Chapter 11

Analysis of Variance and Regression

“I've wasted time enough,” said Lestrade rising. “I believe in hard work and not
in sitting by the fire spinning fine theories.”

Inspector Lestrade

The Adventure of the Noble Bachelor

11.1 Introduction

Up until now, we have modeled a random variable with a pdf or pmf that depended
on parameters to be estimated. In many situations, some of which follow, a random
variable can be modeled not only with unknown parameters but also with known (and
sometimes controllable) covariates. This chapter describes the methodologies of anal-
ysis of variance (ANOVA) and regression analysis. They are based on an underlying
assumption of a linear relationship and form a large core of the statistical methods
that are used in practice.

The analysis of variance (commonly referred to as the ANOVA) is one of the most
widely used statistical techniques. A basic idea of the ANOVA, that of partitioning
variation, is a fundamental idea of experimental statistics. The ANOVA belies its
name in that it is not concerned with analyzing variances but rather with analyzing
variation in means.

We will study a common type of ANOVA, the oneway ANOVA. For a thorough
treatment of the different facets of ANOVA designs, there is the classic text by
Cochran and Cox (1957) or the more modern, but still somewhat classic, treatments
by Dean and Voss (1999) and Kuehl (2000). The text by Neter, Wasserman, and
Whitmore (1993) provides a guide to overall strategies in experimental statistics.

The technique of regression, in particular linear regression, probably wins the prize
as the most popular statistical tool. There are all forms of regression: linear, nonlinear,
simple, multiple, parametric, nonparametric, etc. In this chapter we will look at the
simplest case, linear regression with one predictor variable. (This is usually called
stmple linear regression, as opposed to multiple linear regression, which deals with
many predictor variables.)

A major purpose of regression is to explore the dependence of one variable on
others. In simple linear regression, the mean of a random variable, Y, is modeled
as a function of another observable variable, z, by the relationship EY = a + Sz.
In general, the function that gives EY as a function of z is called the population
regression function.
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Good overall reierences for r;egkgéslon models are Christensen (1996) and Draper
and Smith (1998}, A Brgmﬁtgo;eﬁcal treatment is given in Stuart, Ord, and Arnold
(1999, Chapter 27 \--—""

11.2 Oneway Analysis of Variance

In its simplest form, the ANOVA is a method of estimating the means of several
populations, populations often assumed to be normally distributed. The heart of the
ANOVA, however, lies in the topic of statistical design. How can we get the most in-
formation on the most populations with the fewest observations? The ANOVA design
question is not our major concern, however; we will be concerned with inference, that
is, with estimation and testing, in the ANOVA.

Classic ANOVA had testing as its main goal—in particular, testing what is known
as “the ANOVA null hypothesis.” But more recently, especially in the light of greater
computing power, experimenters have realized that testing one hypothesis (a some-
what ludicrous one at that, as we shall see) does not make for good experimental
inference. Thus, although we will derive the test of the ANOVA null, it is far from
the most important part of an analysis of variance. More important is estimation,
both point and interval. In particular, inference based on contrasts (to be defined) is
of major importance.

In the oneway analysis of variance (also known as the oneway classification) we
assume that data, Y;;, are observed according to a model

(1121) Y,’j=9;+6,‘j, i=1,...,k, j=1,...,n4
where the 8; are unknown parameters and the ¢;; are error random variables.

Example 11.2.1 (Oneway ANOVA) Schematically, the data, y;;, from a oneway
ANOVA will look like this:

Treatments

1 2 3 - k
Y11 Y21 Y31 Yk
Y12 Y22 Y32 e Yk2
' : : Yk3

Yan, :

Yin,

Yon, Ykny

Note that we do not assume that there are equal numbers of observations in each
treatment group.

As an example, consider the following experiment performed to assess the relative
effects of three toxins and a control on the liver of a certain species of trout. The data
are the amounts of deterioration (in standard units) of the liver in each sacrificed fish.
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Toxin1 Toxin2 Toxin3 Control

28 33 18 1
23 36 21 14
14 34 20 11
27 29 22 16
31 24
34 I

Without loss of generality we can assume that Ee;; = 0, since if not, we can rescale
the €;; and absorb the leftover mean into 6;. Thus it follows that

E)/‘ij=ei1 =1,

go the 8;s are the means of the Y;;s. The §;s are usually referred to as treatment means,
since the index often corresponds to different treatments or to levels of a particular
treatment, such as dosage levels of a particular drug.

There is an alternative model to (11.2.1), sometimes called the overparamneterized
model, which can be written as

(1122) Yij=u+7-i+eijv i=1,...,k j=1,...,n4
where, again, Ee;; = 0. It follows from this model that
EYij=u+m.

In this formulation we think of 4 as a grand mean, that is, the common mean level of
the treatments. The parameters 7; then denote the unique effect due to treatment 3,
the deviation from the mean level that is caused by the treatment. However, we cannot
estimate both 7; and u separately, because there are problems with identifiability.

Definition 11.2.2 A parameter @ for a family of distributions {f(z|6): 6 € 6}
is identifiable if distinct values of @ correspond to distinct pdfs or pmfs. That is, if
0 # ¢, then f(x|8) is not the same function of z as f(z|¢’).

Identifiability is a property of the model, not of an estimator or estimation pro-
cedure. However, if the model is not identifiable, then there is difficulty in doing
inference. For example, if f(z|6) = f(z|¢’), then observations from both distributions
look exactly the same and we would have no way of knowing whether the true value
of the parameter was 6 or #'. In particular, both # and ¢ would give the likelihood
function the same value.

Realize that problems with identifiability can usually be solved by redefining the
model. One reason that we have not encountered identifiability problems before is
that our models have not only made intuitive sense but also’ were identifiable (for
example, modeling a normal population in terms of its mean and variance). Here,
however, we have a model, (11.2.2), that makes intuitive sense but is not identifiable.
In Chapter 12 we will see a parameterization of the bivariate normal distribution that
models a situation well but is not identifiable.
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In the parameterization of (11.2.2), there are k + 1 parameters, (4, 1,...,7x), but
only k means, EY;;,i = 1,..., k. Without any further restriction on the parameters,
more than one set of values for (u,7,...,7) will lead to the same distribution. It
is common in this model to add the restriction that ZLI 7i = 0, which effectively
reduces the number of parameters to k and makes the model identifiable. The re-
striction also has the effect of giving the 7;s an interpretation as deviations from an
overall mean level. (See Exercise 11.5.)

For the oneway ANOVA the model (11.2.1), the cell means model, which has a more
straightforward interpretation, is the one that we prefer to use. In more complicated
ANOVAs, however, there is sometimes an interpretive advantage in model (11.2.2).

11.2.1 Model and Distribution Assumptions

Under model (11.2.1), a minimum assumption that is needed before any estimation
can be done is that Ee;; = 0 and Vare;; < oo for all 4, 5. Under these assumptions, we
can do some estimation of the 8;s (as in Exercise 7.41). However, to do any confidence
interval estimation or testing, we need distributional assumptions. Here are the classic
ANOVA assumptions.

Oneway ANOVA assumptions

Random variables Y;; are observed according to the model
Yij=0;+e€; i=1,...,k j=1,...,n,
where

(i) Eei; = 0, Vare;; = 02 < oo, for all 4,j. Cov(eij,e7) = 0 for all 4, ¢/, j, and 5’
unless i = ¢/ and j = j'.
(i) The ¢;; are independent and normally distributed (normal errors).

(ii) 02 = o2 for all i (equality of variance, also known as homoscedasticity).

Without assumption (ii) we could do only point estimation and possibly look for
estimators that minimize variance within a class, but we could not do interval esti-
mation or testing. If we assume some distribution other than normal, intervals and
tests can be quite difficult (but still possible) to derive. Of course, with reasonable
sample sizes and populations that are not too asymmetric, we have the Central Limit
Theorem (CLT) to rely on.

The equality of variance assumption is also quite important. Interestingly, its im-
portance is linked to the normality assumption. In general, if it is suspected that the
data badly violate the ANOVA assumptions, a first course of attack is usually to try
to transform the data nonlinearly. This is done as an attempt to more closely satisfy
the ANOVA assumptions, a generally easier alternative than finding another model
for the untransformed data. A number of common transformations can be found in
Snedecor and Cochran (1989); also see Exercises 11.1 and 11.2. (Other research on
transformations has been concerned with the Box—Cox family of power transforma-
tions. See Exercise 11.3.)
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The classic paper of Box (1954) shows that the robustness of the ANOVA to the
assumption of normality depends on how equal the variances are (equal being better).
The problem of estimating means when variances are unequal, known as the Behrens—
Fisher problem, has a rich statistical history which can be traced back to Fisher (1935,
1939). A full account of the Behrens-Fisher problem can be found in Stuart, Ord,
and Arnold (1999).

For the remainder of this chapter we will do what is done in most of the experimental
situations and we will assume that the three classic assumptions hold. If the data are
such that transformations and the CLT are needed, we assume that such measures
have been taken.

11.2.2 The Classic ANOVA Hypothesis
The classic ANOVA test is a test of the null hypothesis

Hy: 61=0=---=06,

a hypothesis that, in many cases, is silly, uninteresting, and not true. An experimenter
would not usually believe that the different treatments have ezactly the same mean.
More reasonably, an experiment is done to find out which treatments are better (for
example, have a higher mean), and the real interest in the ANOVA is not in testing
but in estimation. (There are some specialized situations where there is interest in
the ANOVA null in its own right.) Most situations are like the following.

Example 11.2.3 (The ANOVA hypothesis) The ANOVA evolved as a method
of analyzing agricultural experiments. For example, in a study of the effect of various
fertilizers on the zinc content of spinach plants (y;;), five treatments are investigated.
Each treatment consists of a mixture of fertilizer material (magnesium, potassium,
and zinc) and the data look like the layout of Example 11.2.1. The five treatments,
in pounds per acre, are

Treatment Magnesium Potassium Zinc

1 0 0 0
2 0 200 0
3 50 200 0
4 200 200 0
5 0 200 15

The classic ANOVA null hypothesis is really of no interest since the experimenter is
sure that the different fertilizer mixtures have some different effects. The interest is
in quantifying these effects. |

We will spend some time with the ANOVA null but mostly use it as a means to
an end. Recall the connection between testing and interval estimation established in
Chapter 9. By using this connection, we can derive confidence regions by deriving,
then inverting, appropriate tests (an easier route here).
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The alternative to the ANOVA null is simply that the means are not all equal; that
is, we test

(11.2.3) Hy: 6,=0;=---=6 versus Hy,: 6;#46;, for some i, j.

Equivalently, we can specify H; as Hy: not Hy. Realize that if Hy is rejected, we can
conclude only that there is some difference in the 6;s, but we can make no inference
as to where this difference might be. (Note that if H; is accepted, we are not saying
that all of the 6;s are different, merely that at least two are.)

One problem with the ANOVA hypotheses, a problem shared by many multivariate
hypotheses, is that the interpretation of the hypotheses is not easy. What would be
more useful, rather than concluding just that some 6;s are different, is a statistical
description of the €;s. Such a description can be obtained by breaking down the
ANOVA hypotheses into smaller, more easily describable pieces.

We have already encountered methods for breaking down complicated hypotheses
into smaller, more easily understood pieces—the union-intersection and intersection—
union methods of Chapter 8. For the ANOVA, the union-intersection method is best
suited, as the ANOVA null is the intersection of more easily understood univariate
hypotheses, hypotheses expressed in terms of contrasts. Furthermore, in the cases we
will consider, the resulting tests based on the union—intersection method are identical
to LRTs (see Exercise 11.13). Hence, they enjoy all the properties of likelihood tests.

Definition 11.2.4 Let t = (t1,...,t) be a set of variables, either parameters or

statistics, and let a = (a,, ..., ax) be known constants. The function
k
(11.2.4) > ait;
i=1

is called a linear combination of the t;s. If, furthermore, 3" a; = 0, it is called a
contrast.

Contrasts are important because they can be used to compare treatment means.
For example, if we have means 0,...,8; and constants a = (1,—1,0,...,0), then

k
Z aib; = 6, — 0,
i=1

is a contrast that compares 6; to 6. (See Exercise 11.10 for more about contrasts.)

The power of the union—intersection approach is increased understanding. The in-
dividual null hypotheses, of which the ANOVA null hypothesis is the intersection, are
quite easy to visualize.

Theorem 11.2.5 Let § = (0y,...,0x) be arbitrary parameters. Then

k
Gr=06,=--=06 &> aib;=0 forallacA,
i=1
where A is the set of constants satisfying A = {a = (a1,...,ak): Y. a; = 0}; that is,
all contrasts must satisfy 3 a;6; = 0.
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Proof: If 6, =--- =0, = 6, then

k k k
Z a;0; = Z a;f=20 Z a; =0, (because a satisfies }_ a; = 0)
i=1 i=1

=1

proving one implication (=). To prove the other implication, consider the set of
a; € A given by

alz(],—]_,O,...,O), 82=(0,1,—1,0,...,0), NN ak_1=(0,...,0,1,—1).

(The set (a1, az,...,ax_1) spans the elements of A. That is, any a € A can be written
as a linear combination of (a;,a,,...,a5_1).) Forming contrasts with these a;s, we
get that

a; =0, =05, ay =>0,=03 ..., ar_1=>0_1=0k,
which, taken together, imply that 61 = - - = 6k, proving the theorem. O

It immediately follows from Theorem 11.2.5 that the ANOVA null can be expressed
as a hypothesis about contrasts. That is, the null hypothesis is true if and only if the
hypothesis

k k
Hy: Za,ﬂi =0 for all (ay,...,ax) such that Za,- =0

i=1 i=1

is true. Moreover, if Hj is false, we now know that there must be at least one nonzero
contrast. That is, the ANOVA alternative, H;: not all 8;s equal, is equivalent to the
alternative

k k
Hy: ) aii #0 for some (ay,...,ax) such that Y a; =0.

i=1 i=1

Thus, we have gained in that the use of contrasts leaves us with hypotheses that
are a little easier to understand and perhaps are a little easier to interpret. The real
gain, however, is that the use of contrasts now allows us to think and operate in a
univariate manner.

11.2.8 Inferences Regarding Linear Combinations of Means

Linear combinations, in particular contrasts, play an extremely important role in
the analysis of variance. Through understanding and analyzing the contrasts, we can
make meaningful inferences about the 6;s. In the previous section we showed that the
ANOVA null is really a statement about contrasts. In fact, most interesting inferences
in an ANOVA can be expressed as contrasts or sets of contrasts. We start simply with
inference about a single linear combination.

Working under the oneway ANOVA assumptions, we have that

Y,~j~n(0,-,o2), i=1,...,k, j=1,..‘,n1~.
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Therefore,
_ 1 &
Y, = E;Yﬁ ~n(8;,0%/n;), i=1,...,k

A note on notation: It is a common convention that if a subscript is replaced by a
(dot), it means that subscript has been summed over. Thus, Y;. = 377, Y;; and

Y, = Zf=1 Yi;. The addition of a “bar” indicates that a mean is taken, as in ¥;
above. If both subscripts are summed over and the overall mean (called the grand
7_nean) is calculated, we will break this rule to keep notation a little simpler and write

Y = (1/N)Ti, 352, Vi, where N = 320 ns.
For any constants a = (ay,...,ax), ):leaiﬂ is also normal (see Exercise 11.8)
with
k

k k k
E (Z aiYi-) = Zaiei and Var (Zai?},) — g2 Z :‘_?,
i=1 i=1 i=1 i

i=1

and furthermore

k o k
i aiYi~k_ iz 0 ~n(0,1
02 Zi:l a?/ni
Although this is nice, we are usually in the situation of wanting to make inferences

about the 8;s without knowledge of o. Therefore, we want to replace o with an
estimate. In each population, if we denote the sample variance by SZ, that is,

).

ni

1 _
S§? = — § (Y -Y)% i=1,...,k,
1 j=1

then S? is an estimate of ¢? and (n; — 1)S?/0? ~ x2,_;. Furthermore, under the
ANOVA assumptions, since each S? estimates the same 02, we can improve the esti-
mators by combining them. We thus use the pooled estimator of o2, Sf,, given by

k k n;
2 __ 1 2 __ 1 - V. \2

=1 j=1

Note that N — k = 37(n; — 1). Since the S?s are independent, Lemma 5.3.2 shows
that (N — k)S2/0? ~ x% _i- Also, S? is independent of each Y;. (see Exercise 11.6)
and thus

k ¥ k
(11.2.6) YimaYi — i aib;
S;zz ):k a?/n;

=11

~EN—k,

Student’s ¢ with N — k degrees of freedom.
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To test
k k
Hy: Z a;0; =0 versus Hiy: Z af; #0
i=1 i=1

at level a, we would reject Hp if

k
5'3 iz a?/ LC
(Exercise 11.9 shows some other tests involving linear combinations.) Furthermore,

(11.2.6) defines a pivot that can be inverted to give an interval estimator of ) a;6;.
With probability 1 — a,

(1127) > tN—k,a/2-

k k
Z aiYs. —tn_ka)2 < Z a;f;
i=1 =1
k —_—
(11.2.8) <Y oY +ty ko
i=1

Example 11.2.6 (ANOVA contrasts) Special values of a will give particular
tests or confidence intervals. For example, to compare treatments 1 and 2, take a =
(1,-1,0,...,0). Then, using (11.2.6), to test Hy: 61 = 65 versus H; : 61 # 6;, we
would reject Hy if

V.- Y,

> IN—k,a/2:
2 (1 1
Sp (n_l + 'ﬁ?)
Note, the difference between this test and the two-sample ¢ test (see Exercise 8.41)
is that here information from treatments 3, ..., k, as well as treatments 1 and 2, is
used to estimate o2.

Alternatively, to compare treatment 1 to the average of treatments 2 and 3 (for
example, treatment 1 might be a control, 2 and 3 might be experimental treatments,
and we are looking for some overall effect), we would take a = (1, —%, —%,0, ..., 0)
and reject Hy: 6; = %(92 + 63) if

> tN-k,a/2:

Using either (11.2.6) or (11.2.8), we have a way of testing or estimating any linear
combination in the ANOVA. By judiciously choosing our linear combination we can
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learn much about the treatment means. For example, if we look at the contrasts
— 03,05 — 63, and 6, — 03, we can learn something about the ordering of the 6;s.
(Of course, we have to be careful of the overall « level when doing a number of tests
or intervals, but we can use the Bonferroni Inequality. See Example 11.2.9.)
We also must use some care in drawing formal conclusions from combinations of
contrasts. Consider the hypotheses

1
Hy: 6, = 5(02 + 03) versus Hy: 6, < (62 +83)
and
Hy: 62 =03 versus Hy: 0;<6;.

If we reject both null hypotheses, we can conclude that 83 is greater than both 6; and
02, although we can draw no formal conclusion about the ordering of 63 and 6; from
these two tests. (See Exercise 11.10.) |

Now we will use these univariate results about linear combinations and the rela-
tionship between the ANOVA null hypothesis and contrasts given in Theorem 11.2.5
to derive a test of the ANOVA null hypothesis.

11.2.4 The ANOVA F Test

In the previous section we saw how to deal with single linear combinations and, in
particular, contrasts in the ANOVA. Also, in Section 11.2, we saw that the ANOVA
null hypothesis is equivalent to a hypothesis about contrasts. In this section we will
use this equivalence, together with the union—intersection methodology of Chapter 8,
to derive a test of the ANOVA hypothesis.

From Theorem 11.2.5, the ANOVA hypothesis test can be written

k k
Zaiﬁi =0forallae 4 Versus H;: Zazﬂi # 0 for some a € A,

i=1 i=1

where A = {a = (a1,...,ax): Zleai = 0}. To see this more clearly as a union—
intersection test, define, for each a, the set

Qa={0=(61,...,0 Zaﬂ =0}

Then we have
0c{0:0=0p=-=0}0c0, forallacAsbec ()0,
acA

showing that the ANOVA null can be written as an intersection.
Now, recalling the union—intersection methodology from Section 8.2.3, we would
reject Hy: 8 € Naec4Oa (and, hence, the ANOVA null) if we can reject

Hy,: 60€0, versus Hy,: 6¢0,
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for any a. We test Ho, with the ¢ statistic of (11.2.6),

Y0¥ — Y0 aibs
5330ty a? /s

We then reject Hp, if Ta > k for some constant k. From the union-intersection
methodology, it follows that if we could reject for any a, we could reject for the a
that maximizes T,. Thus, the union-intersection test of the ANOVA null is to reject
H, if sup, Ta > k, where k is chosen so that Py, (sup, Ta > k) = a.

Calculation of sup, T, is not straightforward, although with a little care it is not
difficult. The calculation is that of a constrained maximum, similar to problems pre-
viously encountered (see, for example, Exercise 7.41, where a constrained minimum
is calculated). We will attack the problem in a manner similar to what we have done
previously and use the Cauchy—Schwarz Inequality. (Alternatively, a method such
as Lagrange multipliers could be used, but then we would have to use second-order
conditions to verify that a maximum has been found.)

* Most of the technical maximization arguments will be given in the following lemma
and the lemma will then be applied to obtain the supremum of T,. The lemma is
just a statement about constrained maxima of quadratic functions. The proof of the
lemma may be skipped by the fainthearted.

(112.9) Ta =

Lemma 11.2.7 Let (v1,...,vt) be constants and let (c1,...,cx) be positive con-
stants. Then, for A= {a = (a),...,ax): Y. a; =0},

(Z’F 1ai”i)2

(11.2.10) max{ ————— 3 = ) ¢;(vi —
acA Ez—l 1/07' ;

where T = Y ¢;v;/ Y, ¢;. The mazimum is attained at any a of the form a; = Ke;(v;—
.), where K i3 a nonzero constant.

Proof: Define B = {b = (b1,...,bx): Y. b; = 0 and Y_b?/c; = 1}. For any a € A,
deﬁneb:(bl,...,bk) by '

and note that b € B. For any a € A,

21—1 ) /C,

We will find an upper bound on (3 b;v;)2 for b € B, and then we will show that the
maximizing a given in the lemma achieves the upper bound.

Since we are dealing with the sum of products, the Cauchy-Schwarz Inequality
(see Section 4.7) is a natural thing to try, but we have to be careful to build in the
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constraints involving the c¢;s. We can do this in the following way. Define C = }_ ¢

and write
1 k ’ k b; ¢ ?
& () - {E @@

This is the square of a covariance for a probability measure defined by the ratiog
¢;/C. Formally, if we define random variables B and V by

P(B:ﬁ,V=vi)=%, i=1,...,k,

Ci

then EB = E(bi/ci)(ci/C) = Zbl/C = 0. Thus,

{i (%) (v) (%)}: (EBV)?

i=1 ,
= (Cov(B,V))? (EB =0)
< (Var B)(Var V) (Cauchy-Schwarz Inequality)

kb2 e i ¢
- 2\ (& 532 (& 5. = 2l
-(ZE @) (se-r @) (%)
Using the fact that 3" b?/c; = 1 and canceling common terms, we obtain
k 2k
(11.2.11) (Z b;v,) < Zci(v,- — )% for any b€ B.
i=1 i=1

Finally, we see that if a; = Kc¢;(v; — U.) for any nonzero constant K, then a € A and

Kei(vi — ) ci(v; — Uc)

 a(Ka—wi e A/ e -0

b

_ Zf:l ci(v; — 50)2
VEE eiv - w2

and the inequality in (11.2.11) is an equality. Thus, the upper bound is attained and
the function is maximized at such an a. |
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Returning to T of (11.2.9), we see that maximizing T, is equivalent to maximizing ‘
T2. We have

(21;1 a;¥; — Ef:l a,-ﬁi)2 (2?:1 aiUi) ’ .
{1“32 = % = X . .
S’? Z a?/n; nga?/ni
i=1

=1

Noting that Sg has no effect on the maximization, we can apply Lemma 11.2.7 to the
above expression to get the following theorem.

Theorem 11.2.8 For T, defined in expression (11.2.9),

k _ - .2
(11.2.12) sup T,f _ Zi:l ng ((Yz — :’) —(6; — 0)) |
A:Za,-=0 Sp

where ¥ = Zni?i‘/):n,- and 0 = Y- ni:i/ > n;. Furthermore, under the ANOVA
assumptions,

(11.2.13) sup T2 ~ (k—1)Fe_y Nk,
B:Z a;i=0

that is, SUP,.5q,-0 T2/(k — 1) has an F distribution with k — 1 and N — k degrees of
freedom. (Recall that N =Y n,.)

Proof: To prove (11.2.12), use Lemma 11.2.7 and identify v; with U; and ¢; with n;.
The result is immediate.

To prove (11.2.13), we must show that the numerator and denominator of (11.2.12)
are independent chi squared random variables, each divided by its degrees of freedom.
From the ANOVA assumptions two things follow. The numerator and denominator
are independent and S? ~ o%x% _,/(N — k). A little work must be done to show that

k
1 ~ - _\2
Soom (B -1)=(6:-8) ~xi
i=1
This can be done, however, and is left as an exercise. (See Exercise 11.7.) ]
If Hy: 6; = 0 = --- = O is true, 6; = 0 for all i = 1,...,k and the §; — 8 terms

drop out of (11.2.12). Thus, for an « level test of the ANOVA hypotheses
Hy: 61=0=---=06 versus H,: 6; # 0, for some 1, j,
we reject Hy if

Y ((Y’zn - f’))z
53

(11.2.14) > (k - l)Fk—l,N—k,a~
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This rejection region is usually written as

S (% -9)) k- 1)

reject Hy if F = 52 > Fr_1,N—ka

and the test statistic F is called the ANOVA F statistic.

11.2.5 Simultaneous Estimation of Contrasts

We have already seen how to estimate and test a single contrast in the ANOVA; the
t statistic and interval are given in (11.2.6) and (11.2.8). However, in the ANOVA we
are often in the position of wanting to make more than one inference and we know
that the simultaneous inference from many « level tests is not necessarily at level a.
In the context of the ANOVA this problem has already been mentioned.

Example 11.2.9 (Pairwise differences) Many times there is interest in pairwise
differences of means. Thus, if an ANOVA has means 6, ..., 0, there may be interest
in interval estimates of 6; — 82, 83 — 63, 83 — 0,4, etc. With the Bonferroni Inequality,
we can build a simultaneous inference statement. Define

Y v 1 1
Cij: {91'—9_1:9,‘—03' E}’;A—}Ij.itN——k,a/Q Sg (—+—)}

n; n;

Then P(C;;) = 1—a for each C;;, but, for example, P(Cy2 and Ca3) < 1—a. However,
this last inference is the kind that we want to make in the ANOVA.

Recall the Bonferroni Inequality, given in expression (1.2.10), which states that for
any sets Aj,..., Ap,

P (ﬁ A,) > iP(A,) —(n— 1).
=1

i=1

In this case we want to bound P(N;;C;;), the probability that all of the pairwise
intervals cover their respective differences.

If we want to make a simultaneous 1 — a statement about the coverage of m
confidence sets, then, from the Bonferroni Inequality, we can construct each confidence
set to be of level v, where v satisfies

m
1—Q=Z’Y—(m-—1),
=1

or, equivalently,

y=1- 3.
m
A slight generalization is also possible in that it is not necessary to require each

individual inference at the same level. We can construct each confidence set to be of
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fJevel i, where +; satisfies

1—a=i’n—(m—1).

i=1

In an ANOVA with k treatments, simultaneous inference on all k(k — 1)/2 pairwise
differences can be made with confidence 1 — o if each ¢ interval has confidence 1 —

2a/[k(k —1)]. I

An alternative and quite elegant approach to simultaneous inference is given by
Scheffé (1959). Scheffé’s procedure, sometimes called the S method, allows for simul-
taneous confidence intervals (or tests) on all contrasts. (Exercise 11.14 shows that
Scheffé’s method can also be used to set up simultaneous intervals for any linear
combination, not just for contrasts.) The procedure allows us to set a confidence co-
efficient that will be valid for all contrast intervals simultaneously, not just a specified
group. The Scheffé procedure would be preferred if a large number of contrasts are to
be examined. If the number of contrasts is small, the Bonferroni bound will almost
certainly be smaller. (See the Miscellanea section for a discussion of other types of
multiple comparison procedures.)

The proof that the Scheffé procedure has simultaneous 1 — a coverage on all con-
trasts follows easily from the union—intersection nature of the ANOVA test.

Theorem 11.2.10 Under the ANOVA assumptions, if M =.\/(k — 1)Fx_1,N—k,a;
then the probability is 1 — a that

simultaneously for alla € A= {a = (a1,...,ax): 3, a; = 0}.

Proof: The simultaneous probability statement requires M to satisfy

k k
I )
i=1 i=1

or, equivalently,

k42
P <MY Horallacd| =1-a
=1

P(T2<M?forallac A)=1-aq,
where T, is defined in (11.2.9). However, since
P(T?<M?forallac A)=P| sup T2<M?],
a:E a;=0

Theorem 11.2.8 shows that choosing M? = (k—1)Fy_1 n_k,q satisfies the probability
requirement. (o
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One of the real strengths of the Scheffé procedure is that it allows legitimate “datg
snooping.” That is, in classic statistics it is taboo to test hypotheses that have been
suggested by the data, since this can bias the results and, hence, invalidate the in-
ference. (We norma_lly would not test Hy: 8, = 05 just because we noticed that Y’l
was different from Y;.. See Exercise 11.18.) However, with Scheffé’s procedure such g
strategy is legitimate. The intervals or tests are valid for all contrasts. Whether they
have been suggested by the data makes no difference. They already have been taken
care of by the Scheffé procedure.

Of course, we must pay for all of the inferential power offered by the Scheffé proce-
dure. The payment is in the form of the lengths of the intervals. In order to guarantee
the simultaneous confidence level, the intervals may be quite long. For example, it
can be shown (see Exercise 11.15) that if we compare the ¢t and F distributions, for
any v, a, and k, the cutoff points satisfy

tu,a/2 < \/ (k - 1)Fk—l,u,ay

and so the Scheffé intervals are always wider, sometimes much wider, than the single-
contrast intervals (another argument in favor of the doctrine that nothing substitutes
for careful planning and preparation in experimentation). The interval length phe-
nomenon carries over to testing. It also follows from the above inequality that Scheffé
tests are less powerful than ¢ tests.

11.2.6 Partitioning Sums of Squares

The ANOVA provides a useful way of thinking about the way in which different
treatments affect a measured variable—the idea of allocating variation to different
sources. The basic idea of allocating variation can be summarized in the following
identity.

Theorem 11.2.11 For any numbers y;j,1=1,...,k, and j =1,...,n;,
k ng k k n
(11.2.15) SN w92 =Y @ -9+ DY (v — )
i=1 j=1 i=1 i=1 j=1
where §i. = 7= 35 yi; and § = 3, maFi/ 3o

Proof: The proof is quite simple and relies only on the fact that, when we are dealing
with means, the cross-term often disappears. Write

k ni k ng
ZZ(%J’ -9 = ZZ (5 — 9e) + (B = )%,
i=1 j=1 i=1 j=1
expand the right-hand side, and regroup terms. (See Exercise 11.21.) O

The sums in (11.2.15) are called sums of squares and are thought of as measuring
variation in the data ascribable to different sources. (They are sometimes called cor-
rected sums of squares, where the word corrected refers to the fact that a mean has
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been subtracted.) In particular, the terms in the oneway ANOVA model,
Yi; = 0; + €5,

are in one-to-one correspondence with the terms in (11.2.15). Equation (11.2.15) shows
bow to allocate variation to the treatments (variation between treatments) and to
random error (variation within treatments). The left-hand side of (11.2.15) measures
variation without regard to categorization by treatments, while the two terms on the
right-hand side measure variation due only to treatments and variation due only to
random error, respectively. The fact that these sources of variation satisfy the above
identity shows that the variation in the data, measured by sums of squares, is additive
in the same way as the ANOVA model.

One reason it is easier to deal with sums of squares is that, under normality, cor-
rected sums of squares are chi squared random variables and we have already seen
that independent chi squareds can be added to get new chi squareds.

Under the ANOVA assumptions, in partlcular if ¥;; ~n(6;,0 2), it is easy to show
that

k ng
1 _
(11.2.16) =22 (Y=Y~

i=1 j=1

because for each i = 1,...,k, 3 ;1 (Yij — Yi)> ~ x2,_,, 2ll independent, and,

for independent chi squared random variables, 3% x2 _; ~ x%_;. Furthermore, if
6; = 0; for every i, j, then

(11.2.17) 2En, —Y)2~x2 , and 222 V)~

i=1 j=1

Thus, under Hp: 6; = - - - = 6%, the sum of squares partitioning of (11.2.15) is a parti-
tioning of chi squared random variables. When scaled, the left-hand side is distributed
as a x4 _;, and the right-hand side is the sum of two independent random variables
distributed, respectively, as xi_l and x3,_ - Note that the x? partitioning is true only
if the terms on the right-hand side of (11.2.15) are independent, which follows in this
case from the normality in the ANOVA assumptions. The partitioning of x2s does
hold in a slightly more general context, and a characterization of this is sometimes
referred to as Cochran’s Theorem. (See Searle 1971 and also the Miscellanea section.)

In general, it is possible to partition a sum of squares into sums of squares of
uncorrelated contrasts, each with 1 degree of freedom. If the sum of squares has v
degrees of freedom and is x2, it is possible to partition it into v independent terms,
each of which is 2.

The quantity (3" a;Y;.)2/(3 a?/n;) is called the contrast sum of squares for a treat-
ment contrast 3 a;Y;.. In a oneway ANOVA it is always possible to find sets of con-

stants a® = (a{?,...,a), 1 =1,...,k — 1, to satisfy

_ k (1) 2 k (2) . (‘C 1)y2
k TR Y D DL e ¢ PR ¢ ) ¥
Zi:l ni(Yi- - Y) = ZE (@ (1))2/ + ZF (a (2))2;_ +- ZE (a! (k Y2 /s
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Table 11.2.1. ANOVA table for oneway classification

Source of Degrees of Sum of Mean F
variation  freedom squares square statistic
Between SSB = MSB = F=M3B
treatment k-1 S ni(Gi — )2 SSB/(k — 1)
groups
Within SSW = MSW =
treatment N —k Y Y (yi; — ) SSW/(N —k)
groups
SST =
Total N-1 -
22 (w5 — 3/)2
and
£ aPal) ,
(11.2.18) Yt = 0 foralll#1.

Thus, the individual contrast sums of squares are all uncorrelated and hence indepen-
dent under normality (Lemma 5.3.3). When suitably normalized, the left-hand side of
(11.2.18) is distributed as a x%_, and the right-hand side is k—1 x?s. (Such contrasts
are called orthogonal contrasts. See Exercises 11.10 and 11.11.)

It is common to summarize the results of an ANOVA F test in a standard form,
called an ANOVA table, shown in Table 11.2.1. The table also gives a number of
useful, intermediate statistics. The headings should be self-explanatory.

Example 11.2.12 (Continuation of Example 11.2.1) The ANOVA table for
the fish toxin data is

Source of  Degrees of Sumof Mean F

variation freedom squares  square statistic
Treatments 3 995.90 331.97 26.09
Within 15 190.83 12.72

Total 18 1,186.73

The F statistic of 26.09 is highly significant, showing that there is strong evidence
the toxins produce different effects. I

It follows from equation (11.2.15) that the sum of squares column “adds”—that is,
SSB + SSW = SST. Similarly, the degrees of freedom column adds. The mean square
column, however, does not, as these are means rather than sums.
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The ANOVA table contains no new statistics; it merely gives an orderly form for
calculation and presentation. The F statistic is exactly the same as derived before
and, moreover, MSW is the usual pooled, unbiased estimator of o2, §2 of (11.2.5)
(see Exercise 11.22).

11.3 Simple Linear Regression

In the analysis of variance we looked at how one factor (variable) influenced the means
of a response variable. We now turn to simple linear regression, where we try to better
understand the functional dependence of one variable on another. In particular, in
simple linear regression we have a relationship of the form

(11.3.1) Y=o+ 0z; + ¢,

where Y; is a random variable and z; is another observable variable. The quantities
and 3, the intercept and slope of the regression, are assumed to be fixed and unknown
parameters and ¢; is, necessarily, a random variable. It is also common to suppose
that Ee; = 0 (otherwise we could just rescale the excess into @), so that, from (11.3.1),
we have

(11.3.2) EY; = o + Bz;.

In general, the function that gives EY as a function of x is called the population
regression function. Equation (11.3.2) defines the population regression function for
simple linear regression.

One main purpose of regression is to predict Y; from knowledge of z; using a
relationship like (11.3.2). In common usage this is often interpreted as saying that Y;
depends on z;. It is common to refer to Y; as the dependent variable and to refer to z; as
the independent variable. This terminology is confusing, however, since this use of the
word independent is different from our previous usage. (The z;s are not necessarily
random variables, so they cannot be statistically “independent” according to our
usual meaning.) We will not use this confusing terminology but will use alternative,
more descriptive terminology, referring to Y; as the response variable and to z; as the
predictor variable.

Actually, to keep straight the fact that our inferences about the relationship between
Y; and z; assume knowledge of z;, we could write (11.3.2) as

(11.3.3) E(Y;|z;) = a+ Baz;.

We will tend to use (11.3.3) to reinforce the conditional aspect of any inferences.
Recall that in Chapter 4 we encountered the word regression in connection with
conditional expectations (see Exercise 4.13). There, the regression of Y on X was
defined as E(Y |z), the conditional expectation of Y given X = z. More generally, the
word regression is used in statistics to signify a relationship between variables. When
we refer to regression that is linear, we can mean that the conditional expectation of
Y given X = z is a linear function of z. Note that, in equation (11.3.3), it does not
matter whether z; is fixed and known or it is a realization of the observable random
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variable X;. In either case, equation (11.3.3) has the same interpretation. This will
not be the case in Section 11.3.4, however, when we will be concerned with inference
using the joint distribution of X; and ¥;.

The term linear regression refers to a specification that is linear in the parameters,
Thus, the specifications E(Y;|z;) = a+8z2 and E(log Y;|z;) = a+8(1/z;) both specify
linear regressions. The first specifies a linear relationship between Y; and z2, and the
second between logY; and 1/z;. In contrast, the specification E(Y;|z;) = a + §2z;
does not specify a linear regression.

The term regression has an interesting history, dating back to the work of Sir Francis
Galton in the 1800s. (See Freedman et al. 1991 for more details or Stigler 1986 for an
in-depth historical treatment.) Galton investigated the relationship between heights
of fathers and heights of sons. He found, not surprisingly, that tall fathers tend to
have tall sons and short fathers tend to have short sons. However, he also found that
very tall fathers tend to have shorter sons and very short fathers tend to have taller
sons. (Think about it—it makes sense.) Galton called this phenomenon regression
toward the mean (employing the usual meaning of regression, “to go back”), and from
this usage we get the present use of the word regression.

Example 11.3.1 (Predicting grape crops) A more modern use of regression is
to predict crop yields of grapes. In July, the grape vines produce clusters of berries,
and a count of these clusters can be used to predict the final crop yield at harvest
time. Typical data are like the following, which give the cluster counts and yields
(tons/acre) for a number of years.

Year Yield (Y) Cluster count (z)

1971 5.6 116.37
1973 3.2 82.77
1974 4.5 110.68
1975 4.2 97.50
1976 5.2 115.88
1977 2.7 80.19
1978 4.8 125.24
1979 4.9 116.15
1980 4.7 117.36
1981 4.1 93.31
1982 4.4 107.46
1983 5.4 122.30

The data from 1972 are missing because the crop was destroyed by a hurricane. A
plot of these data would show that there is a strong linear relationship. I

When we write an equation like (11.3.3) we are implicitly making the assumption
that the regression of Y on X is linear. That is, the conditional expectation of Y,
given that X = z, is a linear function of z. This assumption may not be justified,
because there may be no underlying theory to support a linear relationship. However,
since a linear relationship is so convenient to work with, we might want to assume
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that the regression of Y on X can be adequately approximated by a linear function.
Thus, we really do not expect (11.3.3) to hold, but instead we hope that

(11.3.4) E(Y:|z:) = a + Bz;

is a reasonable approximation. If we start from the (rather strong) assumption that
the pair (X;,Y;) has a bivariate normal distribution, it immediately follows that the
regression of Y on X is linear. In this case, the conditional expectation E(Y|z) is
linear in the parameters (see Definition 4.5.10 and the subsequent discussion).

There is one final distinction to be made. When we do a regression analysis, that
is, when we investigate the relationship between a predictor and a response variable,
there are two steps to the analysis. The first step is a totally data-oriented one, in
which we attempt only to summarize the observed data. (This step is always done,
since we almost always calculate sample means and variances or some other summary
statistic. However, this part of the analysis now tends to get more complicated.) It is
important to keep in mind that this “data fitting” step is not a matter of statistical
inference. Since we are interested only in the data at hand, we do not have to make
any assumptions about parameters.

The second step in the regression analysis is the statistical one, in which we at-
tempt to infer conclusions about the relationship in the population, that is, about the
population regression function. To do this, we need to make assumptions about the
population. In particular, if we want to make inferences about the slope and intercept
of a population linear relationship, we need to assume that there are parameters that
correspond to these quantities.

In a simple linear regression problem, we observe data consisting of n pairs of ob-
servations, (z1,¥1),- .-, (Zn,¥Yn). In this section, we will consider a number of different
models for these data. The different models will entail different assumptions about
whether z or y or both are observed values of random variables X or Y.

In each model we will be interested in investigating a linear relationship between
z and y. The n data points will not fall exactly on a straight line, but we will be
interested in summarizing the sample information by fitting a line to the observed
data points. We will find that many different approaches lead us to the same line.

Based on the data (z1,41),. - -, (ZTn, Yn), define the following quantities. The sample
means are

1 « 1o
=’T—lZl‘1‘ and yzﬁzy,
1=1 i=1

(11.3.5) z

The sums of squares are

(11.3.6) Ser =) (z:i—2)° and Su =) (%i—9)%
i=1 i=1

and the sum of cross-products is

(11.3.7) Sy = Z(Zi —Z)(yi — §)-
i=1
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Figure 11.3.1. Data from Table 11.8.1: Vertical distances that are measured by RSS

Then the most common estimates of o and 8 in (11.3.4), which we will subsequently
justify under various models, are denoted by a and b, respectively, and are given by

(11.3.8) b:% and a=7j—bz.
Tz

11.5.1 Least Squares: A Mathematical Solution

Our first derivation of estimates for & and 3 makes no statistical assumptions about
the observations (z;,y;). Simply consider (zy,41),-..,(Zn,¥n) 8 n pairs of numbers
plotted in a scatterplot as in Figure 11.3.1. (The 24 data points pictured in Figure
11.3.1 are listed in Table 11.3.1.) Think of drawing through this cloud of points a
straight line that comes “as close as possible” to all the points.

Table 11.3.1. Data pictured in Figure 11.5.1

z y z Y z y z Y
3.74 3.22 0.20 2.81 1.22 1.23 1.76 4.12
3.66 4.87 2.50 3.71 1.00 3.13 0.51 3.16
0.78 0.12 3.50 3.11 1.29 4.05 2.17 4.40
2.40 2.31 1.35 0.90 0.95 2.28 1.99 1.18
2.18 4.25 2.36 4.39 1.05 3.60 1.83 2.54
1.93 2.24 3.13 4.36 2.92 5.39 2.60 4.89

£=195 =318 S, =2282 Syy = 43.62 Sz, = 15.48
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For any line y = ¢ + dz, the residual sum of squares (RSS) is defined to be

RSS = Z(yz (c+dz:))?.

The RSS measures the vertical distance from each data point to the line ¢ + dz and
then sums the squares of these distances. (Two such distances are shown in Figure
11.3.1.) The least squares estimates of a and 3 are defined to be those values a and b
such that the line a + bz minimizes RSS. That is, the least squares estimates, a and

b, satisfy
n n
rgg,n_‘[;(y,- —(c+dz;))? = ;(w — (a+bz;))2.
= =

This function of two variables, ¢ and d, can be minimized in the following way. For
any fixed value of d, the value of ¢ that gives the minimum value can be found by
writing

n n
(s — (e o)) = 3 ((as — dai) - ).
i=1 i=1

From Theorem 5.2.4, the minimizing value of c is

1 n
(11.3.9) | c=~ .ZT( —dz;) = — dz.
Thus, for a given value of d, the minimum value of RSS is

Z( - da"i) - y dz))z Z((yz y) d(zl - 'T)) = Syy - 2dS1:y + dzsz:c-
i=1
The value of d that gives the overall minimum value of RSS is obtained by setting
the derivative of this quadratic function of d equal to 0. The minimizing value is

Say

SII )

This value is, indeed, a minimum since the coefficient of d? is positive. Thus, by
(11.3.9) and (11.3.10), @ and b from (11.3.8) are the values of ¢ and d that minimize
the residual sum of squares.

The RSS is only one of many reasonable ways of measuring the distance from the
line ¢ + dz to the data points. For example, rather than using vertical distances we
could use horizontal distances. This is equivalent to graphing the y variable on the
horizontal axis and the z variable on the vertical axis and using vertical distances as
we did above. Using the above results (interchanging the roles of z and y), we find
the least squares line is £ = a’ + b'y, where

Sy
SUU

Reexpressing the line so that y is a function of z, we obtain § = —(a’/b") + (1/b)z.

(11.3.10) d=

b = and o' =z-b'y.
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Usually the line obtained by considering horizontal distances is different from the
line obtained by considering vertical distances. From the values in Table 11.3.1, the
regression of y on z (vertical distances) is § = 1.86 + .68z. The regression of = on
y (horizontal distances) is § = —2.31 + 2.82z. In Figure 12.2.2, these two lines are
shown (along with a third line discussed in Section 12.2). If these two lines were the
same, then the slopes would be the same and b/(1/b') would equal 1. But, in fact,
b/(1/b") < 1 with equality only in special cases. Note that

— bbl — (S:l:y)2 .
SI@SUU

b
1/

Using the version of Holder’s Inequality in (4.7.9) with p = ¢ = 2,a; = z; — Z, and
b; = y; — §, we see that (Szy)? < S;2Sy, and, hence, the ratio is less than 1.

If z is the predictor variable, y is the response variable, and we think of predicting
y from z, then the vertical distance measured in RSS is reasonable. It measures the
distance from y; to the predicted value of y;,7; = ¢ +dz;. But if we do not make this
distinction between z and y, then it is unsettling that another reasonable criterion,
horizontal distance, gives a different line.

The least squares method should be considered only as a method of “fitting a
line” to a set of data, not as a method of statistical inference. We have no basis
for constructing confidence intervals or testing hypotheses because, in this section,
we have not used any statistical model for the data. When we think of a and b
in the context of this section, it might be better to call them least squares solutions
rather than least squares estimates because they are the solutions of the mathematical
problem of minimizing the RSS rather than estimates derived from a statistical model.
But, as we shall see, these least squares solutions have optimality properties in certain
statistical models.

11.8.2 Best Linear Unbiased Estimators: A Statistical Solution

In this section we show that the estimates a and b from (11.3.8) are optimal in the
class of linear unbiased estimates under a fairly general statistical model. The model
is described as follows. Assume that the values z;,...,2, are known, fixed values.
(Think of them as values the experimenter has chosen and set in a laboratory exper-
iment.) The values y,...,yn are observed values of uncorrelated random variables
Y1,...,Y,. The linear relationship assumed between the zs and the ys is

(11.3.11) EY;=a+fz;, i=1,...,n,
where we also assume that
(11.3.12) VarY; = o

There is no subscript in ¢? because we are assuming that all the Y;s have the same
(unknown) variance. These assumptions about the first two moments of the Y;s are the
only assumptions we need to make to proceed with the derivation in this subsection.
For example, we do not need to specify a probability distribution for the Y3,...,Y,.
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The model in (11.3.11) and (11.3.12) can also be expressed in this way. We assume
that

(11.3.13) Yi=a+0z;+e, i=1,...,n,

where €1,. .., €, are uncorrelated random variables with

(11.3.14) Ee; =0 and Vare; =02

The €1, ..., €, are called the random errors. Since Y; depends only on ¢; and the ¢;s

are uncorrelated, the Y;s are uncorrelated. Also, from (11.3.13) and (11.3.14), the
expressions for EY; and VarY; in (11.3.11) and (11.3.12) are easily verified.

To derive estimators for the parameters a and 3, we restrict attention to the class
of linear estimators. An estimator is a linear estimator if it is of the form

(11.3.15) > odyi,

where di,...,d, are known, fixed constants. (Exercise 7.39 concerns linear estima-
tors of a population mean.) Among the class of linear estimators, we further restrict
attention to unbiased estimators. This restricts the values of di, ..., d, that can be
used.

An unbiased estimator of the slope 8 must satisfy

Eidz},‘z =4,

i=1

regardless of the true value of the parameters a and (. This implies that

n n
B=EY dY; = ) dEY; = Zn:di(a—b-ﬂxi)
i=1 i=1 i=1

This equality is true for all a and S if and only if

n n
(11.3.16) Y di=0 and ) diz;i=1.
i=1 i=1
Thus, d,...,d, must satisfy (11.3.16) in order for the estimator to be an unbiased

estimator of 3.

In Chapter 7 we called an unbiased estimator “best” if it had the smallest variance
among all unbiased estimators. Similarly, an estimator is the best linear unbiased
estimator (BLUE) if it is the linear unbiased estimator with the smallest variance.
We will now show that the choice of d; = (z; — Z)/Sz; that defines the estimator
b= Sy /Szz is the best choice in that it results in the linear unbiased estimator of 3
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with the smallest variance. (The d;s must be known, fixed constants but the z;s are
known, fixed constants, so this choice of d;s is legitimate.)

A note on notation: The notation S,y stresses the fact that S,y is a random vari-

able that is a function of the random variables Y7,...,Y,. Sy also depends on the
nonrandom quantities zi,...,Z,.
Because Y7, ...,Y, are uncorrelated with equal variance 02, the variance of any

linear estimator is given by

Var Xn:di}’,- = Xn:d?VarY,- = Xn:d?ﬁ = a2id?.
=1 i=1 i=1 i=1

The BLUE of 8 is, therefore, defined by constants di,...,d, that satisfy (11.3.16)
and have the minimum value of 3 ;. ; d2. (The presence of 02 has no effect on the
minimization over linear estimators since it appears as a multiple of the variance of
every linear estimator.)

The minimizing values of the constants d;, ...,d, can now be found by using
Lemma 11.2.7. To apply the lemma to our minimization problem, make the following
correspondences, where the left-hand sides are notation from Lemma 11.2.7 and the
right-hand sides are our current notation. Let

k=n, v;=z;,, ¢=1, and a;=d;,
which implies 7. = Z. If d; is of the form
(11.3.17) d; =Kei(vi —9.) = K(z; —Z), i=1,...,n,
then, by Lemma 11.2.7, dy,...,d, maximize

(X0 dizi)’?
Z?:ld%

among all dy, ..., d, that satisfy }_ d; = 0. Furthermore, since
{(d1,...,dn) 1 Y di =0, dizi =1} C {(d1,...,dn) : P _di =0},

if d;s of the form (11.3.17) also satisfy (11.3.16), they certainly maximize (11.3.18)
among all d,...,d, that satisfy (11.3.16). (Since the set over which the maximum is
taken is smaller, the maximum cannot be larger.) Now, using (11.3.17), we have

(11.3.18)

Zn:diz‘i = Xn:K(x,' —-Z)z; = KS;z.
i=1 i=1

The second constraint in (11.3.16) is satisfied if K = E:: Therefore, with dy,...,dn
defined by

(11.3.19) di=—2—"2 i=1,...,n,
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L‘d,x‘ =1

Figure 11.3.2. Geometric description of the BLUE

both constraints of (11.3.16) are satisfied and this set of d;s produces the maximum.
Finally, note that for all di, ..., d, that satisfy (11.3.16),

(Cr dizs)’ 1

Yimd,  Yindl

Thus, for dy,...,d, that satisfy (11.3.16), maximization of (11.3.18) is equivalent
to minimization of 3 d?. Hence, we can conclude that the d;s defined in (11.3.19)
give the minimum value of }_ d? among all d;s that satisfy (11.3.16), and the linear
unbiased estimator defined by these d;s, namely,

b= ZL;‘ 2) = Sov

¥
zz SII

i1=1

is the BLUE of g.

A geometric description of this construction of the BLUE of 3 is given in Figure
11.3.2, where we take n = 3. The figure shows three-dimensional space with coor-
dinates d,dy, and ds. The two planes represent the vectors (d, dz,ds) that satisfy
the two linear constraints in (11.3.16), and the line where the two planes intersect
consists of the vectors (d;, da, d3) that satisfy both equalities. For any point on the
line, }°7 | d? is the square of the distance from the point to the origin 0. The vector
(d1,da, d3) that defines the BLUE is the point on the line that is closest to 0. The
sphere in the figure is the smallest sphere that intersects the line, and the point of
intersection is the point (dy, da, d3) that defines the BLUE of 8. This, we have shown,
is the point with d; = (x; — Z)/Szz.

The variance of b is

R n , o2 o2
11.3.20 Varb=o¢ di=——=———.
( ) ; P S Yin(wi—7)?
Since z1,. .., T, are values chosen by the experimenter, they can be chosen to make

Sz large and the variance of the estimator small. That is, the experimenter can design



548 ANALYSIS OF VARIANCE AND REGRESSION Section 11.3

the ezperiment to make the estimator more precise. Suppose that all the zy,...,z,
must be chosen in an interval [e, f]. Then, if n is even, the choice of z1, ..., z, that
makes Sz, as large as possible is to take half of the z;s equal to e and half equal
to f (see Exercise 11.26). This would be the best design in that it would give the
most precise estimate of the slope § if the experimenter were certain that the model
described by (11.3.11) and (11.3.12) was correct. In practice, however, this design is
seldom used because an experimenter is hardly ever certain of the model. This two-
point design gives information about the value of E(Y|z) at only two values, z = ¢
and z = f. If the population regression function E(Y|z), which gives the mean of Y
as a function of z, is nonlinear, it could never be detected from data obtained using
the “optimal” two-point design.

We have shown that b is the BLUE of 5. A similar analysis will show that a is the
BLUE of the intercept a. The constants dy,...,d, that define a linear estimator of
a must satisfy

n

(11.3.21) > di=1 and i:dixi=().

i=1 i=1

The details of this derivation are left as Exercise 11.27. The fact that least squares es-
timators are BLUEs holds in other linear models also. This general result is called the
Gauss-Markov Theorem (see Christensen 1996; Lehmann and Casella 1998, Section
3.4, or the more general treatment in Harville 1981).

11.8.8 Models and Distribution Assumptions

In this section, we will introduce two more models for paired data (z),91),- - -, (Zn, Yn)
that are called simple linear regression models.

To obtain the least squares estimates in Section 11.3.1, we used no statistical model.
We simply solved a mathematical minimization problem. Thus, we could not derive
any statistical properties about the estimators obtained by this method because there
were no probability models to work with. There are not really any parameters for
which we could construct hypothesis tests or confidence intervals.

In Section 11.3.2 we made some statistical assumptions about the data. Specifically,
we made assumptions about the first two moments, the mean, variance, and covariance
of the data. These are all statistical assumptions related to probability models for
the data, and we derived statistical properties for the estimators. The properties of
unbiasedness and minimum variance, which we proved for the estimators a and b of
the parameters a and 3, are statistical properties.

To obtain these properties we did not have to specify a complete probability model
for the data, only assumptions about the first two moments. We were able to obtain a
general optimality property under these minimal assumptions, but the optimality was
only in a restricted class of estimators—linear unbiased estimators. We were not able
to derive exact tests and confidence intervals under this model because the model does
not specify enough about the probability distribution of the data. We now present
two statistical models that completely specify the probabilistic structure of the data.
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Conditional normal model

The conditional normal model is the most common simple linear regression model and
the most straightforward to analyze. The observed data are the n pairs, (z1,%1),...,
(Zn,yn)- The values of the predictor variable, z1, ..., zn, are considered to be known,
fixed constants. As in Section 11.3.2, think of them as being chosen and set by the
experimenter. The values of the response variable, y1, ..., yn, are observed values of
random variables, Yi,...,Y,. The random variables Yi,...,Y, are assumed to be
independent. Furthermore, the distribution of the Y;s is normal, specifically,

(11.3.22) Y; ~n(a + Bz;,0%), i=1,...,n.

Thus the population regression function is a linear function of z, that is, E(Y|z) =
a + Bz, and all the Y;s have the same variance, 02. The conditional normal model
can be expressed similar to (11.3.13) and (11.3.14), namely,

(11323) Y,»=a+ﬂa:i—+-e,-, 1= 1,...,n,

where €1,.. ., €, are iid n(0, 02) random variables.

The conditional normal model is a special case of the model considered in Sec-
tion 11.3.2. The population regression function, E(Y|z) = a + 8z, and the variance,
VarY = 02, are as in that model. The uncorrelatedness of Yi,...,Y; (or, equiva-
lently, €1, .. ., €,) has been strengthened to independence. And, of course, rather than
just the first two moments of the distribution of Yi,...,Y,, the exact form of the
probability distribution is now specified.

The joint pdf of Yi,...,Y, is the product of the marginal pdfs because of the
independence. It is given by

flyla, 8,6%) = f(y1,...,ynle, B,0%)

f(yilaa ,Ba 02)
1

I
— =

-
I

LU |
(11.3.24) - o (s — (@ + 02 (207
,.1;[1\/27me p [~ (% — (o + Bz:))*/(207)]
- (27r—)i/—2; €xp [* (Z(yi —a-— ﬂzi)2> /(202)J ]

It is this joint probability distribution that will be used to develop the statistical
procedures in Sections 11.3.4 and 11.3.5. For example, the expression in (11.3.24) will
be used to find MLEs of «, 8, and o2.

Bivariate normal model

In all the previous models we have discussed, the values of the predictor variable,
z1,...,Zn, have been fixed, known constants. But sometimes these values are actually
observed values of random variables, X1, ..., X,. In Galton’s example in Section 11.3,
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zy,...,ZTn were observed heights of fathers. But the experimenter certainly did not
choose these heights before collecting the data. Thus it is necessary to consider models
in which the predictor variable, as well as the response variable, is random. One such
model that is fairly simple is the bivariate normal model. A more complex model is
discussed in Section 12.2.

In the bivariate normal model the data (z1,y1),...,(Zn, yn) are observed values
of the bivariate random vectors (X;,Y1),...,(Xn,Ys). The random vectors are in-
dependent and the joint distribution of (X;,Y;) is assumed to be bivariate normal.
Specifically, it is assumed that

(Xiv },1) ~ bivariate normal(px,uy,ag(,aff, ,D)

The joint pdf and various properties of a bivariate normal distribution are given
in Definition 4.5.10 and the subsequent discussion. The joint pdf of all the data
(X1,Y1),...,(Xn,Yn) is the product of these bivariate pdfs.

In a simple linear regression analysis, we are still thinking of z as the predictor
variable and y as the response variable. That is, we are most interested in predicting
the value of y having observed the value of z. This naturally leads to basing inference
on the conditional distribution of Y given X = z. For a bivariate normal mode],
the conditional distribution of Y given X = z is normal. The population regression
function is now a true conditional expectation, as the notation suggests, and is

o la
(113.25) E(Y]2) = py +p (2 — px) = [uy - p—yux] . [p—y]x.
ox D ¢ ox

The bivariate normal model #mplies that the population regression is a linear function
of z. We need not assume this as in the previous models. Here E(Y|z) = a + Sz,
where 3 = p% and a = py — pZ—: ux . Also, as in the conditional normal model, the
conditional variance of the response variable Y does not depend on z,

(11.3.26) Var (Y|z) = 02 (1 — p?).

For the bivariate normal model, the linear regression analysis is almost always
carried out using the conditional distribution of (Y3,...,Y,) given X; = z1,..., X, =
Zn, rather than the unconditional distribution of (X;,Y)),...,(Xn,Ys). But then we
are in the same situation as the conditional normal model described above. The fact
that z1,...,Z, are observed values of random variables is immaterial if we condition
on these values and, in general, in simple linear regression we do not use the fact
of bivariate normality except to define the conditional distribution. (Indeed, for the
most part, the marginal distribution of X is of no consequence whatsoever. In linear
regression it is the conditional distribution that matters.) Inference based on point
estimators, intervals, or tests is the same for the two models. See Brown (1990b) for
an alternative view.

11.8.4 Estimation and Testing with Normal Errors

In this and the next subsections we develop inference procedures under the conditional
normal model, the regression model defined by (11.3.22) or (11.3.23).
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First, we find the maximum likelihood estimates of the three parameters, o, 3,
and o2. Using the joint pdf in (11.3.24), we see that the log likelihood function is

Z?:l(yi — 0 — ,627;’)2 .

202

log L(a, B, 0%|x,y) = —g log(2m) — gloga2 -

For any fixed value of o2, log L is maximized as a function of a and 3 by those values,
& and (3, that minimize

n

Z(yi —a - Bz;)%

i=1

But this function is just the RSS from Section 11.3.1! There we found that the mini-
mizing values are

Thus, the least squares estimators of o-and (3 are also the MLEs of a and 3. The
values & and (3 are the maximizing values for any fixed value of 0. Now, substituting
in the log likelihood, to find the MLE of a2 we need to maximize

S (i —a— Bxi)2.

202

_n M ogo? —
5 log(2m) 5 logo

This maximization is similar to finding the MLE of ¢2 in ordinary normal sampling
(see Example 7.2.11), and we leave the details to Exercise 11.28. The MLE of o2,
under the conditional normal model, is

the RSS, evaluated at the least squares line, divided by the sample size. Henceforth,
when we refer to RSS we mean the RSS evaluated at the least squares line.

In Section 11.3.2, we showed that & and B were linear unbiased estimators of a and
8. However, 42 is not an unbiased estimator of 2. For the calculation of E42 and in
many subsequent calculations, the following lemma will be useful.

Lemma 11.3.2 Let Y1,...,Y, be uncorrelated random variables with VarY; = o?
foralli=1,...,n. Letcy,...,c, and dy,...,d, be two sets of constants. Then
n n n
Cov (ZQYi,Zd;Yi) = (Zc,d,-)az.
i=1 i=1 i=1

Proof: This type of result has been encountered before. It is similar to Lemma 5.3.3
and Exercise 11.11. However, here we do not need either normality or independence
ofq,...,Y,. d
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We next find the bias in ¢2. From (11.3.23) we have
¢ =Y; —a-— Bz;.
We define the residuals from the regression to be
(11.3.27) & =Y, —a-f,
and thus

6% = lie? — LRss.
nim" on
It can be calculated (see Exercise 11.29) that
Eé =0,

and a lengthy calculation (also in Exercise 11.29) gives

(11.3.28)

. R n—2
Varé; = Eé =

1 (18 _ _
+ S EZ:::§+J:? —2(z; — %)% - 23,7 | | 02
T _7=1
Thus,
1 .
Es? = - E&
n 1=1
k(3

IXn: ’n.—2+ 1 IZ$2+:1:2 2z 7)? — 22,7 | | 02
n;’:] n Szx nj:] 2 1 1 1

n—2 1 = = R :
2 2 2
E:x,+§:x,_2g —9= z'z
n nSzz = 3 p % zz (i_l 1) g

(X z:Z = 7 (X 2:)?)
(E $? - %(E xi)2 = Sa:x)

]
/~
3
SEN
N
+
o
~—
q
»N

The MLE 42 is a biased estimator of o2. The more commonly used estimator of o2,
which is unbiased, is

1 < R 1 <
1.. 2= n A2= C— Y — i2= ‘?_
(11.3.29) S T30 n_2;=l(y, & — Bz;) "_2;:161

To develop estimation and testing procedures, based on these estimators, we need
to know their sampling distributions. These are summarized in the following theorem.
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/Theorem 11.3.3 Under the conditional normal regression model (11.8.22), the sam-
pling distributions of the estimators &, 3, and S* are

2 n 2
- o Z 2 A g
aNn(a,Eizlxi>, ‘BNn<B,S¢1)’

with
Cov(a, B) = 0’z
’ SI:C '
Furthermore, (&, 8) and S? are independent and
(n—2)52
(o2 e,

Proof: We first show that & and ﬁ have the indicated normal distributions. The
estimators & and (3 are both linear functions of the independent normal random
variables Y1, ..., Y,. Thus, by Corollary 4.6.10, they both have normal distributions.
Specifically, in Section 11.3.2, we showed that 8 = 3", d;Y;, where the d; are given
in (11.3.19), and we also showed that

~ - 0'2
EG=p3 and Var=—.
Szz
The estimator & = Y — BZ can be expressed as & = Z;‘zl ¢;Y;, where

1 (.’l:,; —.’1_3).’1—?
Ci=——""—a
n Sz

and thus it is straightforward to verify that

Ed:inYi = Zn:(l—(—z‘;—j)j)(aJrﬂmi) = ¢

showing that & and 3 have the specified distributions. Also, Cov(&, ,3) is easily cal-
culated using Lemma 11.3.2. Details are left to Exercise 11.30.

We next show that & and 3 are independent of S2, a fact that will follow from
Lemma 11.3.2 and Lemma 5.3.3. From the definition of &; in (11.3.27), we can write

n
(11.3.30) & = Z [6:5 — (c; + djzi)] Vs,
=1

where

PO 1 s s
5ij={1 ifi=j _1 (-2 and dj=grfij_)_
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Since & = Y ¢;¥; and [3 = 3"d,Y;, application of Lemma 11.3.2 together with some
algebra will show that

Cov(é;, &) = Cov(é;,8) =0, i=1,...,n.

Details are left to Exercise 11.31. Thus, it follows from Lemma 5.3.3 that, under
normal sampling, 5? = 3 é?/(n — 2) is independent of & and £.

To prove that (n — 2)S%/0? ~ x2_,, we write (n — 2)S? as the sum of n — 2
independent random variables, each of which has a x? distribution. That is, we find

constants a;5,4=1,...,n and j =1,...,n — 2, that satisfy
n n—2 n 2
(11.3.31) DY ( a,,-y,) ,
i=1 j=1 \i=1
where

n n
Zaijzoa j:17"'1n_2, a’nd Zaijai.j'zo’ J%J,
i=1

i=1
The details are somewhat involved because of the general nature of the z;s. We omit
details. 0

The RSS from the linear regression contains information about the worth of a
polynomial fit of a higher order, over and above a linear fit. Since, in this model, we
assume that the population regression is linear, the variation in this higher-order fit
is just random variation. Robson (1959) gives a general recursion formula for finding
coefficients for such higher-order polynomial fits, a formula that can be adapted to
explicitly find the a;js of (11.3.31). Alternatively, Cochran’s Theorem (see Miscellanea
11.5.1) can be used to establish that 3 é?/02 ~ x2_,.

Inferences regarding the two parameters a and 3 are usually based on the following
two Student’s ¢ distributions. Their derivations follow immediately from the normal
and x? distributions and the independence in Theorem 11.3.3. We have

a—a

11.3.32 ~
(11:3:32) S e
and

(11.3.33) B-5

———— ~ a9,
S/V8 2

The joint distribution of these two ¢ statistics is called a bivariate Student’s t dis-
tribution. This distribution is derived in a manner analogous to the univariate case.
We use the fact that the joint distribution of & and f is bivariate normal and the
same variance estimate S is used in both univariate ¢ statistics. This joint distribution
would be used if we wanted to do simultaneous inference regarding o and 5. However,
we shall deal only with the inferences regarding one parameter at a time.

Usually there is more interest in G than in . The parameter « is the expected
value of Y at z = 0,E(Y|z = 0). Depending on the problem, this may or may not
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be an interesting quantity. In particular, the value z = 0 may not be a reasonable
value for the predictor variable. However, 3 is the rate of change of E(Y|z) as a
function of z. That is, 3 is the amount that E(Y|z) changes if z is changed by one
unit. Thus, this parameter relates to the entire range of z values and contains the
information about whatever linear relationship exists between Y and z. (See Exercise
11.33.) Furthermore, the value 3 = 0 is of particular interest.

If 3=0, then E(Y|z) = a + 8z = a and Y ~ n(a,0?), which does not depend on
z. In a well-thought-out experiment leading to a regression analysis we do not expect
this to be the case, but we would be interested in knowing this if it were true.

The test that 8 = 0 is quite similar to the ANOVA test that all treatments are
equal. In the ANOVA the null hypothesis states that the treatments are unrelated to
the response in any way, while in linear regression the null hypothesis § = 0 states
that the treatments (z) are unrelated to the response in a linear way.

To test

(11.3.34) Hy: 8=0 versus Hy: B#0
using (11.3.33), we reject Hy at level o if
B-0
S/\/S_m > t'n-—2,a/2
or, equivalently, if
Bz
(11335) m > Fl,‘n—?,a-

Recalling the formula for 3 and that RSS= ¥ €2, we have

B2 S%,/S:z _ Regression sum of squares
52/S.. RSS/(n—2) Residual sum of squares/df"

This last formula is summarized in the regression ANOVA table, which is like the
ANOVA tables encountered in Section 11.2. For simple linear regression, the table,
resulting in the test given in (11.3.35), is given in Table 11.3.2. Note that the table
involves only a hypothesis about 8. The parameter a and the estimate & play the
same role here as the grand mean did in Section 11.2. They merely serve to locate
the overall level of the data and are “corrected” for in the sums of squares.

Example 11.3.4 (Continuation of Example 11.3.1) The regression ANOVA
for the grape crop yield data follows.

ANOVA table for grape data
Source of  Degrees of Sum of Mean F

variation freedom squares square statistic
Regression 1 6.66 6.66 50.23
Residual 10 1.33 133

Total 11 7.99

This shows a highly significant slope of the regression line. I
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Table 11.3.2. ANOVA table for simple linear regression

Source of Degrees of Sum of Mean F
variation freedom squares square statistic
Regression 1 Reg. 8S = MS(Reg) = F — MS(Reg
(slope) SZ,/Szz Reg. S8 ~ MS(Resid
. .»  MS(Resid) =
_ 2
Residual n—2 RSS =) é; RSS/(n - 2)
SST =
Total n—1 E (yi — g)Z

We draw one final parallel with the analysis of variance. It may not be obvious
from Table 11.3.2, but the partitioning of the sum of squares of the ANOVA has an
analogue in regression. We have

- Total sum of squares = Regression sum of squares + Residual sum of squares

n n n
(11.3.36) D=9 =) B9+ i~ %)
i=1 i=1

i=1

where §; = d+ﬁx,~. Notice the similarity of these sums of squares to those in ANOVA.
The total sum of squares is, of course, the same. The RSS measures deviation of the
fitted line from the observed values, and the regression sum of squares, analogous to
the ANOVA treatment sum of squares, measures the deviation of predicted values
(“treatment means”) from the grand mean. Also, as in the ANOVA, the sum of
squares identity is valid because of the disappearance of the cross-term (see Exercise
11.34). The total and residual sums of squares in (11.3.36) are clearly the same as
in Table 11.3.2. But the regression sum of squares looks different. However, they are
equal (see Exercise 11.34); that is,

2
Sy

- A \2
;(yz 9 =g

The expression Sfy/ Sz; is easier to use for computing and provides the link with the
t test. But .o (9 — §)? is the more easily interpreted expression.

A statistic that is used to quantify how well the fitted line describes the data is the
coefficient of determination. It is defined as the ratio of the regression sum of squares
to the total sum of squares. It is usually referred to as 72 and can be written in the
various forms

»_ Regression sum of squares S0 (% —§)*  S2,
- n

Total sum of squares 3.0 (% —5)2  SzzSyy

The coefficient of determination measures the proportion of the total variation in
Y1,...,Yn (measured by S,,) that is explained by the fitted line (measured by the
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regression sum of squares). From (11.3.36), 0 < r2 < 1. If y1,...,¥n all fall exactly
on the fitted line, then y; = §; for all 4 and r? = 1. If y1, ..., yn are not close to the
fitted line, then the residual sum of squares will be large and r? will be near 0. The
coefficient of determination can also be (perhaps more straightforwardly) derived as
the square of the sample correlation coefficient of the n pairs (y1,21),..., (¥n,Zn) OF
of then pB.iI'S (yla gl)a ey (yn,g'n)'

Expression (11.3.33) can be used to construct a 100(1 — )% confidence interval for

B given by

11.3.37) B—t i<ﬁ<ﬁ‘+t s
( o n—-2,a/2 S‘—zx n—2,a/2 ﬁ;
Also, a level a test of Hy: 3 = By versus H;: 8 # (g rejects Hp if

B - Bo
S/V/5zz

As mentioned above, it is common to test Hy: 8 = 0 versus H;: 3 # 0 to determine
if there is some linear relationship between the predictor and response variables.
However, the above test is more general, since any value of By can be specified. The
regression ANOVA, which is locked into a “recipe,” can test only Hy: 3 = 0.

(11338) | > tn_g‘a/g.

11.8.5 Estimation and Prediction at a Specified T = zg

Associated with a specified value of the predictor variable, say z = z¢, there is a
population of Y values. In fact, according to the conditional normal model, a random
observation from this population is Y ~ n{(a+ 3z, 02). After observing the regression
data (z1,%1),...,(Tn,ys) and estimating the parameters o, 3, and o2, perhaps the
experimenter is going to set £ = o and obtain a new observation, call it Yy. There
might be interest in estimating the mean of the population from which this observation
will be drawn, or even predicting what this observation will be. We will now discuss
these types of inferences.

We assume that (z;,Y),...,(zn,Y,) satisfy the conditional normal regression
model, and based on these n observations we have the estimates &, [3, and S2. Let
Zo be a specified value of the predictor variable. First, consider estimating the mean
of the Y population associated with zo, that is, E(Y|zq) = a + fzg. The obvi-
ous choice for our point estimator is & + Bzo. This is an unbiased estimator since
E(& + Bzo) = Ed + (EB)zo = a + Bzo. Using the moments given in Theorem 11.3.3,
we can also calculate

Var (& + Bzo) = Var & + (Var 8)z2 + 2z Cov(&, )

2

2 2 2, =

oz 20°xoT
§$?+_0_—
=1

ag
S:c:: ; S:c:c S:c:c

3

o2 (1 2 - - 7
=5 E;zf — 72 4+ 7% — 270% + 12 (£Z)
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2 1 _ 2 recombine
izzlz’ n (;z') (@ -2) < terms )

o?

~ S:z

{ =

3

= g2 (l + M) . (S22 - YD) = Szz)

n Szz

Finally, since & and B are both linear functions of Yi,...,Y;, so is & + Bz,. Thus
& + Bz has a normal distribution, specifically,

- __ 3\2
(11.3.39) &+ Bzo ~n (a+ 810,02 (% N (:coS z) )) '

By Theorem 11.3.3, (&, 3) and S? are independent. Thus S? is also independent of
& + Bzo (Theorem 4.6.12) and

& + Bzo — (a + Bzo) N
§y/1 4 o2
n

S::

tn_2.

This pivot can be inverted to give the 100(1 — a)% confidence interval for a + 8z,

R 1 )2
d+,81'0—tn—2,a/zs -+ M
n Sez
. 1 — )2
(11.3.40) < a+fz0 < G+ Ao+ tagaaSy /; + (IOTI)_
fe ofe A

The length of the confidence interval for a+ 3zq depends on the values of z1,...,z,
through the value of (zg—Z)2/Szz. It is clear that the length of the interval is shorter
if zg is near Z and minimized at z¢p = Z. Thus, in designing the experiment, the
experimenter should choose the values z;,...,z, so that the value g, at which the
mean is to be estimated, is at or near Z. It is only reasonable that we can estimate
more precisely near the center of the data we observed.

A type of inference we have not discussed until now is prediction of an, as yet,
unobserved random variable Y, a type of inference that is of interest in a regression
setting. For example, suppose that z is a college applicant’s measure of high school
performance. A college admissions officer might want to use z to predict Y, the stu-
dent’s grade point average after one year of college. Clearly, Y has not been observed
yet since the student has not even been admitted! The college has data on former
students, (z1,%1),---,(Tn,Yn), giving their high school performances and one-year
GPAs. These data might be used to predict the new student’s GPA.

Definition 11.3.5 A 100(1 — a)% prediction interval for an unobserved random
variable Y based on the observed data X is a random interval [L(X), U(X)] with the
property that

Po(L(X) <Y <UX))21-a

for all values of the parameter 6.
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Note the similarity in the definitions of a prediction interval and a confidence in-
terval. The difference is that a prediction interval is an interval on a random variable,
rather than a parameter. Intuitively, since a random variable is more variable than
a parameter (which is constant), we expect a prediction interval to be wider than a
confidence interval of the same level. In the special case of linear regression, we see
that this is the case.

We assume that the new observation Yj to be taken at z = ¢ has a n(a + 8z, 02)
distribution, independent of the previous data, (z;,Y1),...,(Zn, Yn). The estimators
a, B, and S? are calculated from the previous data and, thus, Yo is independent of
&, B3, and §2. Using (11.3.39), we find that Y; — (& + Bz¢) has a normal distribution

with mean E(Yy — (& + Bz0)) = a + Bz — (o + Bzo) = 0 and variance

P ~ _ 72
Var (Yo — (6 + fBz¢)) = Var Yy + Var(a+ Bzo) = o2+ 02 (% 4 (xoS z) ) .
Tz

Using the independence of S? and Yy — (& + ,@zo), we see that

Yo — (& + Bzo) ~1
Sy/1+ 1 4 (o2 "

which can be rearranged in the usual way to obtain the 100(1 — a)% prediction
interval,

T =

. 1 _ =)2
6+ Bzo — tn_g,a/zs\/l 1) Eo—2?
n Szz
. 1 —7)2
(11.3.41) < Y9 < &+ Pzy+ tn_z’a/QS\/l + -+ M
n Szz

Since the endpoints of this interval depend only on the observed data, (11.3.41) defines
a prediction interval for the new observation Yg.

11.8.6 Simultaneous Estimation and Confidence Bands

In the previous section we looked at prediction at a single value zq. In some circum-
stances, however, there may be interest in prediction at many zys. For example, in the
previously mentioned grade point average prediction problem, an admissions officer
probably has interest in predicting the grade point average of many applicants, which
naturally leads to prediction at many xgs.

The problem encountered is the (by now) familiar problem of simultaneous infer-
ence. That is, how do we control the overall confidence level for the simultaneous
inference? In the previous section, we saw that a 1 — a confidence interval for the
mean of the Y population associated with zg, that is, E(Y|zg) = a+ Bz, is given by
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(zo — Z)?
SII

o 1 (-2
< a+fzy < G+Pzo+ta_na/28 __+(:co—z)_'
n Sy

Now suppose that we want to make an inference about the Y population mean at a
number of zq values. For example, we might want intervals for E(Y |zq;),i=1,...,m.
We know that if we set up m intervals as above, each at level 1 — a, the overall
inference will not be at the 1 — a level.

A simple and reasonably good solution is to use the Bonferroni Inequality, as used
in Example 11.2.9. Using the inequality, we can state that the probability is at least
1 — a that

o P 1
&+ PBTo ~tn_2,a/25 —t

o 1 To; — T)2
&+ BToi — th2,a/(2m)S - + (@0 —2)*

SII
A A 1 (z0i — )
(11.3.42) < a+Bzy < a+Proititn_2a/emySy =+t —5——
n Sz
simultaneously for i = 1,...,m. (See Exercise 11.39.)

We can take simultaneous inference in regression one step further. Realize that our
assumption about the population regression line implies that the equation E(Y|z) =
a+ Bz holds for all z; hence, we should be able to make inferences at all z. Thus, we
want to make a statement like (11.3.42), but we want it to hold for all z. As might be
expected, as he did for the ANOVA, Scheffé derived a solution for this problem. We
summarize the result for the case of simple linear regression in the following theorem.

Theorem 11.3.6 Under the conditional normal regression model (11.3.22), the prob-
ability is at least 1 — a that

N — 7\2
&+ fx — MoS 1+—(z 2)
n Szz
2
(11.3.43) < atBr < G+fo+ MSy Ly EZD
n Syz

simultaneously for all x, where Mg = \/2Fo n_2 o.

Proof: If we rearrange terms, it should be clear that the conclusion of the theorem
is true if we can find a constant M, that satisfies

((a+ Bo) — (a + )
S2? [% + Lﬂ)ﬁ]

Tz

<Mlforallz|=1-a

or, equivalently,
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(@b -+ pm)

- <M:|=1-0
z 1 Tr—
52[;+ ,z]

_— o

The parameterization given in Exercise 11.32, which results in independent estimators
for a and 3, makes the above maximization easier. Write

6+0z=Y +B(z —z),
a+ fz = py + B(z - %), (uy =EY = a + 1)

and, for notational convenience, define t = z — Z. We then have

(6+82)~(@+p2)) (7~ nug)+(B-B))

2[1 , (z—%)2 - a1 12 ’
S [;+ Sos ] S ;+S"]

and we want to find M, to satisfy
_ . 2
((7 = ng) + (B - B)t)
P | max . <
t 2[4+ 4]

2

x|l =1—a

Note that S2 plays no role in the maximization, merely being a constant. Applying
the result of Exercise 11.40, a direct application of calculus, we obtain

((}_’ —puy)+ (B - B)t)z _ n(Y — uy)? + Sez(B — B)2

max
t S2 [_;l: + E%] 52
(17—211?)2 (%_5)2
(11.3.44) =2 /"52/02" [Szz (multiply by 02/0?)

From Theorem 11.3.3 and Exercise 11.32, we see that this last expression is the
quotient of independent chi squared random variables, the denominator being divided
by its degrees of freedom. The numerator is the sum of two independent random
variables, each of which has a x? distribution. Thus the numerator is distributed as
X2, the distribution of the quotient is

Y~ug)? | (3-p)?

o?/n 02/S:a

52/0_2 ~ 2F2.n—2s
and
_ R 2
(¥ -wp)+B-02)
P | max <Mi|=1l-a
v osfle &

if Mo = /2F3 n_2, proving the theorem. O
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° | | | L

0 1 2 3 4

Two 90% Bonferroni intervals at x=1,3
————90% ¢ interval at x=3.5

TTTT790% Scheffé bands

Figure 11.3.3. Scheffé¢ bands, t interval (at z = 3.5), and Bonferroni intervals (at z = 1 and
z = 3) for data in Table 11.3.1

Since (11.3.43) is true for all z, it actually gives a confidence band on the entire
population regression line. That is, as a confidence interval covers a single-valued
parameter, a confidence band covers an entire line with a band. An example of the
Scheffé band is given in Figure 11.3.3, along with two Bonferroni intervals and a single
t interval. Notice that, although it is not the case in Figure 11.3.3, it is possible for the
Bonferroni intervals to be wider than the Scheffé bands, even though the Bonferroni
inference (necessarily) pertains to fewer intervals. This will be the case whenever

tn—2,a/(2m) > 2F2,n—2,aa

where m is defined as in (11.3.42). The inequality will always be satisfied for large
enough m, so there will always be a point where it pays to switch from Bonferroni to
Scheffé, even if there is interest in only a finite number of zs. This “phenomenon,”
that we seem to get something for nothing, occurs because the Bonferroni Inequality
is an all-purpose bound while the Scheffé band is an exact solution for the problem
at hand. (The actual coverage probability for the Bonferroni intervals is higher than
1-a.) There are many variations on the Scheffé band. Some variations have different
shapes and some guarantee coverage for only a particular interval of z values. See the
Miscellanea section for a discussion of these alternative bands.

In theory, the proof of Theorem 11.3.6, with suitable modifications, can result
in simultaneous prediction intervals. (In fact, the maximization of the function in
Exercise 11.40 gives the result almost immediately.) The problem, however, is that
the resulting statistic does not have a particularly nice distribution.

Finally, we note a problem about using procedures like the Scheffé band to make
inferences at = values that are outside the range of the observed zs. Such procedures
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are based on the assumption that we know the population regression function is
linear for all z. Although it may be reasonable to assume the regression function is
linear over the range of xs observed, extrapolation to zs outside the observed range is
usually unwise. (Since there are no data outside the observed range, we cannot check
whether the regression becomes nonlinear.) This caveat also applies to the procedures
in Section 11.3.5.

11.4 Exercises

11.1

11.2

11.3

11.4

An ANOVA variance-stabilizing transformation stabilizes variances in the following
approximate way. Let Y have mean 8 and variance v(6).

(a) Use arguments as in Section 10.1.3 to show that a one-term Taylor series approx-
imation of the variance of g(y) is given by Var (g(Y)) = [%9(8))*v(6).

(b) Show that the approximate variance of g*(Y') is independent of 8, where ¢*(y) =
S/ \/v(y)ldy.

Verify that the following transformations are approximately variance-stabilizing in

the sense of Exercise 11.1.

(a) Y ~ Poisson, g*(y) = /7

(b) ¥ ~ binomial(n,p), g" (y) = sin~(1/3/n)

(c) Y has variance v(6) = K8 for some constant K, g"(y) = log(y).

(Conditions for the existence of variance-stabilizing transformations go back at least
to Curtiss 1943, with refinements given by Bar-Lev and Enis 1988, 1990.)
The Box—Cox family of power transformations (Box and Cox 1964) is defined by

won_J@=-1/x ifA#£0
g*(y)”{logy if A =0,
where ) is a free parameter.

(a) Show that, for each y, g5 (y) is continuous in A. In particular, show that
R A .
lim (y™ — 1)/A = logy.

(b) Find the function v(6), the approximate variance of Y, that g5(y) stabilizes.
(Note that v(#) will most likely also depend on \.)

Analysis of transformed data in general and the Box—Cox power transformation in
particular has been the topic of some controversy in the statistical literature. See
Bickel and Doksum (1981), Box and Cox (1982), and Hinkley and Runger (1984).

A most famous (and useful) variance-stabilizing transformation is Fisher’s
z-transformation, which we have already encountered in Exercise 10.17. Here we will

-look at a few more details. Suppose that (X,Y’) are bivariate normal with correlation

coefficient ¢ and sample correlation r.
(a) Starting from Exercise 10.17, part (d), use the Delta Method to show that

1 1+47r 1+
2 [log(l—r) l°g<1—g>]

is approximately normal with mean 0 and variance 1/n.
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11.5

11.6

11.7

11.8

11.9

11.10
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(b) Fisher actually used a somewhat more accurate expansion (Stuart and Ord 1987,
Section 16.33) and established that the quantity in part (a) is approximately
normal with

0 1 4-o

= — d, i = .
mean 2An—1) and variance n_1 + An— 1)

Show that for small p and moderate n, we can approximate this mean and
variance by 0 and 1/(n — 3), which is the most popular form of Fisher’s z-
transformation.

Suppose that random variables Y;; are observed according to the overparameter-
ized oneway ANOVA model in (11.2.2). Show that, without some restriction on the
parameters, this model is not identifiable by exhibiting two distinct collections of
parameters that lead to exactly the same distribution of the Yj;s.

Under the oneway ANOVA assumptions:

(a) Show that the set of statistics (Y1.,Y2.,...,Yk., S?) is sufficient for (61,62,...,
Ok, o).

(b) Show that §2 = 25 3°F  (n: — 1)S? is independent of each Yi,i = 1,...,k.
(See Lemma 5.3.3).

(c) If o2 is known, explain how the ANOVA data are equivalent to their canonical
version in Miscellanea 11.5.6.

Complete the proof of Theorem 11.2.8 by showing that
1 . = 2
S (B =) (0 0)" ~ .
i=1

(Hint: Define U; =Y;. —6;,i=1,..., k. Show that U; are independent n((_),az/n.-).
Then adapt the induction argument of Lemma 5.3.2 to show that Y n:(U;—U)?/0? ~
X4—_1, where U = Enia‘/zni.)

Show that under the oneway ANOVA assumptions, for any set of constants a =
(a1,...,ax), the quantity 3 a:¥; is normally distributed with mean ) a:f; and
variance 0 3" a?/n;. (See Corollary 4.6.10.)

Using an argument similar to that which led to the ¢ test in (11.2.7), show how to
construct a t test for

(a) Ho: Y aifi =6 versus Hy: Y a:b; # 6.

(b) Ho: Y aif:; <6 versus Hy: ) a:0; > 6, where § is a specified constant.

Suppose we have a oneway ANOVA with five treatments. Denote the treatment means
by 0,,...,0s, where 0, is a control and 6, ..., 05 are alternative new treatments, and
assume that an equal number of observations per treatment is taken. Consider the
four contrasts Y a:0; defined by
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11.11

11.12

11.13

11.14

(a) Argue that the results of the four t tests using these contrasts can lead to con-
clusions about the ordering of 61,...,0s. What conclusions might be made?

(b) Show that any two contrasts Y a;Y;. formed from the four a;s in part (a) are
uncorrelated. (Recall that these are called orthogonal contrasts.)

(c) For the fertilizer experiment of Example 11.2.3, the following contrasts were
planned:

a; = (—ls 1, 03 0’ 0) y

11
= -1,=, =
az (07 ,2’2,0)’

ag = (0,0,1,—1,0),
a4 = (07_1101 01 1?)

Show that these contrasts are not orthogonal. Interpret these contrasts in the
context of the fertilizer experiment, and argue that they are a sensible set of

contrasts.
For any sets of constants a = (a1,...,ax) and b = (by,..., bx), show that under the
oneway ANOVA assumptions,
> c 2 @iy
Cov(d a:Yi,) bi¥i)=0 Zn—
i

Hence, in the oneway ANOVA, contrasts are uncorrelated (orthogonal) if Y a:b;/n;

=0.

Suppose that we have a oneway ANOVA with equal numbers of observations on each

treatment, that is, n; = n,i = 1,..., k. In this case the F' test can be considered an

average t test.

(a) Show that a t test of Ho: 6; = 6,/ versus Hy : 6; # 6;; can be based on the
statistic

(Y —Yu)?
57(2/n)

t?'l =
(b) Show that
1 2 _
k1) Zt“’ =k

where F is the usual ANOVA F statistic. (Hint: See Exercise 5.8(a).) (Com-
municated by George McCabe, who learned it from John Tukey.)
Under the oneway ANOVA assumptions, show that the likelihood ratio test of Hp:
61 =62 = ... = 0 is given by the F test of (11.2.14).
The Scheffé simultaneous interval procedure actually works for all linear combi-
nations, not just contrasts. Show that under the oneway ANOVA assumptions, if
M = /kFx,N-k,o (note the change in the numerator degrees of freedom), then the
probability is 1 — a that
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11.15

11.16

11.17
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simultaneously for all a = (ai,...,ax). It is probably easiest to proceed by first estab-
lishing, in the spirit of Lemma 11.2.7, that if v1,..., v, are constants and ¢i,...,cx
are positive constants, then

2
(Ef:l a"'vi) k 2
max{ ————— = Zc-v. .
' Ek ?/Ci iUi

i=1@ i=1

The proof of Theorem 11.2.10 can then be adapted to establish the result.
(a) Show that for the ¢t and F distributions, for any v, a, and k,

ty,a/2 S V (k - 1)Fk—l,u,a-

(Recall the relationship between the ¢t and the F. This inequality is a consequence
of the fact that the distributions kF,, are stochastically increasing in k for fixed
v but is actually a weaker statement. See Exercise 5.19.)

(b) Explain how the above inequality shows that the simultaneous Scheffé intervals
are always wider than the single-contrast intervals.

(c) Show that it also follows from the above inequality that Scheflé tests are less
powerful than ¢ tests.

In Theorem 11.2.5 we saw that the ANOVA null is equivalent to all contrasts being 0.

We can also write the ANOVA null as the intersection over another set of hypotheses.

(a) Show that the hypotheses
Hy: 61=02=---=6 versus Hyi: 0; # 6; for some 1, j
and the hypotheses
Hy: 6, —0; =0forall i,j versus Hy: 6; —6; #0 for some 4,j

are equivalent.
(b) Express Ho and H; of the ANOVA test as unions and intersections of the sets

©i;;={0=(61,...,0k):0: —6; =0}.

Describe how these expressions can be used to construct another (different)
union-intersection test of the ANOVA null hypothesis. (See Miscellanea 11.5.2.)

A multiple comparison procedure called the Protected LSD (Protected Least Signifi-
cant Difference) is performed as follows. If the ANOVA F test rejects Hp at level
then for each pair of means 6; and 6,,, declare the means different if

> taja,N—k-

Note that each t test is done at the same « level as the ANOVA F test. Here we are
using an ezperimentwise a level, where

at least one false

. . all the means
experimentwise a = P .

assertion of difference are equal
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11.18

11.19

11.20

11.21

11.22

(a) Prove that no matter how many means are in the experiment, simultaneous
inference from the Protected LSD is made at level a.

(b) The ordinary (or unprotected) LSD simply does the individual ¢ tests, at level o,
no matter what the outcome of the ANOVA F' test. Show that the ordinary LSD
can have an experimentwise error rate greater than . (The unprotected LSD
does maintain a comparisonwise error rate of c.)

(c) Perform the LSD procedure on the fish toxin data of Example 11.2.1. What are
the conclusions?

Demonstrate that “data snooping,” that is, testing hypotheses that are suggested by
the data, is generally not a good practice.

(a) Show that, for any random variable ¥ and constants a and b with a > b and
P(Y>b <1, P(Y >a|Y >b) > P(Y > a).

(b) Apply the inequality in part (a) to the size of a data-suggested hypothesis test
by letting ¥ be a test statistic and a be a cutoff point.

Let X; ~ gamma(\;,1) independently fori = 1,...,n.Define Y; = X4,/ (Z;zl Xj),

i=1,...,n-l,and Y, =37 X

(a) Find the joint and marginal distributions of ¥;,i =1,...,n.

(b) Connect your results to any distributions that are commonly employed in the
ANOVA.

Assume the oneway ANOVA null hypothesis is true.

(a) Show that Y ni(¥i. — ¥)?/(k — 1) gives an unbiased estimate of o2.

(b) Show how to use the method of Example 5.3.5 to derive the ANOVA F test.

(a) Illustrate the partitioning of the sums of squares in the ANOVA by calculating
the complete ANOVA table for the following data. To determine diet quality,
male weanling rats were fed diets with various protein levels. Each of 15 rats

was randomly assigned to one of three diets, and their weight gain in grams was
recorded.

Diet protein level
Low Medium High

3.89 8.54 20.39
3.87 9.32 24.22
3.26 8.76 30.91
2.70 9.30 22.78
3.82 10.45 26.33

(b) Analytically verify the partitioning of the ANOVA sums of squares by completing

the proof of Theorem 11.2.11.
(c) Illustrate the relationship between the t and F statistics, given in Exercise
11.12(b), using the data of part (a).
Calculate the expected values of MSB and MSW given in the oneway ANOVA table.
(Such expectations are formally known as ezpected mean squares and can be used to
help identify F tests in complicated ANOVAs. An algorithm exists for calculating
expected mean squares. See, for example, Kirk 1982 for details about the algorithm.)
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11.23

11.24

11.25

11.26

11.27

11.28

11.29
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Use the model in Miscellanea 11.5.3.

(a) Show that the mean and variance of Y;; are EY;; = u+7; and VarY;; = 0% +42.
(b) If E a; = 0, show that the unconditional variance of Za;)_’i. is Var (Zai)—’;.) =
1(0* +0%)(1 — p) Y a?, where p = intraclass correlation.

The form of the Stein estimator of Miscellanea 11.5.6 can be justified somewhat by
an empirical Bayes argument given in Efron and Morris (1972), which can be quite
useful in data analysis. Such an argument may have been known by Stein (1956),
although he makes no mention of it. Let X; ~ n(6;,1),7 = 1,...,p, and 6; be iid
n(0, 7%).

(a) Show that the X;s, marginally, are iid n(0, 72 +1), and, hence, 3" X?/(72 +1) ~

2
Xp-

(b) Using the marginal distribution, show that E(l—((p—2)/2’?=1X32)) =72 /(T*+1)
if p > 3. Thus, the Stein estimator of Miscellanea 11.5.6 1s an empirical Bayes
version of the Bayes estimator 87 (X) = [72/(r% + 1)] X;.

(c) Show that the argument fails if p < 3 by showing that E(1/Y) = 0o if Y ~ 2
with p < 3.

In Section 11.3.1, we found the least squares estimators of & and 8 by a two-stage

minimization. This minimization can also be done using partial derivatives.

(2) Compute 2853 and 8:‘}# and set them equal to 0. Show that the resulting two

(]
equations can be written as

ne+ (zn:z,-)dzzn:y;. and (izi>c+ (iz?)d: zn:z.-y.'.
i=1 1 i=1 i=1

i=1 ] i=

(These equations are called the normal equations for this minimization problem.)
(b) Show that ¢ = a and d = b are the solutions to the normal equations.
(c) Check the second partial derivative condition to verify that the point ¢ = a and
d = b is indeed the minimum of RSS.

Suppose n is an even number. The values of the predictor variable, zi,...,z,, all
must be chosen to be in the interval [e, f]. Show that the choice that maximizes Sez
is for half of the z; equal to e and the other half equal to f. (This was the choice
mentioned in Section 11.3.2 that minimizes Var b.)

Observations (z:,Y;), i = 1,...,n, follow the model Y; = a+ 3z; +¢;, where E¢; = 0,
Vare; = o2, and Cov(ei,e;) = 0 if i # j. Find the best linear unbiased estimator of
.

Show that in the conditional normal model for simple linear regression, the MLE of
o? is given by

n

. 1 < A

62 = ;Z(yi - & - fBz:)*
i=1

Consider the residuals éi,...,¢é, defined in Section 11.3.4 by é&; =Y; — & — [§z.~.

(a) Show that E¢; = 0.
(b) Verify that

Varé; = VarY; + Var & + z?Var 8 — 2Cov(Y;, @) — 2z;Cov(Ys, E) + 22:Cov(&, B).
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(c) Use Lemma 11.3.2 to show that

) and Cov(K,B):aszg—_—i,

Tz

COV(}"', d) = 0'2 (%' =+ g—'#

and use these to verify (11.3.28).
11.30 Fill in the details about the distribution of & left out of the proof of Theorem 11.3.3.

(a) Show that the estimator & = § — B Z can be expressed as & = 2;1 c;Y:, where
1 (z: — Z)Z
c=— — "
n Sez

(b) Verify that

n
A ~ 2 1 2
Eda=a and Vara=o l:ns,uz :ci].

(c) Verify that
o’z

S22

Cov(&, B) = -

11.31 Verify the claim in Theorem 11.3.3, that é; is uncorrelated with & and B (Show that
& = Y e;Y;, where the e;s are given by (11.3.30). Then, using the facts that we can
write & = Y c;¥; and § = Y d;V;, verify that Y ejc; = Y e;d; = 0 and apply

Lemma 11.3.2.)
11.32 Observations (zi, Yi),i = 1,...,n, are made according to the model
Yi=a+ Bz + ¢,
where 21, ...,z are fixed constants and €, . .., €, are iid n(0, 02). The model is then

reparameterized as
Y=o + 8 (zi — %) +&.

Let & and ﬂ denote the MLEs of a and (3, respectively, and & and B’ denote the

MLEs of o’ and 3, respectively.

(a) Show that ﬁ” =8

(b) Show that & # & . In fact, show that @ = Y. Find the distribution of &'.

(c) Show that & and ﬁ' are uncorrelated and, hence, independent under normality.
11.33 Observations (X;,Y;),i =1,...,n, are made from a bivariate normal population with

parameters (ix, 1y, 0%,0%,p), and the model Y; = a + Bz; + ¢; is going to be fit.

(a) Argue that the hypothesis Hp : 8 = 0 is true if and only if the hypothesis

Hp: p =0 is true. (See (11.3.25).)
(b) Show algebraically that

n—2 T

B _
S/vV/8Szz Vi—r2'

where r is the sample correlation coefficient, the MLE of p.
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11.34

11.35

11.36

11.37
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(c) Show how to test Ho: p = 0, given only 72 and n, using Student’s t with n — 2
degrees of freedom (see (11.3.33)). (Fisher derived an approximate confidence
interval for p, using a variance-stabilizing transformation. See Exercise 11.4.)

(a) Illustrate the partitioning of the sum of squares for simple linear regression by
calculating the regression ANOVA table for the following data. Parents are often
interested in predicting the eventual heights of their children. The following is
a portion of the data taken from a study that might have been suggested by
Galton’s analysis.

Height (inches)
at age 2 (z)

Height (inches) 71 63 63 67 68 68 70 64
as an adult (y)

(b) Analytically establish the partitioning of the sum of squares for simple linear
regression by verifying (11.3.36).

(¢) Prove that the two expressions for the regression sum of squares are, in fact,
equal; that is, show that

39 30 32 34 35 36 36 30

n

52
}:.A__z__ Ty
(yi y) _Szz'

i=1

(d) Show that the coefficient of determination, 2, given by

7‘_2 — Z:Zl(ﬁi - g)2
Z?:l(yi - g)2

can be derived as the square of the sample correlation coefficient either of the n
pairs (y1,Z1),. .., (Yn,Zn) or of the n pairs (y1,91),-. ., (Yn, ¥n)-
Observations Yi,...,Y, are described by the relationship Y; = 8z? + ¢;, where
z1,...,ZIn are fixed constants and €,...,€, are iid n(0, 02).

(a) Find the least squares estimator of 4.
(b) Find the MLE of 6.
(c) Find the best unbiased estimator of 6.

Observations Y1,...,Y, are made according to the model Y; = a + Oz: + €, where
Z1,...,Zn are fixed constants and e, ..., e are iid n(0,02). Let & and 3 denote
MLEs of « and .

(a) Assume that zi,...,z, are observed values of iid random variables X1,...,Xn
with distribution n(ux, % ). Prove that when we take expectations over the joint
distribution of X and Y, we still get E& = a and ES = B.

(b) The phenomenon of part (a) does not carry over to the covariance. Calculate the
unconditional covariance of & and (3 (using the joint distribution of X and Y).

We observe random variables Yi,...,Y, that are mutually independent, each with

a normal distribution with variance o2. Furthermore, EY; = fz;, where 3 is an

unknown parameter and zi,...,z, are fixed constants not all equal to 0.

(a) Find the MLE of 3. Compute its mean and variance.

(b) Compute the Cramér—Rao Lower Bound for the variance of an unbiased estimator
of 5.

(c) Find a best unbiased estimator of 3.
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(d) If you could place the values z1,...,Z» anywhere within a given nondegenerate
closed interval [A, B}, where would you place these values? Justify your answer.

(e) For a given positive value 7, the mazimum probability estimator of 3 with respect
to r is the value of D that maximizes the integral

D+r
f Fns-. . ynlB)dB,

D—r

where f(y1,...,yn|B) is the joint pdf of Y1,...,Y;. Find this estimator.

11.38 An ecologist takes data (z;,Y;), i = 1,...,n, where z; is the size of an area and Y; is
the number of moss plants in the area. We model the data by Y; ~ Poisson(6z;), Yis
independent.

(a) Show that the least squares estimator of 6 is > z:Y;/ Y z?. Show that this
estimator has variance 83" 73 /(3" z2)2. Also, compute its bias.

(b) Show that the MLE of  is ) Y:/ > z; and has variance 8/ z;. Compute its
bias.

(c) Find a best unbiased estimator of # and show that its variance attains the
Cramér-Rao Lower Bound.

11.39 Verify that the simultaneous confidence intervals in (11.3.42) have the claimed cov-
erage probability.
11.40 (a) Prove that if a, b, ¢, and d are constants, with ¢ > 0 and d > 0, then

(a+bt)> a®  b?

M erar T d

(b) Use part (a) to verify equation (11.3.44) and hence fill in the gap in Theorem
11.3.6.

(c) Use part (a) to find a Scheffé-type simultaneous band using the prediction in-
tervals of (11.3.41). That is, rewriting the prediction intervals as was done in
Theorem 11.3.6, show that

((}’/_M_,)_,.("_ﬁ)t)z _ HLH()—’—;A,—,)Z + 822(8 — B)*

T s I ] 52

(d) The distribution of the maximum is not easy to write down, but we could ap-
proximate it. Approximate the statistic by using moment matching, as done in
Example 7.2.3.
11.41 In the discussion in Example 12.4.2, note that there was one observation from the
potoroo data that had a missing value. Suppose that on the 24th animal it was
observed that O, = 16.3.

(a) Write down the observed data and expected complete data log likelihood func-
tions.

(b) Describe the E step and the M step of an EM algorithm to find the MLEs.

(c¢) Find the MLEs using all 24 observations.

(d) Actually, the Oz reading on the 24th animal was not observed, but rather the
CO, was observed to be 4.2 (and the O; was missing). Set up the EM algorithm
in this case and find the MLEs. (This is a much harder problem, as you now have
to take expectations over the zs. This means you have to formulate the regression
problem using the bivariate normal distribution.)
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11.5 Miscellanea

11.5.1 Cochran’s Theorem

Sums of squares of normal random variables, when properly scaled and centered,
are distributed as chi squared random variables. This type of result is first due to
Cochran (1934). Cochran’s Theorem gives necessary and sufficient conditions on
the scaling required for squared and summed iid normal random variables to be
distributed as a chi squared random variable. The conditions are not difficult, but
they are best stated in terms of properties of matrices and will not be treated here.
It is an immediate consequence of Cochran’s Theorem that in the oneway ANOVA,
the x? random variables partition as discussed in Section 11.2.6. Furthermore,
another consequence is that in the Randomized Complete Blocks ANOVA (see
Miscellanea 11.5.3), the mean squares all have chi squared distributions.

Cochran’s Theorem has been generalized to the extent that necessary and sufficient
conditions are known for the distribution of squared normals (not necessarily iid)
to be chi squared. See Stuart and Ord (1987, Chapter 15) for details.

11.5.2 Multiple Comparisons

We have seen two ways of doing simultaneous inference in this chapter: the Scheffé
procedure and use of the Bonferroni Inequality. There is a plethora of other si-
multaneous inference procedures. Most are concerned with inference on pairwise
comparisons, that is, differences between means. These procedures can be applied
to estimate treatment means in the oneway ANOVA.

A method due to Tukey (see Miller 1981), sometimes known as the @ method,
applies a Scheffé-type maximization argument but over only pairwise differences,
not all contrasts. The () distribution is the distribution of

where n; = n for all i. (Hayter 1984 has shown that if n; # n; and the n above is
replaced by the harmonic mean ny, where 1/n, = 1((1/n;)+(1/n;)), the resulting
procedure is conservative.) The @ method is an improvement over Scheffé’s S
method in that if there is interest only in pairwise differences, the @ method is
more powerful (shorter intervals). This is easy to see because, by definition, the Q
maximization will produce a smaller maximum than the § method.

Other types of multiple comparison procedures that deal with pairwise differences
are more powerful than the S method. Some procedures are the LSD (Least Sig-
nificant Difference) Procedure, Protected LSD, Duncan’s Procedure, and Student—
Neumann—-Keuls’ Procedure. These last two are multiple range procedures. The
cutoff point to which comparisons are made changes between comparisons.

One difficulty in fully understanding multiple comparison procedures is that the
definition of Type I Error is not inviolate. Some of these procedures have changed
the definition of Type I Error for multiple comparisons, so exactly what is meant
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by “a level” is not always clear. Some of the types of error rates considered are
called ezperimentwise error rate, comparisonwise error rate, and familywise error
rate. Miller (1981) and Hsu (1996) are good references for this topic. A humorous
but illuminating treatment of this subject is given in Carmer and Walker (1982).

11.5.8 Randomized Complete Block Designs

Section 11.2 was concerned with a oneway classification of the data; that is, there
was only one categorization (treatment) in the experiment. In general, the ANOVA
allows for many types of categorization, with one of the most commonly used
ANOVAs being the Randomized Complete Block (RCB) ANOVA.

A block (or blocking factor) is categorization that is in an experiment for the ex-
press purpose of removing variation. In contrast to a treatment, there is usually no
interest in finding block differences. The practice of blocking originated in agricul-
ture, where experimenters took advantage of similar growing conditions to control
experimental variances. To model this, the actual blocks in the experiment were
considered to be a random sample from a large population of blocks (which makes
them a random factor).

RCB ANOVA assumptions
Random variables Y;; are observed according to the model

Y,’j|b=p,+7','+bj+6,;j, i=1,...,k, j=1,.‘.,7‘,

where:

(i) The random variables €;; ~ iid n(0,02) for i = 1,...,k and j = 1,...,7
(normal errors with equal variances).

(ii) The random variables By, ..., By, whose realized (but unobserved) values are

the blocks by, ..., by, are iid n(0,0%) and are independent of €i; for all i, 5.

The mean and variance of Y;; are
EY;;=p+7 and Varlj; = 0125 + 02

Moreover, although the Y;;s are uncorrelated conditionally, there is correlation in
the blocks unconditionally. The correlation between Y;; and Yi/; in block j, with

i s
COV(Y;J‘, 1/1'1]') - 0'23
V(VarY;;)(Vari;) of+0%

a quantity called the intraclass correlation. Thus, the model implies not only that
there is correlation in the blocks but also that there is positive correlation. This
is a consequence of the additive model and the assumption that the es and Bs are
independent (see Exercise 11.23). Even though the Yi;s are not independent, the
intraclass correlation structure still results in an analysis of variance where ratios
of mean squares have the F' distribution (see Miscellanea 11.5.1).
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11.5.4 Other Types of Analyses of Variance

The two types of ANOVAs that we have considered, oneway ANOVAs and RCB
ANOVAs, are the simplest types. For example, an extension of a complete block
design is an incomplete block design. Sometimes there are physical constraints
that prohibit putting all treatments in each block and an incomplete block design
is needed. Deciding how to arrange the treatments in such a design is both difficult
and critical. Of course, as the design gets more complicated, so does the analysis.

Study of the subject of statistical design, which is concerned with getting the most
information from the fewest observations, leads to more complicated and more
efficient ANOVAs in many situations. ANOVAs based on designs such as fractional
factorials, Latin squares, and balanced incomplete blocks can be efficient methods
of gathering much information about a phenomenon. Good overall references for
this subject are Cochran and Cox (1957), Dean and Voss (1999), and Kuehl (2000).

11.5.5 Shapes of Confidence Bands

Confidence bands come in many shapes, not just the hyperbolic shape defined by
the Scheffé band. For example, Gafarian (1964) showed how to construct a straight-
line band over a finite interval. Gafarian-type bands allow statements of the form

P(d+ﬁz—da5a+ﬂz§o‘z+@z+daforallz€[a,b])zl—a

Gafarian gave tables of d,. A finite-width band must, necessarily, apply only to a
finite range of . Any band of level 1 — a must have infinite length as |z| — occ.

Casella and Strawderman (1980), among others, showed how to construct Scheffé-
type bands over finite intervals, thereby reducing width while maintaining the same
confidence as the infinite Scheffé band. Naiman (1983) compared performance of
straight-line and Scheffé bands over finite intervals. Under his criterion, one of
average width, the Scheffé band is superior. In some cases, an experimenter might
be more comfortable with the interpretation of a straight-line band, however.

Shapes other than straight-line and hyperbolic are possible. Piegorsch (1985) in-
vestigated and characterized the shapes that are admissible in the sense that their
probability statements cannot be improved upon. He obtained “growth conditions”
that must be satisfied by an admissible band. Naiman (1983, 1984, 1987) and
Naiman and Wynn (1992, 1997) have developed this theory to a very high level,
establishing useful inequalities and geometric identities to further improve infer-
ences.

11.5.6 Stein’s Paradozx

One part of the analysis of variance is concerned with the simultaneous estimation
of a collection of normal means. Developments in this particular problem, starting
with Stein (1956), have had a profound effect on both the theory and applications
of point estimation.

A canonical version of the analysis of variance is to observe X = (X,,...,X,),
independent normal random variables with X; ~ n(8;,1), i = 1,...,p, with the
objective being the estimation of 8 = (6,,...,6,). Our usual estimate of §; would
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be X, but Stein (1956) established the surprising result that, if p > 3, the estimator
of 6; given by

p—2
6 (X) = (1— W) X;

is a better estimator of §; in the sense that

ZE@ (X; — 01‘)2 2 XP:EG (6;9(){) - 0i)2 :
i=1

i=1

That is, the summed mean squared of Stein’s estimator is always smaller, and
usually strictly smaller, than that of X.

Notice that the estimators are being compared using the sum of the component-
wise mean squared errors, and each 67 can be a function of the entire vector
(X1,...,X5). Thus, all of the data can be used in estimating each mean. Since the
X;s are independent, we might think that restricting 67 to be just a function of
X; would be enough. However, by summing the mean squared errors, we tie the
components together.

In the oneway ANOVA we observe

_ 2
Y. ~n (0,-, Z—) , t=1,...,k, independent,
i

where the Yi.s are the cell means. The Stein estimator takes the form

55(Fy . V) = [1- k=2 e etk
i loyeesy Tk ) = an}"f iy =1,...,K.

This Stein-type estimator can further be improved by choosing a meaningful place
toward which to shrink (the above estimator shrinks toward 0). One such estimator,
due to Lindley (1962), shrinks toward the grand mean of the observations. It is
given by

e s k=902 \7
6,-(Y1.,...,Yk.)—Y+(1 ———an(}_fj._?)z) (

Other choices of a shrinkage target might be even more appropriate. Discussion of
this, including methods for improving on confidence statements, such as the Scheffé
S method, is given in Casella and Hwang (1987). Morris (1983) also discusses
applications of these types of estimators.

L —-Y), i=1,...,k

There have been many theoretical developments using Stein-type estimators, not
only in point estimation but also in confidence set estimation, where it has been
shown that recentering at a Stein estimator can result in increased coverage proba-
bility and reduced size. There is also a strong connection between Stein estimators
and empirical Bayes estimators (see Miscellanea 7.5.6), first uncovered in a series
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of papers by Efron and Morris (1972, 1973, 1975), where the components of 8 are
tied together using a common prior distribution. An introduction to the theory
and some applications of Stein estimators is given in Lehmann and Casella (1998,
Chapter 5).



