
Hidden Markov Models

S1 S2 S3 S4 S5

X1 X2 X3 X4 X5

10 probability distributions to learn:P(S1);P(S2jS1);P(S3jS2);P(S4jS3);P(S5jS4)P(X1jS1);P(X2jS2);P(X3jS3);P(X4jS4);P(X5jS5)19 parameters if all variables are boolean.At each time t, the observed output is a mixture of two binomial distributions.
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Example HMM
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Note that the two states are called a and b and the two outputs are called 0 and 1.The output distribution is stationary (the same for all times t), but the transition distributionis non-stationary. In other words,P(X1jS1) = P(X2jS2) = P(X3jS3) = P(X4jS4) = P(X5jS5)Sometimes we say that the output distributions are \tied together". If at learning time weknew this, then the number of parameters to be learned would only be 11.
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Example HMM (2)Example strings generated by this HMM:(s1 . x1)(s2 . x2)(s3 . x3)(s4 . x4)(s5 . x5)((0 . 0) (0 . 1) (0 . 0) (1 . 0) (1 . 1))((0 . 0) (0 . 0) (0 . 0) (1 . 1) (1 . 1))((0 . 0) (0 . 0) (0 . 0) (0 . 0) (1 . 1))((0 . 0) (0 . 0) (1 . 1) (1 . 1) (1 . 1))((0 . 1) (0 . 0) (1 . 1) (1 . 1) (1 . 1))((0 . 0) (0 . 1) (1 . 1) (1 . 1) (1 . 0))((0 . 0) (0 . 0) (1 . 0) (0 . 0) (1 . 1))((0 . 1) (0 . 0) (1 . 1) (1 . 1) (1 . 1))((0 . 0) (0 . 0) (1 . 1) (1 . 1) (1 . 1))((0 . 0) (0 . 1) (0 . 0) (0 . 0) (1 . 1))
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The HMM Junction TreeThe HMM is a tree-structured network (each node has only one parent). So the JT is easy tocompute:
S1 S2 S2 S3 S3 S4 S4 S5

S2 X2S1 X1 S3 X3 S4 X4 S5 X5

S1 S4S3

S4S3S2

S2 S5
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HMM Inference 1: Computing P (X)Suppose we would like to know the probability that the HMM will generate a particular stringX = X1X2X3X4X5, for example, X = 00000.What we want to compute isXS P(S1)P(S2jS1)P(S3jS2)P(S4jS3)P(S5jS4)P(X1jS1)P(X2jS2)P(X3jS3)P(X4jS4)P(X5jS5)for some particular Xi's.If we eliminate the variables in the order S1, S2, . . . , we get what is known as the \forwardalgorithm":P (X) = XS5 P (X5jS5) 264XS4 P (S5jS4)P (X4jS4) 264XS3 P (S4jS3)P (X3jS3) 264XS2 P (S3jS2)P (X2jS2)264XS1 P (S2jS1)P (X1jS1) [P (S1)]375375375375
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HMM Inference 1: The Forward AlgorithmLet �(0) = P(S1)�(i) = XSi P(Si+1jSi)P (XijSi)�(i� 1)We can view this as message passing from left-to-right along the junction tree. But when wemultiply by P (XijSi) we are only considering the one value of Xi of interest (or equivalently,we apply evidence, which sets the other values to zero and then propagate them all).Note that we do not normalize at the end of the propagation.This is equivalent to� Apply evidence. Apply the evidence X = 00000.� collectEvidence(S5X5)� Sum: XS5 P[S5]
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HMM Inference 1: The Forward Algorithm: ExampleP (00000) :�(0) = [1:0; 0:0]�(1) = PS1P(S2jS1) � P (X1jS1) � �(0)P(S2jS1) S1 = 0 S1 = 1S2 = 0 .9 NAS2 = 1 .1 NA � P(X1jS1) S1 = 0 S1 = 1.8 NA � �(0) S1 = 0 S1 = 11.0 0.0 =
P [S1; S2] S1 = 0 S1 = 1S2 = 0 0.72 0S2 = 1 0.08 0Summing over S1 gives�(1) = �(1) S2 = 0 S2 = 10.72 0.08
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HMM Inference 1: The Forward Algorithm: Example (2)Messages that are passed: i P (Si = 0) P (Si = 1)1 1.0000 0.00002 0.7200 0.08003 0.2880 0.29604 0.0474 0.21905 0.0000 0.0598Final probability P (00000) = 0:00598.
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HMM Inference 2: Computing most likely state sequenceSuppose we want to know what was the most likely sequence of states. This is a special caseof the following general problem:Given: a belief network over variables Uevidence E for some of those variablesFind: the values u of the variables U such thatu = argmaxu P (U = ujE)The general algorithm is called �nding the Most Probable Explanation (MPE)A more e�cient special case algorithm for HMMs is called the Viterbi Algorithm
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HMM Inference 2: ExampleP(A;B) A = a1 A = a2B = b1 0.3 0.2B = b2 0.1 0.4 P(B;C) B = b1 B = b2C = c1 0.1 0.35C = c2 0.4 0.15The con�guration of the P(A;B) table with highest probability is (a2; b2).The con�guration of the P(B;C) table with highest probability is (b1; c2).How can we combine these to get the most likely con�guration of the joint distribution?maxA;B;CP(A;B;C) = maxA;B;C P(A;B)P(B;C)P(B)= maxA;B 0B@maxC P(A;B)P(B;C)P(B) 1CA= maxA;B P(A;B)maxC P(B;C)P(B)= maxA;B P(A;B)[0:40 0:35][0:50 0:50]= maxA;B P(A;B)[0:8 0:7]= maxA;B [0:24 0:16 0:07 0:28]= 0:28
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HMM Inference 2: Max Propagation in the Junction TreeMax Message Propagation:� Compute max message: T �s = maxV�S P[V ]where V is the set of variables at a cluster node, and S is the set of variables in the separatornode.� Update: T2 := T2 � (T �s =Ts)� Update the separator table: Ts := T �sCollectMax: Exactly like CollectEvidence, except that it uses Max propagation in-stead of marginalizing propagation.DistributeMax: Exactly likeDistributeEvidence, except that it uses Max propagationinstead of marginalizing propagation.
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HMM Inference 2: Computing A Most Likely Con�gurationFindMax:� Choose a cluster node N� Perform CollectMax(N)� Perform DistributeMax(N)� Remove ties. If there is a cluster node with two con�gurations v1 and v2 that both aremaximal for that node, then (a) choose one, (b) enter it as evidence, (c) call FindMaxrecursively.The maximum con�guration at each node is now part of a global maximum con�guration.
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The Viterbi AlgorithmIf we only want one most likely sequence, we can perform only the CollectMax operation,and then do a \traceback". This leaves the junction tree in an inconsistent state, however.Recall in our example, maxA;B was attained by (a2; b2).We can therefore propagate the b2 back across the separator and computec1 = argmaxC P(b2; C)In fact, we could keep back pointers so that when we computed maxC P(B;C), we rememberthe following table: P(B) maxC argmaxCB = b1 0.35 c2B = b2 0.40 c1When we learn that b2 was best, then we know that c1 was best.
13



The Viterbi Algorithm (2): Formal Statement� Perform CollectMax using the �nal HMM state SfFor each value of Si, we remember the value of Si�1 that achieved the maximum.� Compute the value of Sf with maximum probability� Follow the back pointers to determine the best path
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HMM Inference 3: The Forward-Backward AlgorithmIf we perform Hugin message passing given an observed string X , then we can answer allmarginals query P(Si) for all i.This is called the forward-backward or Baum-Welch algorithm, because if we perform Huginpropagation from the �nal state Sf , messages are �rst passed forward and then passed backward.
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Applications of HMMs in Speech Recognition

Speech Signal

String of Feature Vectors

String of Symbols

Most Likely Sentence

Signal Processing

Vector Quantization

Viterbi Search through HMM
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Signal ProcessingThe goal is to get a feature vector with features that describe the amount of energy in each ofseveral perceptually important frequency ranges.This is done by sampling the speech at high frequency (e.g., 16kHz), taking 10ms \windows" ofthe signal, �tting an autoregressive linear model that tries to predict the signal in the currentwindow based on the last 14 windows, and extracting the coe�cients of that linear model.These coe�cients correspond to di�erent frequency ranges, but they are evenly spaced. Theycan be transformed into the spacing believed to be important for human speech perception bythe cepstral transformation. This creates a nonlinear spacing of the intensity values, so thecepstral coe�cients are transformed to a mel scale.A typical set of features is the following:� 12 LPC cepstral coe�cients� the di�erence between the 12 coe�cients in the window at t + 2 and thewindow at t� 2� the power in this window, and the di�erenced power (t + 2 minus t� 2)This gives 26 features.
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Vector QuantizationA VQ codebook is a set of (e.g., 256) vectors c1; : : : ; c256.To encode a new vector v, we �nd the nearest vector ci in the codebook and return its index i.The codebook is constructed by taking a large speech sample, extracting features, and applyingk-means clustering (i.e., hard EM) to �nd 256 cluster centers (i.e., the latent variable has 256values).
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Constructing a Speech HMMA Speech HMM is built by combining three levels of model:� Word sequences: Given a large body of words (e.g., newspaper stories, closed-captiontranscriptions), form a probabilistic model over strings of words.{ bigram model: P (WijWj)this is the probability that word Wj is immediately followed by word Wi.{ trigram model: P (WijWj;Wk)� Word Models: P (p1; p2; : : : ; pkjWi) is the probability that wordWi will be pronouncedas the sequence of phones p1; p2; : : : ; pk.These are typically learned from transcribed, labeled speech.� Phone HMM: For each phone, an HMM is trained to �t the probability distribution ofthat phone. P (c1; c2; : : : ; cnjpi) is the probability that phone i will be pronounced as thesequence of VQ symbols c1; c2; : : : ; cn.By concatenating the phone HMM's according to the word model and concatenating the wordmodels according to the bigram or trigrammodel, we can construct a big HMM that correspondsto any particular spoken sentence.
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Typical Phone HMM
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Some of the edges are labeled with the name of an output probability distribution P (CjSt; St+1):� B Beginning� M Middle� E EndThe distributions of the other edges are usually unique (or are tied depending on the particularphone).
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Viterbi Search of the Speech HMMThe word HMM has a huge branching factor (20,000 words is typical today).This means it is infeasible to build an actual HMM data structure by macro expanding thetrigram model and the word pronunciation models.Instead, the necessary structure is constructed dynamically using a beam search.In the forward algorithm, instead of passing the whole P [Si] table, we delete all but the top Blargest values (B is called the \beam width"). The HMM is only constructed to store these Bcurrent best paths.There are additional tricks for avoiding considering all possible words.
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Applications of HMMs in Molecular BiologyEach DNA molecule can be represented as a string over a 4-letter alphabet fA;G;C; Tg. Agene is a DNA string, and often several genes are closely related to each other because ofevolution. Given a \family" of related genes, we would like to �t an HMM that generates allof the members of that gene family.
S E

di

mi

ii

mi = main line sequence (\consensus")di = deletion states. They are \silent"ii = insert states.For DNA, the output variables have 4 symbols, for proteins, 20.
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A HMM Model of the Globins (Krogh et al, 1993)
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A HMM Model of the Globins (2)
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END
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A HMM Model of Kinases
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Applications� Understand Gene Families� Mutually align genes to discover where bases have been inserted anddeleted� Identify new members of gene families� Discover highly-conserved subregions, which suggests functional impor-tanceAnd many others!
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Learning in HMMsThis is an incomplete data problem, like the Naive Bayes mixture model.The missing data consists of the \true hidden state" at each point in time.� EM trainingE-Step: Run Hugin propagation (= forward-backward) to compute ~P(Si)M-Step: Directly estimate P (Si+1jSi) and P (XijSi).� Viterbi training (Hard EM)Hard E-Step: Run Viterbi algorithm and set the states Si.Hard M-Step: Directly estimate P (Si+1jSi) and P (XijSi).Care must be taken to initialize well.In speech: hand-labeled data can be used to learn initial parameters.
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Incremental EMFull EM requires making a complete pass through the training data, computing ~P(SjX) foreach example X , and �nally performing the M step.However, EM still retains its convergence guarantees if we do partial E steps and partial Msteps. For example, we can compute ~P(SjX) for one example, do an M step to re-estimatethe parameters using the new ~P(SjX) for one example and the old ones for all of the rest ofthe examples.Incremental EM tends to converge faster than batch EM.
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