Inference in Belief Networks

Two Basic Algorithms
e SPI: Algebraic manipulation (Li & D’Ambrosio)

e Junction Tree: Message passing (Lauritzen & Spiegelhalter)



A Very Simple Belief Network

=
P(G|M) | Meter | -Meter
Gas| 9 1
~-Gas| .3 7

P(S|G) | Starts | -Starts
Gas| .7 3
—-Gas | .01 99




A Simple Example of SPI

What is the probability that there is gas in the tank (G) given that the gas meter (M) reads

true?

e What is desired probability distribution? P(G|M)

e Apply definition of conditional probability

P(G, M)

P(GIM) = "1,

e Express each of the needed probabilities as a marginal of the full joint
P(G,M)=>P(G,M,S)
S

P(M)= ¥ P(G,M,5)



A Simple Example of SPI Continued

e Compute each of these marginal distributions from the belief network

decomposition

%P(G,M,S) = ESJP(G)P(M|G)P(S|G)
= P(G)P(M|G)ZS:P(S|G)
= P(G)P(M|G)

> P(G,M,S) = ¥ P(G)P(M|G)P(S|G)

G, G.S
= LP(G)P(M|G) L P(5|G)
~ SP(GPMG)

e Divide numerator by denominator

P(G)P(M|G)
v P(G)P(M|G)

P(G|M) =



Simplifying the Method

e Don’t Compute Denominator
The denominator is just a normalizing factor = sum of all values of the numerator distri-

bution.

Just compute numerator distribution, then normalize.

e Impose evidence by deleting entries in probability tables
Given that M is true, modify P(M|G) to become P[G]

P(M|G) | Meter | -Meter P|G]
Gas| .9 1 = | Gas|.9
—Gas| .3 7 —Gas | .3

e Recursively delete all leaf nodes that are not the query and have no evi-
dence

In this case, delete P(S|G), since S is not involved in the query and S has no evidence.



Resulting Procedure

e Apply Evidence: P(M|G) = P[G]
e Determine Query Node: GG
e Delete Leaves: delete P(S|G)

e Compute conformal product of all remaining CPTs and sum over all re-
maining variables:
P(G) P[G] P[G]
P(G)-P|G]=| Gas|.8|-| Gas|.9|=| Gas|.72
—-Gas| .2 | |-Gas|.3 —Gas | .06

No other variables to sum over.

e Normalize (normalizing factor is 0.78)
PG|

Gas | .923
—-Gas | .077




Continuing the Example

Suppose we now observe that the car starts. What is P(G|M, S)?
e Apply Evidence: P(M|G) = P|G];, P(S|G) = P|G].
e Determine Query Node: G
e Delete Leaves: None

e Conformal Product of Remaining Nodes:
P(G) P[G], PGl P|G]

P(G)-P|G];-P|Glo=| Gas|.8|-| Gas|.9|-| Gas| .7 |=| Gas|.5040

—Gas|.2| |-Gas|.3| |-Gas| .01 —Gas | .0006

No other variables to sum over.

e Normalize (normalizing factor is 0.5046)
P(G)

Gas | .9988
—-Gas | .0012




A More Complex Example

@ Allergy \\Cat

What is P(Cold|Sneeze)?



SPI for Colds

e Apply Evidence: P(Sneeze|Cold, A) = P[Cold, A]
e Determine Query Node: Cold
e Delete Leaves: delete P(Scratch|Cat)

e Conformal Product and sum over remaining variables:

> P(Cold) - P[Cold, Al - P(A|Cat) - P(Cat) =
A Cat

P(Cold) - > P[Cold, Al - Y- P(A|Cat) - P(Cat)
A Cat

e Normalize



Greedy Algorithm for choosing the elimination order

Nodes = set of tables
Vars = set of variables to sum over
while |Nodes| > 1 do
Generate all pairs of tables in Nodes that share at least one variable
Compute size of table that would result from conformal product of each pair
(summing over as many variables V" as possible)
Let (11, T5) be the pair with the smallest resulting size (sum over V)
Delete T} and T5 from Nodes
Add conformal product y 17 - T to Nodes

end



Example of Greedy Algorithm

Given Tables: P(Cold), P|Cold, A], P(A|Cat), P(Cat)
Variables to Sum: A, C'at

Candidate pair Size of product | Sum over | Size of result
P(Cold) - P[Cold, A] 2 nil 2
P[Cold, A] - P(A|Cat) 3 A 2
P(A|Cat) - P(Cat) 2 Cat 1

Choose: P[A] = X P(A|Cat) - P(Cat)
Cat

Given Tables: P(Cold),P[Cold, A], P[A]
Variables to Sum: A

Candidate Pair Size of product | Sum over | Size of result
P(Cold) - P[Cold, A] 2 nil 2
P[Cold, A] - P[A] 2 A 1

Choose: P[Cold] = > P|Cold, A] - P|A]
A

Given Tables: P(Cold), P|Cold]

Variables to Sum: none

Only one candidate: P[C'old] = P(Cold) - P|Cold]



Full SPI Algorithm

GENERATECANDIDATES(table2)
for each table in candidates
if table and table2 share one or more variables
create new candidate nc that will multiply table and table2
add nc to candidates
end for

end GENERATECANDIDATES



Full SPI Algorithm (2)

SPI(net, evidence, query) returns table
net: list of probability tables
evidence: list of (variable value) pairs

query: list of variables

vsum = all variables — (evidence variables U query variables)
candidates = empty set
for table in net do
apply evidence (if any) to table
let margvars = legal marginalizers of table in vsum
table’ = MARGINALIZE(table, margvars)
GENERATECANDIDATES(table’)
end for
while |candidates| > 0 do
¢ = best candidate (candidate with smallest result table)
margvars = legal marginalizers of ¢
delete c.left and c.right from candidates
delete all ¢ from candidates if ¢’ involves either c.left or c.right
table’ = c.left.table - c.right.table
table’ = MARGINALIZE(table, margvars)
if (|candidates| == 0)
table’ = NORMALIZE(table')
return table
else
GENERATECANDIDATES(table’)
end while
end SPI



Viewing SPI as Message Passing

Allergy \Cat

\ PCold]

Every time we sum over a variable, we can view the resulting table as a “message” that is
being passed around the network. We will see that this is the idea underlying the Junction

Tree algorithm.



The Junction Tree Representation

S

T1 Ts T2

A junction tree is an undirected tree with two kinds of nodes: Cluster nodes and separator

nodes. It has the following properties:

e Every random variable belongs to one or more cluster nodes and may

belong to one or more separator nodes

e Every separator node has exactly two cluster-node neighbors (it may help
to think of the separator nodes as being information attached to the edge connecting two

cluster nodes).

e The random variables in a separator node are the set intersection of the

random variables in the two cluster nodes that it connects

e If a variable belongs to two cluster nodes, it belongs to all cluster nodes

on the path joining them. (The running intersection property)



Contents of the Junction Tree Nodes

e Each cluster node contains a probability table
P|Gas, Meter| = P(Gas) - P(Meter|Gas)
P[Gas, Starts| = P(Starts|Gas)

e Each separator node contains a probability table
Initially, the table is full of 1’s.:

P|Gas| = (1.0,1.0)

To build these tables:
Initialize all tables to 1.0
For each CPT in the belief net, choose one cluster node that contains all of its variables
Multiply it into the table of the cluster node



Conformal Quotients

Given two tables, we can divide one by the other:

P(G, M) | Meter | -Meter| P(G) P(M|G) | Meter | -Meter | P (M|G) | Meter | -Meter
Gas| .72 .08 Gas | .8 Gas|.72/.8| .08/.8 Gas| 9 1
—Gas | .06 14 —Gas | .2 —-Gas | .06/.2| .14/.2 —-Gas| .3 7

We cannot divide by zero, but 0 <+ 0 = 0 is ok.




Junction Tree Invariant

The joint distribution is the conformal product of the cluster nodes divided

by the conformal product of the separator nodes

P[G,M]- P|G, S]

P(G, M, S) = PG

We will see that the separator nodes store information about the “history” of the updates that
have been performed to each node. By dividing by this history information, we can “undo” the

updates.

In our initial construction, each original table from the belief net was multiplied into one of the

cluster nodes, and the separator nodes are all 1.0, so this invariant is trivially satisfied.



Junction Tree Inference

Inference consists of three phases:

e Message Passing: Evidence is entered into the network as a message, and then messages

are passed around the tree.

e Marginalization: Choose a node N that contains your query variable, V', and compute
P[V] = XN-V P[N]

e Normalization: Normalize P[V].
During message passing, every cluster node receives one incoming message from each separator

and sends an outgoing message to each separator. Message passing is complete when each

separator has passed a message in each direction. At this point, the tree is said to be consistent.



Passing a Message: Absorption

S

T1 Ts T2

To pass a message from (Gas, Meter) to (Gas, Starts), we perform the following:

e Marginalize 7} wrt separator variables: T = =), P[G, M]
e Update: Ty =15 (17/T)

e Update the separator table: 7T, =17



Passing a Message: Example

S

T1 Ts T2
In our example:
P(G)
e Marginalize 71: 77 =| Gas| .8
—-Gas | .2

P(S,G) | Starts | -Starts
e Update 75: P(S,G) = P(S|G) - (P(G)/1) = Gas| .56 24
—-Gas | .002 | .198

P(G)
e Update 7T;: Ts =1, =| Gas|.8
—Gas | .2

So the three tables are P(G, M), P(G), P(G, S). We can compute P(M ) by marginalizing 77,
P(G) by Ts, and P(S) by marginalizing P(G, 5).



Passing a Message (3)

Things to notice:

e Our original P(G) table has now been multiplied into both cluster nodes. But the invariant

still holds:
MI|G) - P(G) - P(5]G) - P(G)

P(G)

e If we had done the propagation from 75 to T}, we would have computed

PG, M, S) = 2

T = > P(S|G)=(1,1)
S
T1 = T1 : [(1, 1)/(1, 1)] = T1
T, = (1,1)
This would have left the junction tree unchanged.
e After propagating from 77 to 15, if we do the reverse propagation what happens?
7 = Y P(S,G)=P(G)
S
I - (P(G)/P(G)) =T,
T, = P(G)

So this also leaves the junction tree unchanged.



Recording Evidence

Suppose we observe M is true and we want P(G|M).

e Find a cluster node containing M

P(G, M) | Meter | -Meter
Th=P(G,M)= Gas| .72 .08
—-Gas | .06 14

e Zero out all entries of that table that disagree with the evidence

PG, M| | Meter | -Meter
Gas| .72 0
—Gas | .06 0

e Perform Propagation
e Choose node containing G

e Marginalize and Normalize



Propagation of the Evidence

e Marginalize T}:

P|G]
Tr =xy PG, M]=| Gas|.72
—Gas | .06
e Update T5:
P(S,G) | Starts | —Starts
T2 = T2 . (TS*/TS) = Gas | .5040 2160
—Gas | .0006 | .0594

e Update 7 =17

The reverse message causes no changes.




Extracting the Answer

We can choose any node containing GG, even a separator node, such as P|G]:

P|G]

Gas | .72

—Gas | .06
Normalization gives the answer:

P[G]

Gas | .923

—Gas | .077




Graphical Method of Building the Junction Tree

The Junction Tree can be constructed through a series of graph operations

e Marry the Parents (“moralize the graph”): Add an undirected edge between every

pair of parents of a node (unless they are already connected.
e Make All Arrows Undirected

e Triangulate the Graph: Add edges so that every cycle of length 4 or more contains a
chord.

e Identify the maximal Cliques: A clique is a complete graph. A maximal clique is a

maximal complete subgraph.

e Form Junction Graph: Create a cluster node for each clique and label it with the
variables in the clique.
Create an edge between any pair of cluster nodes that share variables.
Place a separator node on the edge labeled with the set of variables shared by the cluster

nodes it joins.

e Form the junction tree: Compute a maximum weighted spanning tree of the junction
graph where the weight on each edge is the number of variables in the separator of the

edge.



Example: ASIA

P(A)P(S)P(T|A)P(L|S)P(B|S)P(E|L, T)P(D|B, E)P(X|E)



Step 1: Moralize the Graph

We join T and L because they are parents of E.
We join E and B because they are parents of D.



Step 2: Triangulate the Moral Graph

(5)

e
yS

(o

(®)
There is a cycle of length four with no shortcuts: E, L, S, B.

We have a choice of where to add the shortcut. Either LB or SE would work.



Step 3: Cliques and Junction Graph




Step 4: Junction Tree

]

H o (BEL)

Notice that the running intersection property holds (this is guaranteed by the maximum weight

[m]

spanning tree and the moralizing and triangulating edges).



Junction Trees and Elimination Orders (D’Ambrosio)

Suppose we want to compute the marginal probability of one node (e.g., D). We can view

the junction tree as defining one order in which we marginalize away the irrelevant variables:

AT S L X,B E

P(D) = AjTjs%X’B,EP(A)P(S)P(T|A)P(L|S)P(B|S)P(E|L, T)P(D|B, E)P(X|E)
= T@L% . P(S)P(L|S)P(B|S)P(E|L,T)P(D|B, E)P(X|E) > P(A)P(T|A)]
= S’L%B’E P(S)P(L|S)P(B|S)P(D|B,E)P(X|E) ; P(E|L,T) % P(A)P(T|A)]
= LEB’EP(DIB,E) (XIE)g{PU (L]S)P (BIS)]ZT:P<E|L,T)§P<A)P<T|A)
= X§EP(D|B,E) (X|E) §[ Y P(S)P(L|S)P (B|S);P(E|L,T)§P(A)P(T|A)]
_ BZE P(D|B,E)§[P(X|E)]%%}P(S)P(L|S)P(B|S)%}P(E|L,T)§P(A)P(T|A)]

The separator tables along the way are the results of each ¥.



Expression Graph Showing the Elimination Order

PA)  P(TIA) RS PLIS
v \< }(BIS)

.
BLT 5S
BL
ZT\
LE o P(X|E) (X E)
+

L > X
B E\ E
-\ P(D|B,E)

e

2 BE




Relationship of SPI and Junction Tree

In SPI, the elimination order is recomputed for each query. Efficiency is gained by caching

previously-computed intermediates.

In JT, the graph represents a sharable elimination order.



Implementing Junction Tree using SPI

Based on D’Ambrosio’s insight that JT = SPI for some elimination ordering, we can simply
use SPI to compute a good elimination order for the joint distribution, and this will construct

the junction tree. (It is much easier than all of that graph manipulation stuff.)

The elimination order for Asia computed by SPI is
X,D,AT,L,S B, E
The expression is

2 PS)P(BISE P(LIS)E PEIL, T)E PA)PTIAI. PD|B, E)X P(X]E)]

B.E



Expression Graph

P(X|E) P(D|B,E) P(A) P(T|A)

(AT)
2A
P(EIL.T)
(ELT)

2T
}(LIS)

2L

P(S)

P(BIS)



Deleting Useless Nodes




Junction Tree

ES

EL

SaES

S



Algorithm Details

procedure BUILDJT (belief net)
let T be the current list of tables (either original tables or separator tables)
initially 7" := all original tables from belief net
repeat
choose next variable V' to eliminate (e.g., using SPI heuristic)
let § = all tables from 7" involving V'; remove them from T’
create new cluster node N containing all variables of tables in S
let table of N = conformal product of all original tables in .S
for each derived table in S add a link from NV to their source node
let R be a new separator table whose variables are the variables of N
set the cluster node of R to be N
remove V from R and add R to T’
until R is an empty table
for each separator node S with left cluster node L and right cluster node R
if the variables in S == the variables in L
delete S and merge L into R (including its links)
else if the variables in S == the variables in R
delete S and merge R into L (including its links)

end for



Algorithm Details (2)

Cluster Separator
Variable Conformal Node Links Node
Eliminated Product Created Created Created
X P(X|F) XFE nil P[E);
D P(D|B, E) BDE il P|B, E]
A P(A)P(T|A) AT nil P[T]
T P(E|L, T)P[T)] ELT AT P[E, L]
L P(L|S)P|E, L] ELS ELT P[E, S|
S P(S)P(B|S)P|E,S] BES ELS P[B, E],
B P[B, E|,P|B, E], BE BDE,BES P|E),
E P[E)|,P|E], b XE BE nil

Postprocessing to remove useless nodes:
We have BE — P|[BE] - BES, so we merge BE into BES.
BES becomes linked to £ and BDFE.

We have XE — P[E] — E, so we merge F into X E.
X E becomes linked to BE'S.



