
Why Large-scale Datasets?

• Data Mining

Gain competitive advantages by

analyzing data that describes the life of

our computerized society.

• Artificial Intelligence

Emulate cognitive capabilities of humans.

Humans learn from abundant and diverse data.

The Computerized Society Metaphor

• A society with just two kinds of computers:

←

Makers do business and generate

revenue. They also produce data

in proportion with their activity.

Thinkers analyze the data to

increase revenue by finding

competitive advantages.

→

• When the population of computers grows:

– The ratio #Thinkers/#Makers must remain bounded.

– The Data grows with the number of Makers.

– The number of Thinkers does not grow faster than the Data.

Limited Computing Resources

• The computing resources available for learning

do not grow faster than the volume of data.

– The cost of data mining cannot exceed the revenues.

– Intelligent animals learn from streaming data.

•Most machine learning algorithms demand resources

that grow faster than the volume of data.

– Matrix operations (n3 time for n2 coefficients).

– Sparse matrix operations are worse.

Part I

Statistical Efficiency versus

Computational Costs.

This part is based on a joint work with Olivier Bousquet.

Simple Analysis

• Statistical Learning Literature:

“It is good to optimize an objective function than ensures a fast

estimation rate when the number of examples increases.”

• Optimization Literature:

“To efficiently solve large problems, it is preferable to choose

an optimization algorithm with strong asymptotic properties, e.g.

superlinear.”

• Therefore:

“To address large-scale learning problems, use a superlinear algorithm to

optimize an objective function with fast estimation rate.

Problem solved.”

The purpose of this presentation is. . .

Too Simple an Analysis

• Statistical Learning Literature:

“It is good to optimize an objective function than ensures a fast

estimation rate when the number of examples increases.”

• Optimization Literature:

“To efficiently solve large problems, it is preferable to choose

an optimization algorithm with strong asymptotic properties, e.g.

superlinear.”

• Therefore: (error)

“To address large-scale learning problems, use a superlinear algorithm to

optimize an objective function with fast estimation rate.

Problem solved.”

. . . to show that this is completely wrong !

Objectives and Essential Remarks

• Baseline large-scale learning algorithm

Randomly discarding data is the simplest

way to handle large datasets.

– What are the statistical benefits of processing more data?

– What is the computational cost of processing more data?

• We need a theory that joins Statistics and Computation!

– 1967: Vapnik’s theory does not discuss computation.

– 1981: Valiant’s learnability excludes exponential time algorithms,

but (i) polynomial time can be too slow, (ii) few actual results.

– We propose a simple analysis of approximate optimization. . .

Learning Algorithms: Standard Framework

• Assumption: examples are drawn independently from an unknown

probability distribution P (x, y) that represents the rules of Nature.

• Expected Risk: E(f) =
∫

ℓ(f (x), y) dP (x, y).

• Empirical Risk: En(f) = 1
n

∑

ℓ(f (xi), yi).

•We would like f∗ that minimizes E(f) among all functions.

• In general f∗ /∈ F.

• The best we can have is f∗
F
∈ F that minimizes E(f) inside F.

• But P (x, y) is unknown by definition.

• Instead we compute fn ∈ F that minimizes En(f).

Vapnik-Chervonenkis theory tells us when this can work.

Learning with Approximate Optimization

Computing fn = arg min
f∈F

En(f) is often costly.

Since we already make lots of approximations,

why should we compute fn exactly?

Let’s assume our optimizer returns f̃n

such that En(f̃n) < En(fn) + ρ.

For instance, one could stop an iterative

optimization algorithm long before its convergence.

Decomposition of the Error (i)

E(f̃n)− E(f∗) = E(f∗F)− E(f∗) Approximation error

+ E(fn)− E(f∗F) Estimation error

+ E(f̃n)− E(fn) Optimization error

Problem:

Choose F, n, and ρ to make this as small as possible,

subject to budget constraints

{

maximal number of examples n
maximal computing time T

Decomposition of the Error (ii)

Approximation error bound: (Approximation theory)

– decreases when F gets larger.

Estimation error bound: (Vapnik-Chervonenkis theory)

– decreases when n gets larger.

– increases when F gets larger.

Optimization error bound: (Vapnik-Chervonenkis theory plus tricks)

– increases with ρ.

Computing time T : (Algorithm dependent)

– decreases with ρ

– increases with n

– increases with F

Small-scale vs. Large-scale Learning

We can give rigorous definitions.

•Definition 1:
We have a small-scale learning problem when the active
budget constraint is the number of examples n.

•Definition 2:
We have a large-scale learning problem when the active
budget constraint is the computing time T .

Small-scale Learning

The active budget constraint is the number of examples.

• To reduce the estimation error, take n as large as the budget allows.

• To reduce the optimization error to zero, take ρ = 0.

•We need to adjust the size of F.

Size of F

Estimation error

Approximation error

See Structural Risk Minimization (Vapnik 74) and later works.

Large-scale Learning

The active budget constraint is the computing time.

•More complicated tradeoffs.

The computing time depends on the three variables: F, n, and ρ.

• Example.

If we choose ρ small, we decrease the optimization error. But we

must also decrease F and/or n with adverse effects on the estimation

and approximation errors.

• The exact tradeoff depends on the optimization algorithm.

•We can compare optimization algorithms rigorously.

Executive Summary

log (ρ)

log(T)

ρ decreases faster than exp(−T)

ρ decreases like 1/T

Extraordinary poor
optimization algorithm

Good optimization algorithm (superlinear).

Mediocre optimization algorithm (linear).
ρ decreases like exp(−T)

Best ρ

Asymptotics: Estimation

Uniform convergence bounds (with capacity d + 1)

Estimation error ≤ O

([

d

n
log

n

d

]α)

with
1

2
≤ α ≤ 1 .

There are in fact three types of bounds to consider:

– Classical V-C bounds (pessimistic): O

(

√

d
n

)

– Relative V-C bounds in the realizable case: O

(

d

n
log

n

d

)

– Localized bounds (variance, Tsybakov): O

([

d

n
log

n

d

]α)

Fast estimation rates are a big theoretical topic these days.

Asymptotics: Estimation+Optimization

Uniform convergence arguments give

Estimation error + Optimization error ≤ O

([

d

n
log

n

d

]α

+ ρ

)

.

This is true for all three cases of uniform convergence bounds.

Scaling laws for ρ when F is fixed

The approximation error is constant.

– No need to choose ρ smaller than O
([

d
n log n

d

]α)

.

– Not advisable to choose ρ larger than O
([

d
n log n

d

]α)

.

. . . Approximation+Estimation+Optimization

When F is chosen via a λ-regularized cost

– Uniform convergence theory provides bounds for simple cases

(Massart-2000; Zhang 2005; Steinwart et al., 2004-2007; . . .)

– Computing time depends on both λ and ρ.

– Scaling laws for λ and ρ depend on the optimization algorithm.

When F is realistically complicated

Large datasets matter

– because one can use more features,

– because one can use richer models.

Bounds for such cases are rarely realistic enough.

Luckily there are interesting things to say for F fixed.

Case Study

Simple parametric setup

– F is fixed.

– Functions fw(x) linearly parametrized by w ∈ R
d.

Comparing four iterative optimization algorithms for En(f)

1. Gradient descent.

2. Second order gradient descent (Newton).

3. Stochastic gradient descent.

4. Stochastic second order gradient descent.

Quantities of Interest

• Empirical Hessian at the empirical optimum wn.

H =
∂2En

∂w2
(fwn) =

1

n

n
∑

i=1

∂2ℓ(fn(xi), yi)

∂w2

• Empirical Fisher Information matrix at the empirical optimum wn.

G =
1

n

n
∑

i=1

[

(

∂ℓ(fn(xi), yi)

∂w

) (

∂ℓ(fn(xi), yi)

∂w

)′
]

• Condition number

We assume that there are λmin, λmax and ν such that

– trace
(

GH−1
)

≈ ν.

– spectrum
(

H
)

⊂ [λmin, λmax].

and we define the condition number κ = λmax/λmin.

Gradient Descent (GD)

Iterate

• wt+1← wt − η
∂En(fwt)

∂w

Gradient J

Best speed achieved with fixed learning rate η = 1
λmax

.

(e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E(f̃n)− E(f∗F) < ε

GD O(nd) O
(

κ log 1
ρ

)

O
(

ndκ log 1
ρ

)

O
(

d2 κ
ε1/α log2 1

ε

)

– In the last column, n and ρ are chosen to reach ε as fast as possible.

– Solve for ε to find the best error rate achievable in a given time.

– Remark: abuses of the O() notation

Second Order Gradient Descent (2GD)

Iterate

• wt+1← wt −H−1 ∂En(fwt)

∂w

Gradient J

We assume H−1 is known in advance.

Superlinear optimization speed (e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E(f̃n)− E(f∗F) < ε

2GD O
(

d
(

d + n
))

O
(

log log 1
ρ

)

O
(

d
(

d + n
)

log log 1
ρ

)

O
(

d2

ε1/α log 1
ε log log 1

ε

)

– Optimization speed is much faster.

– Learning speed only saves the condition number κ.

Stochastic Gradient Descent (SGD)

Iterate

• Draw random example (xt, yt).

• wt+1← wt −
η

t

∂ℓ(fwt(xt), yt)

∂w

Total Gradient <J(x,y,w)>

Partial Gradient J(x,y,w)

Best decreasing gain schedule with η = 1
λmin

.
(see Murata, 1998; Bottou & LeCun, 2004)

Cost per Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E(f̃n)− E(f∗F) < ε

SGD O(d) ν k
ρ + o

(

1
ρ

)

O
(

d ν k
ρ

)

O
(

d ν k
ε

)

With 1 ≤ k ≤ κ2

– Optimization speed is catastrophic.
– Learning speed does not depend on the statistical estimation rate α.
– Learning speed depends on condition number κ but scales very well.

Second order Stochastic Descent (2SGD)

Iterate

• Draw random example (xt, yt).

• wt+1← wt −
1

t
H−1 ∂ℓ(fwt(xt), yt)

∂w

Total Gradient <J(x,y,w)>

Partial Gradient J(x,y,w)

Replace scalar gain
η

t
by matrix

1

t
H−1.

Cost per Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E(f̃n)− E(f∗F) < ε

2SGD O
(

d2
) ν

ρ + o
(

1
ρ

)

O
(

d2 ν
ρ

)

O
(

d2 ν
ε

)

– Each iteration is d times more expensive.

– The number of iterations is reduced by κ2 (or less.)

– Second order only changes the constant factors.

Part II

Learning with Stochastic

Gradient Descent.

Benchmarking SGD in Simple Problems

• The theory suggests that SGD is very competitive.

– Many people associate SGD with trouble.

• SGD historically associated with back-propagation.

– Multilayer networks are very hard problems (nonlinear, nonconvex)

– What is difficult, SGD or MLP?

• Try PLAIN SGD on simple learning problems.

– Support Vector Machines

– Conditional Random Fields

Download from http://leon.bottou.org/projects/sgd.

These simple programs are very short.

See also (Shalev-Schwartz et al., 2007; Vishwanathan et al., 2006)

Text Categorization with SVMs

• Dataset

– Reuters RCV1 document corpus.

– 781,265 training examples, 23,149 testing examples.

– 47,152 TF-IDF features.

• Task

– Recognizing documents of category CCAT.

– Minimize En =
1

n

∑

i

(

λ

2
w2 + ℓ(w xi + b, yi)

)

.

– Update w ← w − ηt∇(wt, xt, yt) = w − ηt

(

λw +
∂ℓ(w xt + b, yt)

∂w

)

Same setup as (Shalev-Schwartz et al., 2007) but plain SGD.

Text Categorization with SVMs

• Results: Linear SVM
ℓ(ŷ, y) = max{0, 1− yŷ} λ = 0.0001

Training Time Primal cost Test Error

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

• Results: Log-Loss Classifier
ℓ(ŷ, y) = log(1 + exp(−yŷ)) λ = 0.00001

Training Time Primal cost Test Error

LibLinear (ε = 0.01) 30 secs 0.18907 5.68%
LibLinear (ε = 0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%

The Wall

50

100

0.2

0.3

0.1 0.01 0.001 0.0001 1e−05 1e−07 1e−08 1e−09

Training time (secs)

Testing cost

1e−06

Optimization accuracy (trainingCost−optimalTrainingCost)

LibLinear

SGD

More SVM Experiments

From: Patrick Haffner

Date: Wednesday 2007-09-05 14:28:50

. . . I have tried on some of our main datasets. . .

I can send you the example, it is so striking!

– Patrick

Dataset Train Number of % non-0 LIBSVM LLAMA LLAMA SGDSVM
size features features (SDot) SVM MAXENT

Reuters 781K 47K 0.1% 210,000 3930 153 7
Translation 1000K 274K 0.0033% days 47,700 1,105 7
SuperTag 950K 46K 0.0066% 31,650 905 210 1
Voicetone 579K 88K 0.019% 39,100 197 51 1

More SVM Experiments

From: Olivier Chapelle

Date: Sunday 2007-10-28 22:26:44

. . . you should really run batch with various training set sizes . . .

– Olivier

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.001 0.01 0.1 10 100 1000

Time (seconds)

Average Test Loss

1

n=30000

n=100000

n=300000

n=781265

stochastic

n=10000

Log-loss problem

Batch Conjugate
Gradient on various
training set sizes

Stochastic Gradient
on the full set

