Why Large-scale Datasets?

Data Mining

Gain competitive advantages by analyzing data that describes the life of our computerized society.

• Artificial Intelligence

Emulate cognitive capabilities of humans. Humans learn from abundant and diverse data.

The Computerized Society Metaphor

A society with just two kinds of computers:

Makers do business and generate← revenue. They also produce datain proportion with their activity.

- When the population of computers grows:
 - The ratio #Thinkers/#Makers must remain bounded.
 - The Data grows with the number of Makers.
 - The number of Thinkers does not grow faster than the Data.

Limited Computing Resources

- The computing resources available for learning do not grow faster than the volume of data.
 - The cost of data mining cannot exceed the revenues.
 - Intelligent animals learn from streaming data.
- Most machine learning algorithms demand resources that grow faster than the volume of data.
 - Matrix operations (n^3 time for n^2 coefficients).
 - Sparse matrix operations are worse.

Part I

Statistical Efficiency versus Computational Costs.

This part is based on a joint work with Olivier Bousquet.

Simple Analysis

Statistical Learning Literature:

"It is good to optimize an objective function than ensures a fast estimation rate when the number of examples increases."

Optimization Literature:

"To efficiently solve large problems, it is preferable to choose an optimization algorithm with strong asymptotic properties, e.g. superlinear."

• Therefore:

"To address large-scale learning problems, use a superlinear algorithm to optimize an objective function with fast estimation rate.

Problem solved."

The purpose of this presentation is...

Too Simple an Analysis

Statistical Learning Literature:

"It is good to optimize an objective function than ensures a fast estimation rate when the number of examples increases."

• Optimization Literature:

"To efficiently solve large problems, it is preferable to choose an optimization algorithm with strong asymptotic properties, e.g. superlinear."

• Therefore: (error)

"To address large-scale learning problems, use a superlinear algorithm to optimize an objective function with fast estimation rate.

Problem solved."

... to show that this is completely wrong!

Objectives and Essential Remarks

Baseline large-scale learning algorithm

Randomly discarding data is the simplest way to handle large datasets.

- What are the statistical benefits of processing more data?
- What is the computational cost of processing more data?
- We need a theory that joins Statistics and Computation!
- 1967: Vapnik's theory does not discuss computation.
- 1981: Valiant's learnability excludes exponential time algorithms,
 but (i) polynomial time can be too slow, (ii) few actual results.
- We propose a simple analysis of approximate optimization. . .

Learning Algorithms: Standard Framework

- ullet Assumption: examples are drawn independently from an unknown probability distribution P(x,y) that represents the rules of Nature.
- Expected Risk: $E(f) = \int \ell(f(x), y) dP(x, y)$.
- Empirical Risk: $E_n(f) = \frac{1}{n} \sum \ell(f(x_i), y_i)$.
- ullet We would like f^* that minimizes E(f) among all functions.
- In general $f^* \notin \mathcal{F}$.
- ullet The best we can have is $f_{\mathcal{F}}^* \in \mathcal{F}$ that minimizes E(f) inside \mathcal{F} .
- But P(x,y) is unknown by definition.
- Instead we compute $f_n \in \mathcal{F}$ that minimizes $E_n(f)$. Vapnik-Chervonenkis theory tells us when this can work.

Learning with Approximate Optimization

Computing $f_n = \arg\min_{f \in \mathcal{F}} E_n(f)$ is often costly.

Since we already make lots of approximations, why should we compute f_n exactly?

Let's assume our optimizer returns f_n such that $E_n(\tilde{f}_n) < E_n(f_n) + \rho$.

For instance, one could stop an iterative optimization algorithm long before its convergence.

Decomposition of the Error (i)

$$E(\tilde{f}_n) - E(f^*) = E(f^*_{\mathcal{F}}) - E(f^*)$$
 Approximation error
$$+ E(f_n) - E(f^*_{\mathcal{F}})$$
 Estimation error
$$+ E(\tilde{f}_n) - E(f_n)$$
 Optimization error

Problem:

Choose \mathcal{F} , n, and ρ to make this as small as possible,

subject to budget constraints $\left\{ \begin{array}{l} \text{maximal number of examples } n \\ \text{maximal computing time } T \end{array} \right.$

Decomposition of the Error (ii)

Approximation error bound:

(Approximation theory)

- decreases when $\mathcal F$ gets larger.

Estimation error bound:

(Vapnik-Chervonenkis theory)

- decreases when n gets larger.
- increases when \mathcal{F} gets larger.

Optimization error bound:

(Vapnik-Chervonenkis theory plus tricks)

– increases with ρ .

Computing time T:

(Algorithm dependent)

- decreases with ρ
- increases with n
- increases with \mathcal{F}

Small-scale vs. Large-scale Learning

We can give rigorous definitions.

Definition 1:

We have a **small-scale learning** problem when the **active** budget constraint is the number of examples n.

Definition 2:

We have a large-scale learning problem when the active budget constraint is the computing time T.

Small-scale Learning

The active budget constraint is the number of examples.

- ullet To reduce the estimation error, take n as large as the budget allows.
- ullet To reduce the optimization error to zero, take ho=0.
- ullet We need to adjust the size of \mathcal{F} .

See Structural Risk Minimization (Vapnik 74) and later works.

Large-scale Learning

The active budget constraint is the computing time.

- More complicated tradeoffs.
 - The computing time depends on the three variables: \mathcal{F} , n, and ρ .
- Example.
 - If we choose ρ small, we decrease the optimization error. But we must also decrease \mathcal{F} and/or n with adverse effects on the estimation and approximation errors.
- The exact tradeoff depends on the optimization algorithm.
- We can compare optimization algorithms rigorously.

Executive Summary

Asymptotics: Estimation

Uniform convergence bounds (with capacity d+1)

Estimation error
$$\leq \mathcal{O}\left(\left[\frac{d}{n}\log\frac{n}{d}\right]^{\alpha}\right)$$
 with $\frac{1}{2}\leq\alpha\leq1$.

There are in fact three types of bounds to consider:

- Localized bounds (variance, Tsybakov):

Fast estimation rates are a big theoretical topic these days.

Asymptotics: Estimation+Optimization

Uniform convergence arguments give

Estimation error
$$+$$
 Optimization error $\leq \mathcal{O}\left(\left[\frac{d}{n}\log\frac{n}{d}\right]^{\alpha} + \rho\right)$.

This is true for all three cases of uniform convergence bounds.

\Rightarrow Scaling laws for ρ when \mathcal{F} is fixed

The approximation error is constant.

- No need to choose ρ smaller than $\mathcal{O}\left(\left[\frac{d}{n}\log\frac{n}{d}\right]^{\alpha}\right)$.
- Not advisable to choose ρ larger than $\mathcal{O}\Big(\Big[\frac{d}{n}\log\frac{n}{d}\Big]^{\alpha}\Big)$.

... Approximation+Estimation+Optimization

When \mathcal{F} is chosen via a λ -regularized cost

- Uniform convergence theory provides bounds for simple cases
 (Massart-2000; Zhang 2005; Steinwart et al., 2004-2007; ...)
- Computing time depends on both λ and ρ .
- Scaling laws for λ and ρ depend on the optimization algorithm.

When \mathcal{F} is realistically complicated

Large datasets matter

- because one can use more features,
- because one can use richer models.

Bounds for such cases are rarely realistic enough.

Luckily there are interesting things to say for \mathcal{F} fixed.

Case Study

Simple parametric setup

- $-\mathcal{F}$ is fixed.
- Functions $f_w(x)$ linearly parametrized by $w \in \mathbb{R}^d$.

Comparing four iterative optimization algorithms for $E_n(f)$

- 1. Gradient descent.
- 2. Second order gradient descent (Newton).
- 3. Stochastic gradient descent.
- 4. Stochastic second order gradient descent.

Quantities of Interest

• Empirical Hessian at the empirical optimum w_n .

$$H = \frac{\partial^2 E_n}{\partial w^2} (f_{w_n}) = \frac{1}{n} \sum_{i=1}^n \frac{\partial^2 \ell(f_n(x_i), y_i)}{\partial w^2}$$

• Empirical Fisher Information matrix at the empirical optimum w_n .

$$G = \frac{1}{n} \sum_{i=1}^{n} \left[\left(\frac{\partial \ell(f_n(x_i), y_i)}{\partial w} \right) \left(\frac{\partial \ell(f_n(x_i), y_i)}{\partial w} \right)' \right]$$

Condition number

We assume that there are λ_{\min} , λ_{\max} and ν such that

- trace $(GH^{-1}) \approx \nu$.
- spectrum $(H) \subset [\lambda_{\min}, \lambda_{\max}].$

and we define the condition number $\kappa = \lambda_{\rm max}/\lambda_{\rm min}$.

Gradient Descent (GD)

Iterate

•
$$w_{t+1} \leftarrow w_t - \eta \, rac{\partial E_n(f_{w_t})}{\partial w}$$

Best speed achieved with fixed learning rate $\eta = \frac{1}{\lambda_{\max}}$. (e.g., Dennis & Schnabel, 1983)

	Cost per	Iterations	Time to reach	Time to reach
	iteration	to reach $ ho$	accuracy $ ho$	$E(\tilde{f}_n) - E(f_{\mathcal{F}}^*) < \varepsilon$
GD	$\mathcal{O}(nd)$	$\mathcal{O}\left(\kappa\log\frac{1}{\rho}\right)$	$\mathcal{O}\left(nd\kappa\log\frac{1}{ ho}\right)$	$\mathcal{O}\left(\frac{d^2 \kappa}{\varepsilon^{1/\alpha}} \log^2 \frac{1}{\varepsilon}\right)$

- In the last column, n and ρ are chosen to reach ε as fast as possible.
- Solve for ε to find the best error rate achievable in a given time.
- Remark: abuses of the $\mathcal{O}()$ notation

Second Order Gradient Descent (2GD)

Iterate

$$ullet w_{t+1} \leftarrow w_t - H^{-1} \, rac{\partial E_n(f_{w_t})}{\partial w}$$

We assume H^{-1} is known in advance. Superlinear optimization speed (e.g., Dennis & Schnabel, 1983)

	Cost per	Iterations	Time to reach	Time to reach
	iteration	to reach $ ho$	accuracy $ ho$	$E(\tilde{f}_n) - E(f_{\mathcal{F}}^*) < \varepsilon$
2GD	$\mathcal{O}(d(d+n))$	$\mathcal{O}\left(\log\log\frac{1}{\rho}\right)$	$\mathcal{O}\left(d(d+n)\log\log\frac{1}{\rho}\right)$	$\mathcal{O}\left(\frac{d^2}{\varepsilon^{1/\alpha}}\log\frac{1}{\varepsilon}\log\log\frac{1}{\varepsilon}\right)$

- Optimization speed is much faster.
- Learning speed only saves the condition number κ .

Stochastic Gradient Descent (SGD)

Iterate

• Draw random example (x_t, y_t) .

$$\bullet \quad w_{t+1} \leftarrow w_t - \frac{\eta}{t} \, \frac{\partial \ell(f_{w_t}(x_t), y_t)}{\partial w}$$

Best decreasing gain schedule with $\eta = \frac{1}{\lambda_{\min}}$. (see Murata, 1998; Bottou & LeCun, 2004)

	Cost per	Iterations	Time to reach	Time to reach	
	iteration	to reach $ ho$	accuracy $ ho$	$E(\tilde{f}_n) - E(f_{\mathcal{F}}^*) < \varepsilon$	
SGD	$\mathcal{O}(d)$	$\frac{\nu k}{\rho} + o\left(\frac{1}{\rho}\right)$	$\mathcal{O}\!\left(\!rac{d uk}{ ho}\! ight)$	$\mathcal{O}\!\left(\!rac{d uk}{arepsilon} ight)$	

With
$$1 < k < \kappa^2$$

- Optimization speed is catastrophic.
- Learning speed does not depend on the statistical estimation rate α .
- Learning speed depends on condition number κ but scales very well.

Second order Stochastic Descent (2SGD)

Iterate

• Draw random example (x_t, y_t) .

•
$$w_{t+1} \leftarrow w_t - \frac{1}{t} H^{-1} \frac{\partial \ell(f_{w_t}(x_t), y_t)}{\partial w}$$

Replace scalar gain $\frac{\eta}{t}$ by matrix $\frac{1}{t}H^{-1}$.

	Cost per	Iterations	Time to reach	Time to reach	
	iteration	to reach $ ho$	accuracy $ ho$	$E(\tilde{f}_n) - E(f_{\mathcal{F}}^*) < \varepsilon$	
2SGD	$\mathcal{O}(d^2)$	$\frac{\nu}{\rho} + o\left(\frac{1}{\rho}\right)$	$\mathcal{O}\!\left(\!rac{d^2 u}{ ho}\! ight)$	$\mathcal{O}\!\left(\!rac{d^2 u}{arepsilon}\! ight)$	

- Each iteration is d times more expensive.
- The number of iterations is reduced by κ^2 (or less.)
- Second order only changes the constant factors.

Part II

Learning with Stochastic Gradient Descent.

Benchmarking SGD in Simple Problems

- The theory suggests that SGD is very competitive.
 - Many people associate SGD with trouble.
- SGD historically associated with back-propagation.
 - Multilayer networks are very hard problems (nonlinear, nonconvex)
 - What is difficult, SGD or MLP?

- Try <u>PLAIN SGD</u> on simple learning problems.
 - Support Vector Machines
 - Conditional Random Fields

Download from http://leon.bottou.org/projects/sgd. These simple programs are very short.

See also (Shalev-Schwartz et al., 2007; Vishwanathan et al., 2006)

Text Categorization with SVMs

Dataset

- Reuters RCV1 document corpus.
- 781,265 training examples, 23,149 testing examples.
- -47,152 TF-IDF features.

Task

- Recognizing documents of category CCAT.

- Minimize
$$E_n = \frac{1}{n} \sum_i \left(\frac{\lambda}{2} w^2 + \ell(w x_i + b, y_i) \right).$$

- Update
$$w \leftarrow w - \eta_t \nabla(w_t, x_t, y_t) = w - \eta_t \left(\lambda w + \frac{\partial \ell(w x_t + b, y_t)}{\partial w} \right)$$

Same setup as (Shalev-Schwartz et al., 2007) but plain SGD.

Text Categorization with SVMs

Results: Linear SVM

$$\ell(\hat{y}, y) = \max\{0, 1 - y\hat{y}\}$$
 $\lambda = 0.0001$

	Training Time	Primal cost	Test Error
SVMLight	23,642 secs	0.2275	6.02%
SVMPerf	66 secs	0.2278	6.03%
SGD	1.4 secs	0.2275	6.02%

• Results: Log-Loss Classifier

$$\ell(\hat{y}, y) = \log(1 + \exp(-y\hat{y})) \qquad \lambda = 0.00001$$

Traini	ng Time	Primal cost	Test Error
LibLinear ($\varepsilon = 0.01$)	30 secs	0.18907	5.68%
LibLinear ($\varepsilon = 0.001$)	44 secs	0.18890	5.70%
SGD	2.3 secs	0.18893	5.66%

The Wall

More SVM Experiments

From: Patrick Haffner

Date: Wednesday 2007-09-05 14:28:50

... I have tried on some of our main datasets...

I can send you the example, it is so striking!

Patrick

Dataset	Train size	Number of features		LIBSVM (SDot)		LLAMA MAXENT	SGDSVM
Reuters	781K	47K	0.1%	210,000	3930	153	7
Translation	1000K	274K	0.0033%	days	47,700	1,105	7
SuperTag	950K	46K	0.0066%	31,650	905	210	1
Voicetone	579K	88K	0.019%	39,100	197	51	1

More SVM Experiments

From: Olivier Chapelle

Date: Sunday 2007-10-28 22:26:44

... you should really run batch with various training set sizes ...

- Olivier

Average Test Loss

Log-loss problem

Batch Conjugate Gradient on various training set sizes

Stochastic Gradient on the full set