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1 Introduction

We use the graphical model showed in Figure 1. We denote the observed data as D. We denote |D|
as N , number of reads in the data. We assume there are M transcripts in the reference and they
are numbered from 1 to M . In addition, our model has an extra ”noise” transcript to account for
reads coming from background noise, numbered as 0. θ is the probability distribution of a read is
sequenced from a particular transcripts. We have θi = τili, i = 1...M and |θ| = M + 1. For details
about RSEM model, please see reference[1][2].

We denote an assembly (the reference set used in RSEM’s model) as A.

This project’s goal is to evaluate which assemble method performs better, given a fixed data set D.
That is to say, we want to find a function f , such that given any two assemblers, for their assemblies
A1 and A2 made from D, we have :

f(A1) > f(A2) ⇔ A1 is better than A2

Currently, we have four candidates for f . They are likelihood score, BIC, model evidence by Monte
Carlo approximation and model evidence by convex approximation. We want to show that the
latter three performs better than the first one. Ideally, we also want to find that the latter two are
better than BIC.

In the following four sections, I’ll describe the four measures. In addition, I’ll omit notation A int
all following formulae. We just need to know for all formulae, ”given A” is omitted.

2 Loglikelihood

First, pick up θMLE (MLE means maximum likelihood estimator) :

θMLE = argmax
θ

logP (D|θ)
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Figure 1: RSEM’s graphical model
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Then Loglikelihood score is defined as

logP (D|θMLE)

3 Bayesian information criterion

We are interested in P (D), model evidence.

P (D) =

∫
P (D|θ)p(θ)dθ

Under certain condition [3], by the Laplace approximation, we have

logP (D) ≃ logP (D|θMAP ) + logP (θMAP ) +
M

2
log(2π)− 1

2
log |H|

θMAP is the Maximum a posteriori estimator. It is the model of the posterior distribution P (θ|D).
H is the Hessian matrix of second derivatives of the negative log posterior at θMAP .

If we further assume the Gaussian prior, then in the asymptotic case, we have

logP (D) ≃ logP (D|θMAP )−
1

2
M logN

The above formula is what we used in this project for BIC. Because we assume θ follows Dir(1),
the MAP estimator is the same as MLE estimator.

However, because the ”certain condition” is not satisfied here, we do not prefer this measure.

For details, please read P213-P217 of Pattern Recognition and Machine Learning(PRML).

4 Model evidence by Monte Carlo approximation

Our goal is to compute the model evidence, P (D). Using Bayes rule, we can express the model
evidence as

P (D) =
P (D|θ′)P (θ′)

P (θ′|D)
(1)

Here, θ′ can be any particular value of the parameters. For example, we might choose θ′ = θPME

for numerical issues. PME means posterior mean estimator.The numerator of this fraction is easily
computed, as it is simply the product of the likelihood and the prior. The challenge is to compute
the denominator, P (θ′|D). One way to compute this value is via sampling of the latent variables,
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Z, from their posterior distribution:

P (θ′|D) =
∑
z

P (θ′, z|D) (2)

=
∑
z

P (θ′|z,D)P (z|D) (3)

=
∑
z

P (θ′|z)P (z|D) (4)

≈ 1

Ns

Ns∑
i=1

P (θ′|z(i)) (5)

where z(1), . . . , z(Ns) are samples from P (z|D), possibly via Gibbs sampling.

After we get P (D), the f is defined as logP (D).

5 Model evidence by convex approximation

This is another way to approximate P (D) and our goal is to calculate logP (D) here, too.

Refresh: There are N reads and M transcripts. So |θ| = M + 1 (including the noise transcript).

The data likelihood logP (D|θ) can be decomposed as follows:

logP (D|θ) =
∑
Z

q(Z) log
P (D,Z|θ)
P (Z|D, θ)

q(Z)

q(Z)

=
∑
Z

q(Z) log
P (D,Z|θ)

q(Z)
+

∑
Z

q(Z) log
q(Z)

P (Z|D, θ)

= F (q, θ) +KL(q(Z)||P (Z|D, θ))

F (q, θ) =
∑
Z

q(Z) log
P (D,Z|θ)

q(Z)

For any given θ∗, let q(Z) = P (Z|D, θ∗), we have

logP (D|θ) ≥ F (P (Z|D, θ∗), θ)

In addition, when θ = θ∗, logP (D|θ) = F (P (Z|D, θ∗), θ) for that KL(q(Z)||P (Z|D, θ)) = 0.

Therefore, assume a dirichlet prior of αi = 1, we have P (D) ≥
∫
θ p(θ)e

F (P (Z|D,θ∗),θ)dθ for any θ∗.
We use θ∗ = θMLE .

Because

F (P (Z|D, θ∗), θ) =

M∑
i=0

c∗i log θi +
∑
Z

P (Z|D, θ∗) log
P (D|Z)

P (Z|D, θ∗)
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We have

P (D) ≥
∫
θ
p(θ)eF (P (Z|D,θ∗),θ)dθ

= e
∑

Z P (Z|D,θ∗) log P (D|Z)
P (Z|D,θ∗)

∫
θ
p(θ)

M∏
i=0

θ
c∗i
i dθ

= e
∑

Z P (Z|D,θ∗) log P (D|Z)
P (Z|D,θ∗)

Γ(M + 1)
∏M

i=0 Γ(c
∗
i + 1)

Γ(M + 1 +N)

So

logP (D) ≥ log Γ(M + 1) +
M∑
i=0

log Γ(c∗i + 1)− log Γ(M + 1 +N) +
∑
Z

P (Z|D, θ∗) log
P (D|Z)

P (Z|D, θ∗)

= log Γ(M + 1) +

M∑
i=0

log Γ(c∗i + 1)− log Γ(M + 1 +N) +

N∑
n=1

∑
zni∈πx

n

P (zni|rn, θ∗) log
P (rn|zni)

P (zni|rn, θ∗)

To have a better understand of this part, I’d suggest to read P450-P455 of PRML.

6 Comparison of Approx score and BIC

Let θ∗ = θMLE .

Because θMAP = θMLE if θ ∼ Dir(1), we have

BIC = logP (D|θMAP )−
1

2
M logN

= logP (D|θMLE)−
1

2
M logN

= logP (D|θ∗)− 1

2
M logN

For Approx, we have

Approx = log Γ(M + 1) +

M∑
i=0

log Γ(c∗i + 1)− log Γ(M + 1 +N) +
∑
Z

P (Z|D, θ∗) log
P (D|Z)

P (Z|D, θ∗)

From section 5, we have logP (D|θ∗) = F (P (Z|D, θ∗), θ∗), where

F (P (Z|D, θ∗), θ∗) =

M∑
i=0

c∗i log θ
∗
i +

∑
Z

P (Z|D, θ∗) log
P (D|Z)

P (Z|D, θ∗)
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So ∑
Z

P (Z|D, θ∗) log
P (D|Z)

P (Z|D, θ∗)
= logP (D|θ∗)−

M∑
i=0

c∗i log θ
∗
i

Therefore

Approx = logP (D|θ∗)− [log Γ(M + 1 +N)− log Γ(M + 1)−
M∑
i=0

log Γ(c∗i + 1) +

M∑
i=0

c∗i log θ
∗
i ]

According to Stirling’s approximation,

log n! ∼ 1

2
log(2πn) + n log n− n

For the penalty term of Approx, we have

log Γ(M + 1 +N)− log Γ(M + 1)−
M∑
i=0

log Γ(c∗i + 1) +
M∑
i=0

c∗i log θ
∗
i

∼ [
1

2
log 2π + (M +N +

1

2
) log(M +N)− (M +N)− (

1

2
log 2π + (M +

1

2
) logM −M)]

−[

M∑
i=0

(
1

2
log 2π + (c∗i +

1

2
) log c∗i − c∗i )−

M∑
i=0

c∗i log
c∗i
N

]

= [(M +N +
1

2
) log(M +N)− (M +

1

2
) logM −N ]

−[
M + 1

2
log 2π +

1

2

M∑
i=0

log c∗i −N +N logN ]

≥ [(M +N +
1

2
) log(M +N)− (M +

1

2
) logM −N ]− [

M + 1

2
log 2π +

M + 1

2
log

N

M + 1
−N +N logN ]

= [(M +
1

2
) log(M

M +N

M
)− (M +

1

2
) logM ] + [N log(N

M +N

N
)−N logN ]

−M + 1

2
log

N

M + 1
− M + 1

2
log 2π

= (M +
1

2
) log

M +N

M
− M + 1

2
log

N

M + 1
+N log

M +N

N
− M + 1

2
log 2π

>
M

2
log

M +N

M
+N log(1 +

M

N
)− M + 1

2
log 2π

=
M

2
log(N

M +N

NM
) +N log(1 +

M

N
)− M + 1

2
log 2π

=
M

2
logN + [

M

2
log

M
N + 1

M
+N log(1 +

M

N
)− M + 1

2
log 2π]

The ≥ is by applying Jensen’s Inequality to
∑M

i=0 log c
∗
i and the equality is reached by taking

c∗i =
N

M+1 .
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The > is due to the fact that M+N
M > N

M+1 .

If N ≫ M , M
2 logN dominates the penalty term of Approx, and therefore Approx will behave like

BIC.

However, if N ∼ cM , where c is a constant, we have

penalty >
M

2
log cM + [

M

2
log

M
cM + 1

M
+ cM log(1 +

M

cM
)− M + 1

2
log 2π]

=
M

2
logM − M

2
logM + [

M

2
log c+

M

2
log(

1

c
+ 1) + cM log(1 +

1

c
)− M + 1

2
log 2π]

= O(M)

That is to say, the penalty term is in the order of O(M) instead of O(M logN).

However, please note that these results are for lower bounds of Approx’s penalty term. We still need
some the same results for upper bounds in order to claim the results. But at least, these results
give us some intuition which match the plots we generated.

7 Overlap Length

Focus on single end reads only. Also assume that reads are strand-specific and there is no sequencing
error.

Assume read length is r, overlap size is o and transcript/contig i has length li.

We have θi =
ci
N , τi ∝ κi =

θi
li−r+1 and BIC is equal to:

BIC =
M∑
i=0

ci log
θi

li − r + 1
− 1

2
M logN

Because when N is big, Approx and possibly Gibbs scores approach BIC, we only focus on BIC
score here.

Suppose we want to combine contigs a and b. After combination, we have a new score:

BICnew =
M∑

i=0,i̸=a,b

ci log
θi

li − r + 1
+ (ca + cb) log

θa + θb
la + lb − o− r + 1

− 1

2
(M − 1) logN

Let ∆ = BICnew −BIC, we have
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∆ = (ca + cb) log
θa + θb

la + lb − o− r + 1
− ca log

θa
la − r + 1

− cb log
θb

lb − r + 1
+

1

2
logN

= (ca + cb) log
κa(la − r + 1) + κb(lb − r + 1)

la + lb − o− r + 1
− ca log κa − cb log κb +

1

2
logN

= ca log
(la − r + 1) + κb

κa
(lb − r + 1)

la + lb − o− r + 1
+ cb log

κa
κb
(la − r + 1) + (lb − r + 1)

la + lb − o− r + 1
+

1

2
logN

If τa = τb, we have κa = κb and

∆ = (ca + cb) log
la + lb − 2r + 2

la + lb − o− r + 1
+

1

2
logN

If o = r − 1, we have ∆ = 1
2 logN > 0. This means that if two contigs have same expression level

and overlap r − 1, merge them will always increase the score.

When 0 ≤ o < r − 1, we need

ca + cb ≤
1
2 logN

log la+lb−o−r+1
la+lb−2r+2

Because 1
2 logN will be a small number ( if N = 108, 1

2 logN ≈ 9 ), it requires the counts of a and
b be very small in order to reward the merge. For example, if N = 108 and you have two single
reads with o = 0, it is always beneficial to merge them together.

In fact, contig length la and lb also play roles. The longer the la and lb, the bigger ca+ cb is allowed.
Especially, when la + lb → ∞, overlap size does not affect and we should always merge the two
together.

But the effect of l is much less than the effect of c due to l appears in the log term. However, we
might also say that if both contigs are low expressors, we might want to merge them together to
increase BIC score.

8 References

[1] Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A., Dewey, C. N. (2010). RNA-Seq gene
expression estimation with read mapping uncertainty. Bioinformatics, 26(4), 493-500.

[2] Li, B. and Dewey, C. N. RSEM: accurate quantification from RNA-Seq data with or
without a reference genome. BMC Bioinformatics, 12:323. (Highly accessed)

[3] Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461-464.

[4] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer

8


