Why Large-scale Datasets?

e Data Mining

Gain competitive advantages by
analyzing data that describes the life of
our computerized society.

e Artificial Intelligence

Q Emulate cognitive capabilities of humans.
ﬂﬁ} Humans learn from abundant and diverse data.
Fl=



The Computerized Society Metaphor

e A society with just two kinds of computers:

Makers do business and generate
revenue. They also produce data
in proportion with their activity.

Thinkers analyze the data to
increase revenue by finding —
competitive advantages.

e \When the population of computers grows:

— The ratio #Thinkers/#Makers must remain bounded.
— The Data grows with the number of Makers.
— The number of Thinkers does not grow faster than the Data.



Limited Computing Resources

e The computing resources available for learning
do not grow faster than the volume of data.

— The cost of data mining cannot exceed the revenues.
— Intelligent animals learn from streaming data.

e Most machine learning algorithms demand resources

that grow faster than the volume of data.

— Matrix operations (n° time for n? coefficients).

— Sparse matrix operations are worse.

STOP
AHEAD




Part 1

Statistical Efficiency versus
Computational Costs.

This part is based on a joint work with Olivier Bousquet.



Simple Analysis

e Statistical Learning Literature:
“It is good to optimize an objective function than ensures a fast
estimation rate when the number of examples increases.”

e Optimization Literature:

“To efficiently solve large problems, it is preferable to choose
an optimization algorithm with strong asymptotic properties, e.g.
superlinear.”

e T herefore:

“To address large-scale learning problems, use a superlinear algorithm to
optimize an objective function with fast estimation rate.

Problem solved.”

The purpose of this presentation is...



Too Simple an Analysis

e Statistical Learning Literature:
“It is good to optimize an objective function than ensures a fast
estimation rate when the number of examples increases.”

e Optimization Literature:

“To efficiently solve large problems, it is preferable to choose
an optimization algorithm with strong asymptotic properties, e.g.
superlinear.”

e Therefore: (error)
“To address large-scale learning problems, use a superlinear algorithm to
optimize an objective function with fast estimation rate.

Problem solved.”

... to show that this is completely wrong!




ODbjectives and Essential Remarks

e Baseline large-scale learning algorithm

Randomly discarding data is the simplest
way to handle large datasets.

— What are the statistical benefits of processing more data?
— What is the computational cost of processing more data?

e \We need a theory that joins Statistics and Computation!

— 1967: Vapnik’s theory does not discuss computation.

— 1981: Valiant’'s learnability excludes exponential time algorithms,
but (i) polynomial time can be too slow, (ii) few actual results.

— We propose a simple analysis of approximate optimization. ..



Learning Algorithms: Standard Framework

e Assumption: examples are drawn independently from an unknown
probability distribution P(x,y) that represents the rules of Nature.

e Expected Risk: E(f) = [L4(f(x),y)dP(x,y).

e Empirical Risk: En(f) = 23 0(f(x),u:).

e We would like f* that minimizes E(f) among all functions.

e In general f* ¢ F.

e The best we can have is fr € F that minimizes E(f) inside F.
e But P(z,y) is unknown by definition.

e Instead we compute f,, € F that minimizes E,(f).
Vapnik-Chervonenkis theory tells us when this can work.



Learning with Approximate Optimization

Computing f, = argmin E,(f) is often costly.
feF

Since we already make |lots of approximations,

why should we compute f, exactly?

Let's assume our optimizer returns f,
such that E,(fn) < En(fn) + p.

For instance, one could stop an iterative
optimization algorithm long before its convergence.



Decomposition of the Error (i)

E(fn) — E(f7) = E(fF) — E(f7) Approximation error
+ E(fn) — E(fF) Estimation error
+ E(fn) — E(fn) Optimization error

Problem:
Choose F, n, and p to make this as small as possible,

maximal number of examples n

subject to budget constraints { maximal computing time T



Decomposition of the Error (ii)

Approximation error bound: (Approximation theory)
— decreases when F gets larger.

Estimation error bound: (Vapnik-Chervonenkis theory)
— decreases when n gets larger.
— increases when F gets larger.

Optimization error bound: (Vapnik-Chervonenkis theory plus tricks)
— increases with p.

Computing time T (Algorithm dependent)
— decreases with p
— increases with n
— increases with F



Small-scale vs. Large-scale Learning

We can give rigorous definitions.

e Definition 1:
We have a small-scale learning problem when the active
budget constraint is the number of examples n.

e Definition 2:
We have a large-scale learning problem when the active
budget constraint is the computing time T'.



Small-scale Learning

The active budget constraint is the number of examples.

e 10 reduce the estimation error, take n as large as the budget allows.
e To reduce the optimization error to zero, take p = 0.

e \We need to adjust the size of F.

Approximation error

Size of F

See Structural Risk Minimization (Vapnik 74) and later works.



Large-scale Learning

The active budget constraint is the computing time.

e More complicated tradeoffs.
The computing time depends on the three variables: F, n, and p.

e Example.
If we choose p small, we decrease the optimization error. But we
must also decrease F and/or n with adverse effects on the estimation
and approximation errors.

e T he exact tradeoff depends on the optimization algorithm.

e \We can compare optimization algorithms rigorously.



Executive Summary

Good optimization algorithm (superlinear).

log (P) P decreases faster than exp(-T)
Mediocre optimization algorithm (linear).
______ p decreases like exp(-T)
Best p

Extraordinary poor
optimization algorithm




Asymptotics: Estimation

Uniform convergence bounds (with capacity d + 1)

Do

8
1
Estimation error < (’)( log d] ) with 5 <a<l1.

n

There are in fact three types of bounds to consider:

— Classical V-C bounds (pessimistic): O %)
. : . d. n
— Relative V-C bounds in the realizable case: O —10933
n
d (6]
— Localized bounds (variance, Tsybakov): O([— logg] )
n

Fast estimation rates are a big theoretical topic these days.



Asymptotics: Estimation+Optimization

Uniform convergence arguments give

. . . . d nl®
Estimation error + Optimization error < O —logg + p) .
mn

This is true for all three cases of uniform convergence bounds.

® Scaling laws for p when F is fixed
The approximation error is constant.

(87
— No need to choose p smaller than (’)({% log%} )

87
— Not advisable to choose p larger than O([%log%] )



. . . Approximation+Estimation4+Optimization

When F is chosen via a A-redgularized cost

— Uniform convergence theory provides bounds for simple cases
(Massart-2000; Zhang 2005; Steinwart et al., 2004-2007; ...)

— Computing time depends on both A and p.
— Scaling laws for A and p depend on the optimization algorithm.

When F is realistically complicated

LLarge datasets matter
because one can use more features,

because one can use richer models.

Bounds for such cases are rarely realistic enough.

Luckily there are interesting things to say for F fixed.



Case Study

Simple parametric setup

— F is fixed.
— Functions f,(x) linearly parametrized by w € RY.

Comparing four iterative optimization algorithms for E,(f)

1. Gradient descent.

2. Second order gradient descent (Newton).
3. Stochastic gradient descent.

4. Stochastic second order gradient descent.



Quantities of Interest

e Empirical Hessian at the empirical optimum w;,.

_ 82En lzn: 826 fn xz Yi)
" 1=1

e Empirical Fisher Information matrix at the empirical optimum w,,.

o %Z [(aafngg),y@») (8«%3),@/»)’]

1=1

e Condition number
We assume that there are A\, Amax and v such that
— trace(GH_l) ~ .
— spectrum(H) C [ Aupin, Amax)-
and we define the condition number k= Apax/Amin-



Gradient Descent (GD)

Gradient J

Iterate
OEn(fuw,)

ow

® Wtt] < Wt — N

1

)\max .

Best speed achieved with fixed learning rate n =
(e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p E(fn) — E(fz) <c¢

GD  O(nd) o(mog%) O(ndﬁ:log%) @(ff—/i log? %)

— In the last column, n and p are chosen to reach € as fast as possible.
— Solve for € to find the best error rate achievable in a given time.
— Remark: abuses of the O() notation



Second Order Gradient Descent (2GD)

Gradient J
Iterate

11 OBn(fu)
ow

® Wil — Wi —

We assume H ! is known in advance.
Superlinear optimization speed (e.g., Dennis & Schnabel, 1983)

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p E(fn) — E(fz) <c¢

2GD  O(d(d+n)) O(loglogl) O(d(d+n)loglogl) O loglloglogl)

— Optimization speed is much faster.
— Learning speed only saves the condition number k.



Stochastic Gradient Descent (SGD)

Iterate
e Draw random example (x¢, yt)-

1 0L fw,(xt), Yt)

o w — W — —
t+1 t ; Ow

Total Gradient <J(x,y,w)>

iahGradient J(x,y,w)

1

Best decreasing gain schedule with 7
(see Murata, 1998; Bottou & LeCun, 2004)

>‘min .

Cost per Iterations Time to reach TiNme to reach
iteration to reach p accuracy p E(fn) — E(f7) <c¢

oo ou el o) o()

With 1 < k < k2

— Optimization speed is catastrophic.
— Learning speed does not depend on the statistical estimation rate o.
— Learning speed depends on condition number k but scales very well.



Second order Stochastic Descent (2SGD)

Iterate
Total Gradient <J(x,y,w)>
e Draw random example (x¢, yt).
1 ae T . iahGradient J(x,y,w)
¢ wir o wy— H! (fwé( t)> Yt) e\
w

1
Replace scalar gain ? by matrix ;H‘l.

Cost per Iterations Time to reach Time to reach
iteration to reach p accuracy p E(fn) — E(fz) <e

o0 o) pel)  of5) el

— Each iteration is d times more expensive.
— The number of iterations is reduced by x* (or less.)
— Second order only changes the constant factors.



Part II

Learning with Stochastic
Gradient Descent.



Benchmarking SGD in Simple Problems

e T he theory suggests that SGD is very competitive.
— Many people associate SGD with trouble.

e SGD historically associated with back-propagation.

— Multilayer networks are very hard problems (nonlinear, nonconvex)
— What is difficult, SGD or MLP?

e Try PLAIN SGD on simple learning problems.
— Support Vector Machines
— Conditional Random Fields

Download from http://leon.bottou.org/projects/sgd.
These simple programs are very short.

See also (Shalev-Schwartz et al., 2007; Vishwanathan et al., 2006)



Text Categorization with SVMs

e Dataset

— Reuters RCV1 document corpus.
— 781,265 training examples, 23,149 testing examples.
— 47,152 TF-IDF features.

e Task

— Recognizing documents of category CCAT.

R 1 A
— Minimize E”ZEZ ( §w2 + l(wz; +b, y;) )

7

ol b
— Update w «— w — 1 Viwg,z,y) = w — n (Aw+ (wwp + ,yt))

ow

Same setup as (Shalev-Schwartz et al., 2007) but plain SGD.



Text Categorization with SVMs

e Results: Linear SVM
((y,y) = max{0,1 —yy} A =0.0001

Training Time Primal cost Test Error

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

e Results: Log-Loss Classifier
U(y,y) =log(1+ exp(—yy)) A= 0.00001

Training Time Primal cost Test Error
LibLinear (¢ =0.01) 30 secs 0.18907 5.68%
LibLinear (¢ = 0.001) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%




The Wall

0.3 4 Testing cost

Training time (secs)

100 +
SGD

50 | .

=

// LibLinear

0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09
Optimization accuracy (trainingCost—optimalTrainingCost)




More SVM Experiments

From: Patrick Haffner
Date: Wednesday 2007-09-05 14:28:50

... I have tried on some of our main datasets. ..
I can send you the example, it is so striking!
— Patrick

Dataset Train Number of % non-0 LIBSVM LLAMA LLAMA SGDSVM
size features features (SDot) SVM MAXENT

Reuters 781K 47K 0.1% 210,000 3930 153 7
Translation 1000K 274K 0.0033% days 47,700 1,105 7
SuperTag 950K 46K 0.0066% 31,650 905 210 1
Voicetone 579K 88K 0.019% 39,100 197 51 1




More SVM Experiments

From: Olivier Chapelle
Date: Sunday 2007-10-28 22:26:44
... you should really run batch with various training set sizes ...

— Olivier

Average Test Loss

0.4 - ' . .
n=10000 \ n=100000\ n=781265
O 35 n=30000 n=300000
' Log-loss problem
03 + stochastic
Batch Conjugate
0.25 ¢ Gradient on various
training set sizes
0.2 +
Stochastic Gradient
0.15 + on the full set
01 f . | | } |
0.001 0.01 0.1 1 10 100 1000

Time (seconds)



