
Learning in Belief Networks� Known structure, fully observable� Known structure, hidden variables� Unknown structure, fully observable� Unknown structure, hidden variables
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Density EstimationGiven: a set of random variables U = fV1; : : : ; Vnga set S of training examples u1; : : : ; um drawn according to unknown distribution P(U),where ui = hvi1; : : : ; vini.a space H of probability models P (U j�) de�ned by parameters �.Find: Predict the probability P (u) of a new data point u.This task is known as density estimation, because we are trying to estimate a probabilitydensity (or probability distribution) P (U).
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Bayesian and Quasi-Bayesian Learning TheoryFundamental Question: Given S and H, how to choose h?Full Bayesian Answer: Don't Choose!� De�ne a prior probability: P (h)� Consider predicting P (u) for new example u:P (ujS) = Xh P (u; hjS)= Xh P (u; h; S)P (S)= Xh P (ujh) � P (Sjh) � P (h)P (S)= Xh P (ujh) � normalize[P (Sjh) � P (h)]� Interpretation: Compute a weighted vote where each hypothesis h votesaccording to its posterior probability, P (hjS). This is called \Bayesian Model Aver-aging".
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Bayesian Learning Theory (2)Approximating the full Bayesian approach by the single most-likely h: MAP { MaximumAposteriori ProbabilityLet h� be the hypothesis with the highest posterior probability:h� = argmaxh normalize[P (Sjh)P (h)] = argmaxh P (Sjh)P (h):Approximate the sum over h with just this single hypothesis:P (ujS) = Xh P (ujh) � normalize[P (Sjh)P (h)]P (ujS) � P (ujh�)
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Bayesian Learning Theory (3)If P(h) is the uniform distribution, then we obtain the Maximum Likelihood Estimate(MLE): h� = argmaxh P (Sjh)P (h) = argmaxh P (Sjh)In terms of a hypothesis space H parameterized by �, the maximum likelihood estimate ^� is^� = argmax� P (Sj�):The function P (Sj�) is called the likelihood function.If the training examples are independent, then P (Sj^�) = Yi P (uij^�).To optimize P (Sj^�) we can optimize logP (Sj^�) = Xi logP (uij^�).
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Experimental Methodology� Collect Data� Divide data into Training and Testing subsets randomly� Choose ^� using Training data� Evaluate log likelihood on Test data
6



Known structure, Fully Observable
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Preg Glucose Insulin Mass Age Diabetes5 121 112 26.2 30 010 101 180 32.9 63 07 137 0 32.0 39 012 100 105 30.0 46 09 140 0 32.7 45 11 102 0 39.5 42 12 99 160 36.6 21 02 174 120 44.5 24 11 111 0 32.8 45 05 117 105 39.1 42 0The parameters ^� are the entries in the CPT's of the 6 nodes of the belief network.
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Learning Process� Discretize the DataGlucose < 100 ) 0100 � Glucose < 120 ) 1120 � Glucose < 140 ) 2140 � Glucose ) 3� Count CasesP (Mass = 0jPreg = 1; Age = 2) = N(Mass = 0; P reg = 1; Age = 2)N(Preg = 1; Age = 2)
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Known Structure, Hidden VariablesSimplest Case: Finite Mixture Model with unknown mixing proportions. jCj = 4.

C
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Complete Data and Incomplete DataWafer X1 X2 � � � X105 C1 1 1 � � � 0 ?2 0 1 � � � 1 ?3 0 1 � � � 1 ?4 1 0 � � � 1 ?The given data are incomplete. If we could assign a value for C to each example, then wewould have complete data, and learning would be trivial.
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Hard EMLet W = (X1; X2; : : : ; X105) be the observed wafer.� Guess initial values for C (e.g., randomly)� Repeat until convergence{ Hard M-Step: (Compute Maximum Likelihood Estimates from complete data)Compute P(C)Compute P(XijC) for all i{ Hard E-Step: (Re-estimate the C values.)For each wafer, set C to maximize P (W jC)In remote sensing, this is known as the ISODATA clustering algorithm.maxC P (W jC) = maxC logP (W jC) = maxC logYi P (XijC) = maxC Xi logP (XijC)
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Hard-EM ExampleTrue Model:
P(C)0 0.581 0.42

P (Xi = 1jC) 0 1X1 0.34 0.41X2 0.19 0.83X3 0.20 0.15X4 0.69 0.19X5 0.57 0.53X6 0.71 0.93X7 0.34 0.68X8 0.43 0.04X9 0.13 0.65X10 0.14 0.89Draw 100 training examples and 100 test examples.
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Training DataC X1 X2 X3 X4 X5 X6 X7 X8 X9 X101 1 1 0 1 1 1 1 0 0 10 0 1 0 1 1 1 1 1 0 00 0 0 1 1 1 1 0 0 0 10 1 0 0 0 1 1 0 0 0 01 1 1 0 0 1 1 1 0 1 10 0 0 1 1 0 1 1 1 0 01 1 1 0 1 1 1 1 0 0 10 0 0 0 1 1 1 0 1 0 00 0 0 0 1 0 0 1 0 0 0. . .Note that C is actually hidden in the training data.The maximum likelihood class of example 7 is actually 0, but its true class is 1. (Probabilitiesare 0.9725 vs. 0.0275.)
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Hard-EM: Fit of Model to Training Data (including true C)

P(C)0 0.611 0.39
P (Xi = 1jC) 0 1X1 0.28 0.41X2 0.15 0.85X3 0.15 0.13X4 0.67 0.23X5 0.49 0.51X6 0.74 0.97X7 0.39 0.69X8 0.34 0.03X9 0.10 0.67X10 0.16 0.87Hard-EM could achieve this �t if it correctly guessed the identity of the underlying classes.
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Hard-EM Training Curve
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Hard-EM Fitted Model

P(C)0 0.431 0.57
P (Xi = 1jC) 0 1X1 0.35 0.32X2 0.81 0.12X3 0.09 0.18X4 0.26 0.68X5 0.60 0.42X6 0.95 0.74X7 0.65 0.40X8 0.02 0.37X9 0.67 0.05X10 0.86 0.12Note that the classes are \reversed", in that the learned class 0 corresponds to the true class1. But since the true class is never observed, this is irrelevant. The likelihoods are the same.
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Search Can Get Stuck in Local MinimaThe problem here is that some parameters went to zero.

P(C)0 0.931 0.07
P (Xi = 1jC) 0 1X1 0.35 0.00X2 0.42 0.43X3 0.12 0.43X4 0.47 0.86X5 0.53 0.14X6 0.83 0.86X7 0.51 0.57X8 0.16 1.00X9 0.34 0.00X10 0.47 0.00
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The Expectation-Maximization (EM) AlgorithmFor Maximum Likelihood or Penalized Maximum Likelihood.Initialize � randomly.repeat until convergenceE-Step: For each wafer, compute ~P(CjW )M-Step: Compute Maximum (or Penalized) Likelihood Estimates from weighted data.P (C) = Pi ~P (CjWi)jSjP (X = xjC = c) = PfijXi=xg ~P (C = cjWi)Pi ~P (C = cjWi)We treat ~P (CjW ) as fractional \counts". Each waferWi belongs to class C fractionally. Theseare sometimes called the \responsibilities" (i.e., class C is responsible for wafer W accordingto ~P (CjW ).
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EM Training Curve
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Each iteration of EM is guaranteed to improve the likelihood of the data. Hence, EM isguaranteed to converge to a local maximum of the (penalized) likelihood function.It is a local search algorithm, so initialization is important. It is important to break symmetries.
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EM Resulting Model

P(C)0 0.351 0.65
P (Xi = 1jC) 0 1X1 0.41 0.28X2 0.81 0.21X3 0.11 0.15X4 0.26 0.63X5 0.56 0.47X6 0.97 0.75X7 0.74 0.38X8 0.00 0.34X9 0.76 0.08X10 0.96 0.16
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Avoiding Over�tting� Early Stopping. Hold out some of the data and measure log likelihood during training.When it reaches a local maximum, stop training.� Penalized Likelihood. Add a penalty for probabilities close to zero and one. A standardway to do this is to add \fake counts" to the data. For example, when counting up thenumber of times X5 is true, we add k; and the same when counting up the number false.Then we divide through by the total plus 2k:P (X5 = truejC = 1) = #fX5 = trueg + k#fC = 1g + 2kThis is called a Dirichlet Prior with parameter k. k = 1 (known as the Laplace Correction)gives a uniform distribution, and larger values of k bias the distribution toward 0.5.� Full Bayes. Guaranteed to avoid over�tting, but usually impractical.
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EM with Dirichlet Prior
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Dirichlet = 0

When k is reset to 0, EM over�ts immediately.A good value for k can be chosen by using part of the training data as a holdout set and tryingdi�erent values.
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Comparison of ResultsMethod Training Set Test Settrue model �802.8547 �816.3976hard-M true data �794.0431 �824.1350hard-EM: �791.6860 �826.9377soft-M true data �792.1115 �821.3197soft-EM: �790.9655 �827.2721soft-M true data � = 1 �794.9489 �821.1579soft-EM � = 1 �794.3053 �823.1899� true model: likelihood of training and test data computed using the true model.� hard-M true data: this is the model �t by the hard-M step using the true data (i.e.,true values of C). It is the best that hard-EM could do if it guessed all of the C's correctly.� soft-M true data: this is the model �t by one iteration of EM starting with the truemodel. It is the best that EM could do on this data set if it guessed ~P(CjW ) correctly.� soft-M true data � = 1: this is the model �t by one iteration of EM starting with thetrue model; Dirichlet prior of 1. This is the best that could be achieved by penalized EM.
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Unknown Structure, Fully Observable:Chou and Liu MethodHypothesis space: Space of all directed tree-structured belief networksChouLiufor all pairs (Xi; Xj) of variables docompute I(Xi;Xj) = Xxi;xj P (xi; xj) log P (xi; xj)P (xi)P (xj) (mutual information)end forConstruct a complete graph G over the variables such thatthe weight on the edge from Xi to Xj is I(Xi;Xj)Compute the maximum weight spanning tree T of GChoose a root node arbitrarily, and direct all edges away from it, recursively.Fit the probability tables of the resulting tree-structured belief network to the training data.end ChouLiu
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Greedy Algorithm for Growing A Belief NetworkCooper and Herskovits (1992) showed that for a given network structure hs where all variablesare discrete, multinomial random variables with Dirichlet priors, the likelihood of the data Sis: P (Sjhs) = mYi=1 qiYj=1 �(�ij)�(�ij +Nij) � riYk=1 �(�ijk +Nijk)�(�ijk)In this formula:S is the training datahs is a network structurei indexes the random variablesj indexes the possible con�gurations of the parent random variablesk indexes the possible values of variable XiNijk is the number of training examples where Xi = k when the parents of Xi are incon�guration j.Nij = PkNijk�ijk is our \pseudo-counts" for Nijk �ij = Pk �ijk
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Greedy Algorithm K2Cooper and Herskovitz start with a belief network with no edges and hill-climb to maximizelogP (Sjhs). To keep the search feasible, they ask the user to give an ordering of the variablesXi such that if Xi appears after Xj, then there cannot be an arc from Xi to Xj. In e�ect, theuser is asked to choose one possible direction of causality for each pair of variables.The algorithm then considers the nodes in order and greedily chooses parents of that node untiladding a parent does not improve logP (Sjhs).
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Optimal ReinsertionMoore et al. (2003) developed a new algorithm for learning belief net structure called OptimalReinsertion. It works by starting with an initial network (e.g., from Chou & Liu) and theniteratively deleting a node (and all of its edges) and then optimally re-inserting that node (withnew edges) into the network. It gives much better results than greedy algorithms.
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Unknown Structure, Hidden VariablesStructural EM Algorithm (Nir Friedman, 1997). Repeat:� E-Step: Compute \complete data" from the incomplete data and the current Bayesiannetwork structure and parameters.� Structural M-Step: Apply structure learning algorithm to the \complete data". Thisresults in a new network structure.� Standard M-Step: Find MAP estimates of the parameters of the new network structure.
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