1)-swaps that turns w into w′. For large enough n,

(log n)c − 1 ≥ (log n)c
′
, and therefore L is closed under such swaps. For this sufficiently

large input length none of these swaps affect membership in L, hence w ∈ L iff w′ ∈ L and

the theorem is proved for the case of sentences.

For the general case, we can mark the free variables by new unary predicates, one per

free variable. To the initial formula we can associate a sentence quantifying existentially
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over these elements and then evaluating the initial formula. For any r, the initial query

is Hanf r-local if its associated sentence is also Hanf r-local. Also, if the initial query is

Arb-invariant then so is its associated sentence. We may assume that the quantifier depth

of the initial formula is at least one; otherwise, the formula is trivially 0-local (see the proof

of Theorem 16). Observe that a formula is Hanf r-local and Arb-invariant iff the negation

of the formula has the same property. This allows us to further assume without loss of

generality that the initial formula begins with an existential quantifier (otherwise, we take

the negation), and hence the resulting sentence has the same alternation depth as the initial

formula. Theorem 17 follows from case of sentences we have just proved. �

4.6.4 Lower Bound

We use a similar idea as in the proof of the lower bound of Theorem 3 to show the Hanf

locality lower bound for Arb-invariant FO(Succ) claimed in Theorem 4.

Proof (of Theorem 4 - Lower Bound). Fix a constant c > 0 and consider the alphabet

A := {a, b, e, f}. We will construct an Arb-invariant sentence φc that is satisfied by exactly

those strings w of the form (a|b|e)∗f ∗, where (i) the total number of a’s, b’s, and e’s in w is

less than (log n)c+1 (where n denotes the length of w), and (ii) the first occurrence of a in

w is somewhere to the left of the first occurrence of a b in w.

To note that φc is not Hanf (log n)c-local, consider, for a sufficiently large n, the string

w of length n that, for m := 2(log n)c + 1, is of the form emaembemf ∗. Furthermore, let w′

be the string obtained from w by swapping the letters a and b. Note that the strings w and

w′ are chosen in such a way that

w ≡(logn)c w′.

Furthermore, w and w′ are both of the form (a|b|e)∗f ∗ and satisfy the following: Since

n is sufficiently large, the total number of a’s, b’s, and e’s in w as well as in w′ is less
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than (log n)c+1. In w, the first occurrence of the letter a is somewhere to the left of the

first occurrence of the letter b; however, in w′ this is not the case. In summary, we thus

obtain that w |= φc and w′ 6|= φc. Hence, the strings w and w′ witness that φc is not Hanf

(log n)c-local.

To conclude the proof it remains to show how to construct the formula φc. For this, we

use the Arb-invariant formula reachd(x, y) from Lemma 4.5 for d := c+ 1. Let %(x, y) be

the formula obtained from reachd(x, y) by replacing every occurrence of an atomic formula

of the form S(z) by a formula stating that position z carries one of the letters a, b, or

e. Choosing φc to be the sentence stating that there exist positions x and y that carry

the letters a and b, respectively, such that %(x, y) is satisfied, we obtain an Arb-invariant

sentence that, when evaluated in a string w of the form (a|b|e)∗f ∗, states that (i) the total

number of a’s, b’s, and e’s in w is less than (log n)c+1 (where n denotes the length of w),

and (ii) the first occurrence of a in w is somewhere to the left of the first occurrence of a b

in w. This concludes the proof for the lower bound part of Theorem 4. �

We point out an alternate route for proving the lower bound in Theorem 4, namely by

establishing the lower bound in Theorem 3 for strings. The former follows from the latter

because if a formula is Hanf r-local w.r.t. (M,M) then it is Gaifman (3r+ 1)-local w.r.t. M

(recall Definitions 4.1 & 4.2) [HLN99]. This alternate route yields an Arb-invariant formula,

rather than sentence, that is not Hanf (log n)c-local for a given constant c, but the formula

can be transformed into a sentence using the translation given in the proof of Theorem 17.

We did not follow this route because establishing the lower bound in Theorem 3 for strings

would require the schema to have both a unary and a binary predicate, whereas our proof

of the lower bound in Theorem 3 only needs the minimal requirement of a binary predicate.
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4.7 Implications for Regular Languages

In this section we show that the locality results we proved in the previous sections have nice

consequences for regular languages. It is shown in [BS09] that each order-invariant sentence

of FO(Succ) has an equivalent FO(τs) formula over strings. In other words, over strings, a

linear order used in an order-invariant way does not bring any new expressive power. This

is no longer the case when arithmetic is allowed. For instance, in the presence of addition

the logic can express parity of the length of a string. To see this, consider the following

Arb-invariant sentence which expresses that the string has even length.

∃x, y y = x+ x ∧ ¬(∃z E(y, z))

If addition is the only numerical predicate allowed, then it is shown in [SS10b] that addition-

invariant FO(Succ) definable regular languages are exactly those expressible in FO(τs, lm),

where lm is the family of predicates testing the length of a string modulo some fixed

number. We now show that adding any other numerical predicate does not allow new

regular languages to be defined, i.e., we prove Theorem 5.

In order to do so, we make use of an equivalent characterization of definability of regular

languages in FO(τs, lm) in terms of closure under certain operations. We first introduce

those operations, which are themselves based on the notion of idempotence for a regular

language.

Let L be a regular language, a string e of A∗ is said to be idempotent (for L, but we

will omit L when it is understood from the context) if it is not the empty string and for all

u, v ∈ A∗, uev ∈ L iff ueev ∈ L. Let ω ∈ N be the smallest positive integer such that for all

u ∈ A+, uω is idempotent. Note that ω is well-defined.

A regular language L is closed under swaps if for all x, u, y, v, z, e, f ∈ A∗ such that e, f
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are idempotent we have:

xeufyevfz ∈ L iff xevfyeufz ∈ L. (4.24)

A regular language L is closed under transfers if for all x, u, y, v, z ∈ A∗ such that

|u| = |v| we have:

xuωuyvωz ∈ L iff xuωyvvωz ∈ L. (4.25)

The following result was shown in [SS10b].

Lemma 4.9 ([SS10b]). Let L be a regular language. Then L is definable in FO(τs, lm) iff

L is closed under transfers and under swaps.

Lemma 4.9 allows us to prove Theorem 5 by arguing that the regular languages definable

in Arb-invariant FO(Succ) are closed under transfers and swaps. In Section 4.7.1 we consider

a generalization of the notion of closure under transfers for an arbitrary language L, namely

closure under r-transfers, where r : N → R≥0 is a function. We prove that Arb-invariant

FO(Succ) is closed under (log n)O(1)-transfers. In Section 4.7.2 we use a pumping argument

to show that for a regular language L, closure under r-transfers for any function r implies

closure under transfers. Using a similar pumping argument, we show that for regular

languages, Hanf locality implies closure under swaps. The upper bound in Theorem 4 then

concludes the proof of Theorem 5.

4.7.1 Closure under Transfers

Let r ∈ N and w ∈ A∗. A string w′ ∈ A∗ is obtained from w by an r-transfer operation if

w = xuruyvrz and w′ = xuryvrvz for some x, u, y, v, z ∈ A∗ with |u| = |v| 6= 0.

Let r : N→ R≥0. A language L is said to be closed under r(n)-transfers if there exists a

n0 ∈ N such that for all strings w,w′ ∈ A∗, with |w| = n > n0, if w′ is obtained from w by
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a r(n)-transfer operation then we have:

w ∈ L iff w′ ∈ L.

We begin by proving a lemma similar to Lemma 4.2, but specialized to the task at hand.

We show that an Arb-invariant FO(Succ) sentence that can distinguish strings separated by

a transfer can be used to solve the hard promise problem from Lemma 2.1.

Lemma 4.10. Let m ∈ N. Let x, u, y, v, z be strings over A with |u| = |v|. Let w
.
=

xu3m+1yv3m+1z and w′
.
= xu3myv3m+2z. Suppose C is a circuit that accepts all strings in

Rep(w) and rejects all strings in Rep(w′), then there is a circuit C̃ with the same size and

depth as C that distinguishes |b|1 = m and |b|1 = m+ 1 for b ∈ {0, 1}2m.

Proof. Let b
.
= b1b2 . . . b2m be a string of 2m Boolean variables. We design a string wb that

is easy to compute from b and has the following property:

If |b|1 = m, then wb ∼= w.

If |b|1 = m+ 1, then wb ∼= w′.

Once we have such a string wb, we argue as follows. Consider any binary encoding

Γb ∈ Rep(wb). When |b|1 = m, C(Γb) accepts, because wb ∼= w. Similarly, when |b|1 = m+1,

C(Γb) rejects, because wb ∼= w′. Thus, C̃(b)
.
= C(Γb) yields the required circuit provided

Γb is sufficiently easy to compute from b. We construct the string wb and a representation

Γb ∈ Rep(wb) as follows. Let

wb = xu4m+1−|b|1yv2m+1+|b|1z. (4.26)

We construct wb as in Figure 4.13.

Add the strings x, y and z to wb (this includes the vertices, internal edges and labels).

Construct 2m + 1 copies of the strings u and v and add them to wb. Call these copies
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x

z

y

u u u u

v v v v

v u . . .

u0 u1 u2 u2m

v0 v1 v2 v2m

s1 s2

︸ ︷︷ ︸

b1=0

︸ ︷︷ ︸

b2=1

Figure 4.13: Constructing the string wb from b. (Note that the strings v and z are drawn
right to left.)

u0, u1, ..., u2m, and v0, v1, ..., v2m, respectively. Add edges from x to u0, u2m to y, y to v2m,

and v0 to z, i.e., connect the vertex at the end of the former string to the vertex at the

beginning of the latter. Construct 2m strings of length |u| = |v| with no labels and add

them to wb. Call these strings s1, ..., s2m. Observe that wb contains exactly |w| = |w′|

vertices thus far, though wb itself is not yet a string because not all edges or labels have

been set.

For each i ∈ [2m]:

1. If bi = 0, connect vi to si, si to vi−1, and ui−1 to ui, and label si as v.

2. If bi = 1, connect ui−1 to si, si to ui and vi to vi−1, and label si as u.

Note that the wb constructed is a string of length |w| = |w′| and can be written as in

(4.26). Since the presence of each edge and the value of each label depends on at most

one bit of b, the string wb can be encoded in binary Γb ∈ Rep(wb) so that each bit of the

encoding is either a constant or a literal from b (see the proof of Lemma 4.2 for more details).

This allows us to define the circuit C̃(b)
.
= C(Γb) which has depth and size no larger than

C, and completes the proof. �
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With this lemma we can prove that Arb-invariant FO(Succ) is closed under (log n)O(1)-

transfers following the same approach as in the proof of Theorem 3.

Lemma 4.11. If L is a language definable in Arb-invariant FO(Succ) then there is a c ∈ N

such that L is closed under (log n)c-transfers.

Proof. Immediate from Lemma 4.10 and Lemma 2.1 via the same type of manipulation

that proves Theorem 3. �

4.7.2 Definability under Arb-Invariance

We now use Lemma 4.11 to show that a regular language is definable in Arb-invariant

FO(Succ) iff it is definable in FO(Succ, lm). The “only if” direction is straightforward as

any predicate of the form lm can be expressed in Arb-invariant FO(Succ) (actually only

addition is needed). For the “if” direction we show that a pumping argument combined with

Hanf (log n)O(1)-locality and (log n)O(1)-transfers implies closure under swaps and transfers,

and we can conclude using Lemma 4.9.

Proof (of Theorem 5). As L is definable in Arb-invariant FO(Succ), by Theorem 17 there

is a constant c ∈ N such that L is Hanf (log n)c-local. Hence there is a constant n0 such

that for all strings w,w′ with |w| = |w′| > n0, w ≡(logn)c w′ implies w ∈ L iff w′ ∈ L.

Consider x, u, y, v, z, e, and f as in the hypothesis for closure under swaps. As e

and f are idempotents we have for all i ∈ N, xeiuf iyeivf iz ∈ L iff xeufyevfz ∈ L.

Take i large enough so that i · |e|, i · |f | ≥ (log |xe2iuf 2iye2ivf 2iz|)c ≥ (log n0)
c. Notice

that xe2iuf 2iye2ivf 2iz ≡(logn)c xe2ivf 2iye2iuf 2iz via the bijection sending respectively xei,

eiyf i, eiuf i, eivf i and f iz to their corresponding substring in the other string. Hence by

Theorem 17 we have xe2iuf 2iye2ivf 2iz ∈ L iff xe2ivf 2iye2iuf 2iz ∈ L. But again, as e and

f are idempotents, this implies xeufyevfz ∈ L iff xeufyevfz ∈ L. Therefore L is closed

under swaps.
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The pumping argument for closure under transfers is identical. By Lemma 4.11 there

are constants c and n0 such that L is closed under (log n)c-transfers for strings of length

bigger than n0.

Consider x, u, y, v, z as in the hypothesis for closure under transfers. As uω and vω are

idempotents we have for all i ∈ N, xuω·iuyvω·iz ∈ L iff xuωuyvωz ∈ L. Take i large enough

so that i · ω ≥ (log |xuω·iuyvω·iz|)c ≥ (log n0)
c. Hence we can apply closure under (log n)c-

transfers and by Lemma 4.11 we have xuω·iuyvω·iz ∈ L iff xuω·iyvvω·iz ∈ L. But again, as

uω and vω are idempotents, this implies xuωuyvωz ∈ L iff xuωyvvωz ∈ L. Therefore L is

closed under transfers.

This concludes the proof of Theorem 5. �

4.8 Further Research

We end with a few suggestions for further research.

We have established the precise level of locality of Arb-invariant FO formulas for the

Gaifman notion of locality. As pointed out in [Gro09]: “It would be interesting to see a

small complexity class like uniform AC0 [...] captured by a logic.” This remains an open

problem – recall that although Arb-invariant FO does capture AC0, it does not have an

effective syntax. Note that over regular languages, we do have an effective syntax as we have

shown that Arb-invariant FO(Succ) has exactly the same expressive power as FO(τs, lm).

Another open question is whether our upper bound for Gaifman locality also holds for

Hanf locality on arbitrary structures. We have established this bound for string structures

only. We believe that a similar argument should also work for tree structures.
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5 On Sets that Realize Lines

Geometry is the science of correct reasoning on incorrect figures.

— George Polya

In this chapter we give tight bounds on the size of set systems that realize, through pair-wise

intersection, all lines in GF(p)2. First, in Section 5.1 we give a formal description of the

motivation and definitions. Then, in Section 5.2 we describe a set family F of size O(p3/2)

that is sufficient to realize all lines, and in Section 5.3 we conclude by showing that a family

of this size is optimal.

5.1 Background

Recall that [DvM10] shows for vertex cover instances on n vertices that no deterministic

polynomial-time mapping reduction exists to instances of size O(nc) (for any language L),

for any c < 2, unless the polynomial hierarchy collapses. Our result, which we present later

in this chapter, applies to an earlier weaker version of their theorem that rules out reduced

instances only for c < 4
3

[DvM09].

To give the formal motivation behind our result will not describe the full proof of

[DvM10], but instead explain the aspects of it related to the problem we consider here.

To this end we introduce the parameterized problem, k-CLIQUE, the problem of deciding

whether a given graph G on n vertices has a subset S of the vertices of size k, such that

every pair of vertices in S are connected by an edge.

Consider t graphs G1, G2, . . . , Gt each on s vertices. We say a graph G is a packing of

the t graphs if for all m ≤ s: G has a clique of size m+ 2 iff at least one of the original t

graphs is a clique of size m. Dell and Van Melkebeek implicitly prove the following lemma.
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Lemma 5.1 ([DvM10, Implicit in proof of Theorem 2]). Let be t be a polynomially

bounded function of s. Suppose

1. there is a way to pack t clique instances each on s vertices into a single clique instance

G with |G| vertices, and

2. there is a constant c and a polynomial-time mapping reduction that takes clique

instances on n vertices to instances of bit-length O(nc) of some language L.

If |G|c = O(t log t), then NP ⊆ coNP/ poly and the polynomial hierarchy collapses.

Informally, the lemma says that if there is an efficient way of packing clique instances

into a single instance, it rules out map reducing clique instances to instances of small

bit-length unless the polynomial hierarchy collapses. Observe that the smaller the size of

the packed instance G is as a function of t the larger the range of constants c that are ruled

out unless the polynomial hierarchy collapses. Thus, our goal becomes showing how to pack

clique instances into a graph that has as few vertices as possible.

Let F .
= GF(p) be a finite field. We now describe a possible construction of the packed

graph G. Consider an s-partite graph P with p vertices per partition class. Note that P

has size s · p and we can view the vertices of P as (x, y) ∈ {0, 1, . . . , s− 1}×F ⊆ F2 for this

we need that p ≥ s.

Definition 5.1 (Lines, L). Let La,b
.
= {(x, a+ bx) | x ∈ F} be a line in F2. For ease of

notation we often refer to the line La,b, for a tuple `
.
= (a, b), as L` or simply L. Let

L .
= {La,b | a, b ∈ F}.

The lines L naturally correspond to distinct subsets P ∩ L ⊆ P of size s. Moreover,

|P ∩ L ∩ L′| ≤ 1 for distinct lines L and L′. Uniquely assign each graph Gi to some line

Li ∈ L; for this to be possible the number of lines, p2 = |F|2, must be a least t, the number
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of graphs. Then, for each Gi, connect the s vertices in P ∩Li as they are in Gi, i.e., so that

the induced subgraph on P ∩ Li is isomorphic to Gi.

Definition 5.2 (Realization). Let 2F2
be the powerset of F2.

• A set L ⊆ F2 is realized by a pair of sets S,Q ⊆ F2 if S ∩Q = L.

• A family of sets F ⊆ 2F2
, realizes a set L ⊆ F2 if there exists S,Q ∈ F that realize L.

• A family of sets F ⊆ 2F2
, realizes a family of sets L ⊆ 2F2

if for all L ∈ L, F realizes

L.

Let F be a set family that realizes L. We form G by adding new vertices to P . Add the

vertices us and vs for each set S in F , and connect uS to all the vertices in P ∩ S, and do

the same for vs. Now, connect the vertices uQ and vS with an edge iff the set Q ∩ S is a

line in L. It follows that the resulting graph G has a clique of size s+ 2 iff at least one of

the Gi’s is a clique of size s. The graph G has s · p+ 2 · |F| vertices.

Suppose we have a set family F of size p3/2. Lemma 5.1 implies that map reducing

G to an instance of size |G|c for any c < 4/3 can be ruled out unless the hierarchy

collapses. To see this, pick p ∼
√
t and t to be a sufficiently large polynomial in s, then

|G|c ≤ (s
√
t+ 2t

3
4 )c ≤ (3t

3
4 )c. Therefore, |G|c = O(t log t) for any c < 4/3.

The result of this chapter shows that for this type of set system c < 4
3

is optimal.

5.2 Upper Bound

In this section we assume that p is prime; this is not an inherent limitation of our proof,

rather it is for ease of notation.

First, we consider the following simplification of the problem to the horizontal lines

La
.
= {(x, a) | x ∈ F}, for a ∈ F.
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Lemma 5.2. There is a set family F of size O(
√
p) such that for each a ∈ F, F realizes

La.

Proof. Let r
.
= d√pe. For x ∈ F and integers 0 ≤ i, j < r, let

Qi,x
.
= {(x, i+ 0 · r), (x, i+ 1 · r), . . . , (x, i+ (r − 1) · r)}, and

Sj,x
.
= {(x, 0 + j · r), (x, 1 + j · r), . . . , (x, (r − 1) + j · r)},

where addition is over the integers and when the second element of a tuple is greater or

equal to p we drop that tuple. Further define Qi
.
= ∪x∈FQi,x and Sj

.
= ∪x∈FSj,x. For each

a ∈ F, since r2 > |F| we can write a = i+ j · r with i, j ∈ {0, 1, . . . , r − 1}. Then

La = Qi ∩ Sj = {(x,
a︷ ︸︸ ︷

i+ j · r) | x ∈ F}.

Thus F .
= {Qi}i ∪ {Sj}j realizes all horizontal lines. We conclude by noticing |F| = 2r =

O(
√
p). �

Observe that this bound is tight, since at least
√
p sets are required to represent p

distinct sets via pairs of sets. From now on let

L .
= {La,b | a, b ∈ F}

be the set of all lines. We easily generalize the upper bound on horizontal lines to all of L.

Lemma 5.3. There exists a set family F of size O(p3/2) that realizes L.

Proof. The proof is similar to that of Lemma 5.2. Let r
.
= d√pe. For b, x ∈ F and integers
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0 ≤ i, j < r, let

Qb
i,x

.
= {(x, i+ 0 · r + bx), (x, i+ 1 · r + bx), . . . , (x, i+ (r − 1) · r + bx)}, and

Sbj,x
.
= {(x, 0 + j · r + bx), (x, 1 + j · r + bx), . . . , (x, (r − 1) + j · r + bx)},

where addition is over the integers and when the second element of a tuple is greater or

equal to p we drop that tuple.

Similarly, define Qb
i
.
= ∪x∈FQ

b
i,x and Sbj

.
= ∪x∈FS

b
j,x, and let F .

= {Qb
i}i,b ∪ {Sbj}j,b. We

can establish correctness: For every a, b ∈ F, with a = i+ j · r and i, j ∈ {0, 1, . . . , r − 1},

Qb
i ∩ Sbj = {(x,

a︷ ︸︸ ︷
i+ j · r+bx) | x ∈ F} = La,b.

We conclude by observing |F| = 2rp = O(p3/2). �

5.3 Lower Bound

In this subsection we argue that size Ω(p3/2) is necessary to realize L. Recall some standard

facts about lines in F2 that follow easily from their definition:

• Two lines that are parallel and distinct do not intersect.

• Two lines that are skew must intersect at exactly one point.

• Two lines that have two distinct points in common are identical.

Observe that these three facts essentially use the property that fields are domains, that is,

for a, b ∈ F, if ab = 0 then a = 0 or b = 0.

Definition 5.3 (Covering). For S ⊆ F2. Say S covers a line, La,b a, b ∈ F2, if S ⊇ La,b.
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With these facts and definitions we can prove the following lemma that, intuitively, says

that if there are two sets Q and S that cover several lines and realize some line in common,

then the sets each must have similar structure.

Lemma 5.4. Let the sets Q and S each cover at least four distinct lines, and Q and S

realize L (i.e., Q ∩ S = L). S has exactly one of the following types:

1. All lines covered by S are parallel.

2. All lines covered by S are parallel, except for L, which is skew with respect to the

others.

3. There exists exactly one point in F2, which every pair of lines that S covers intersect

at.

Moreover, Q and S have the same type.

Proof. Since the sets Q and S cover at least four lines each, the three types in the statement

of the lemma are inherently distinct. Since S and Q realize L, S and Q cannot cover any

other lines in common. We proceed by case analysis on the lines that S covers.

Type 1. Suppose S covers a distinct line s that is parallel to L. Then Q cannot cover any line

q skew to s because the intersection point between s and q will not be on L, contradicting

the fact that Q ∩ S = L. Therefore the other lines that Q covers must all be parallel to

s (and L). Hence Q covers a distinct line q that is parallel to L. This argument can be

repeated starting with q to conclude that all the lines covered by S are also parallel. This

is exactly type (1). See Figure 5.1.(a).

Therefore, we can assume that all the lines covered by S and Q are now skew to L.

Type 2. Suppose S covers distinct lines s1 and s2 that are parallel to each other and skew

to L. Further suppose, for the sake of contradiction, that Q covers a line q that is distinct
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from L and not parallel to s1 and s2. Then q intersects both s1 and s2. Since q is distinct

from L at least one of the intersection points must not be on L, this contradicts the fact

that Q ∩ S = L. Therefore we can conclude that all the other lines that Q covers must be

parallel to s1 and s2. See Figure 5.1.(b). Since Q covers at least three lines we can repeat

this argument starting from Q to get that all the lines that S covers other than L must also

be parallel. This is type (2).

Therefore, we can further assume that all the lines covered by S (and Q) are pairwise

skew.

Type 3. Suppose S covers lines s1 and s2, which are skew to each other and to L. Suppose

all intersections between L, s1 and s2 occur at a single point. Then all lines covered by Q

go through the same intersection point and are distinct from the other lines of S, otherwise

they will intersect either s1 or s2 at a point not on L, which contradictions Q∩S = L. This

is type (3). See Figure 5.1.(c).

Otherwise, the intersections between L, s1, and s2 occur at three distinct points. It can

be shown by inspection that Q can only cover 3 lines: L, the line through the intersection

point of L and s1 that is parallel to s2, and the line through the intersection point of L and

s2 that is parallel to s1. This is contradicts the fact that S and Q cover at least four lines.

See Figure 5.1.(d).

We have argued that S must have exactly one of the types and Q must match it.

One consequence of Lemma 5.4 is that sets that cover several lines and have different

types cannot be used together to realize lines. Intuitively this partitions the sets into

equivalence classes. This allows us to show that the number of sets required to realize all of

L must be large.

Lemma 5.5. Any family F of sets that realizes L must be of size Ω(p3/2).
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(a) (b)

(c) (d)

s1 q1 L s2 q2 s1 q1

L

s2 q2

s1

q1

L

s2

q2

s1 q1

L

s2 q2

Figure 5.1: Cases of Lemma 5.4.

Proof. Consider a family F of sets. We count the number of lines in L it can realize.

Consider the number of lines realized by pairs of sets in F where one of the sets covers

at most 3 lines. This quantity is at most 3|F|. The remaining lines that are realized by F

must be realized by pairs of sets that each cover at least four lines.

Since we are now only dealing with pairs of sets covering at least four lines we can apply

Lemma 5.4. Recall that this lemma partitions all sets that cover at least four lines into

three disjoint types. Furthermore, the result implies that if S,Q ∈ F realize a line L they

must have the same type.

We now observe that the sets of F can be partitioned into disjoint families, and, moreover,

we note that the number of lines realized by the each individual family is at most p.

Type 1. For a slope b ∈ F let F (1)
b be the sets in F that have type (1) where all the realized

sets in have slope b. Then F (1)
b can only realize the |F| = p lines of L with slope b.
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Type 2. For a slope b ∈ F, and line L that does not have slope b, let F (2)
L,b be the sets in F

that have type (2) with skew line L and parallel line slope b. The only line realizable within

F (2)
L,b is exactly L.

Type 3. For a point (α, β) ∈ F2, let F (3)
(α,β) be the sets in F that have type (3) where all the

sets have common intersection point (α, β). Then F (3)
(α,β) can only realize the |F| = p lines of

L that go through (α, β).

By this analysis the large sets in F can be partitioned into disjoint families:

F ⊇ (tbF (1)
b ) t (tL,bF (2)

L,b) t (tα,βF (3)
α,β).

We argued above that each family can realize at most p lines in L. Therefore, the number

of lines realized by any of one of these disjoint families Fi is at most min(|Fi|2, p). The

best a family can do is realize p lines using
√
p sets. Assuming that every family realizes

independent lines, which is an over-estimate, the strategy to realize the largest number of

lines is to maximize the number of families contributing the maximum number of realizations.

Therefore we can assign |F|√
p

families the responsibility of each covering p lines using
√
p sets.

This realizes at most |F|√
p
· p = |F|√p lines in L.

Combining this with the number of lines realized by small sets and using the fact that

F realizes all of L we have:

3|F|+ |F|√p ≥ p2.

We conclude that |F| = Ω(p3/2). �

This immediately implies the main theorem for this section: A tight bound on the size

of set families realizing L.
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Theorem 18 (Theorem 6 – restated).

Let F .
= GF(p), for a, b ∈ F let La,b

.
= {(x, a+ bx) | x ∈ F}, and let L .

= ∪a,b∈FLa,b. Then

the number of sets sufficient and necessary to realize L is Θ(p1.5).

Proof. Combine Lemma 5.3 and Lemma 5.5. �
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