HW6, CS769

Nathanael Fillmore

Due April 11, 2008

1 Page Rank

Question 1. After one step, the walker will be at page 2, 11, 21, or 31, each with probability 1/4.

Question 2. After one step, the walker will be at page 2, 11, 21, or 31, each with probability 0.2275 = 9/10 * 1/4 + 1/10 * 1/40, or at any other page, each with probability 0.0025 = 1/10 * 1/40.

u	r	u	r	u	r	u	r
1	0.0032	11	0.0236	21	0.0485	31	0.0486
2	0.0039	12	0.0243	22	0.0399	32	0.0399
3	0.0039	13	0.0249	23	0.0347	33	0.0345
4	0.0039	14	0.0255	24	0.0316	34	0.0312
5	0.0039	15	0.0262	25	0.0300	35	0.0292
6	0.0039	16	0.0271	26	0.0295	36	0.0282
7	0.0040	17	0.0285	27	0.0300	37	0.0279
8	0.0044	18	0.0307	28	0.0316	38	0.0283
9	0.0065	19	0.0342	29	0.0347	39	0.0294
10	0.0143	20	0.0397	30	0.0400	40	0.0157

Question 3. The PageRank r for each page u is:

This was computed as follows:

```
% P was defined earlier
b = ones(40,1)/40 % uniform distribution
alpha = 0.9
M = alpha*P + (1-alpha)*b*ones(40,1)'
[V,D] = eig(M)
r = V(:,1)
r = r/sum(r)
```

Question 4.

Pages 21 and 31 have the same PageRank (almost). This is because they have the same number of pages linking to them, and the linking pages are also ranked similarly. Page 11 is ranked lower. Why? Pages 21 and 31 are linked to by 1-10 as well as 20, 22 and 30, 32 respectively; page 11 is linked to by 1-10 as well as 12 (since 10 already links to it). Thus in effect page 11 has one less link than pages 21 and 31 do. Additionally, page 11 is near the 1-10 range, which has more outgoing links than the other pages; hence the incoming neighbor links 11 does have are worth less than those of 21 and 31.

2 Latent Semantic Indexing

Question 6.

This was computed as follows:

```
load cs.dat;
X = spconvert(cs);
X = X';
[U,S,V] = svds(X);
U_hat = U(:,1:2);
S_hat = S(1:2,1:2);
```

```
V_hat = V(:,1:2);
X_hat = S_hat*V_hat';
plot(X_hat(1,:), X_hat(2,:), 'o')
```

3 Latent Dirichlet Allocation

Question 7.

Question 8.

stics wi
50105 111

Some of the topics seem sensible, for example topic 001 has to do with the mailing address of the CS department. Topic 007 has is all from inside html tags. Topic 004 combines photography with navigation, presumably because of photo galleries. Some of the topics are strange, for example topic 000 finds a connection between "java", "pdf", "100", and "##"—I guess from course webpages?

Question 9.

user	best topic-weight pairs		
jerryzhu	(17, 905.6575810603), (19, 877.37349511399998)		
shavlik	(9, 1853.0155380872)		
miron	(7, 84.293074253699999), (43, 67.275698118700006), (1, 33.477841889099999)		
sohi	(30, 153.01553808720001)		
$_{\rm pb}$	(47, 1477.0950339067001), (28, 297.93604226769997)		