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Abstract. The unsupervised nature of cluster analysis means that objects can
be clustered in many different ways. This means that different clustering al-
gorithms can lead to vastly different results. To address this, clustering sim-
ilarity comparison methods have traditionally been used to quantify the de-
gree of similarity between alternative clusterings. However, existing tech-
niques utilize only the point-to-cluster memberships to calculate the similar-
ity, which can lead to unintuitive results. They also can’t be applied to analyze
clusterings which only partially share points, which can be the case in stream
clustering. In this paper we introduce a new measure named ADCO, which
takes into account density profiles for each attribute and aims to address these
problems. We provide experiments to demonstrate this new measure can of-
ten provide a more reasonable similarity comparison between different clus-
terings than existing methods.

1 Introduction

Cluster analysis is a fundamental machine learning task in which patterns, rela-
tionships and structures of interest in data are discovered in an unsupervised man-
ner. It has been used in a wide variety of fields, including biomedicine, information
retrieval and financial institutions, to discover hidden knowledge and information.

However, clustering is naturally an ill-posed problem [19], where the act of
grouping similar data objects is a subjective notion and highly dependent on the
clustering criterion used. For this reason, a vast number of algorithms have been
developed, each aiming to address different aspects of the problem, yet such al-
gorithms often provide very different results. Moreover, even when a single algo-
rithm is used, different alternative clusterings3 can easily be generated, simply by
changing the initial conditions of the algorithm.

Therefore, in order to provide a measure of comparison between clusterings,
cluster analysis has been often accompanied by a comparison method. Formally
called external validation [15], this provides a quantitative measure of the degree
to which two different clusterings are similar/different.

However, the current comparison measures suffer from a fundamental prob-
lem of judging the clustering similarity/difference purely on the membership of
points to clusters. While these point-to-cluster assignments can be an important

3 A clustering is a set of clusters



determining factor in defining clusterings, they completely neglect other impor-
tant aspects of data, which can seriously affect the outcome. These measures also
suffer from the limitation that they are not applicable for comparing clusterings
which may partially or not at all share points.

2 Problems and motivations

We illustrate the problem in figure 1. Here we have three clusterings, each with
three clusters. Figure 1(a) is a pre-defined clustering which is compared against
1(b) and 1(c). Both clusterings 1(b) and 1(c) have five points clustered differently
compared to 1(a).

(a) pre-defined clustering (b) clustering A (c) clustering B

Fig. 1. Pre-defined clustering 1(a) containing 3 clusters, compared to two clusterings 1(b)
and 1(c). Membership based measures give the exactly same values for both comparisons

Let clustering comparison A be between 1(a) and 1(c), while comparison B is
between 1(a) and 1(b). When comparing in terms of either cluster representatives
(i.e. centroids), shapes or point distributions of clusters it seems intuitive that the
degree of similarity for comparison A should not be the same as the degree of
similarity for comparison B. For example, suppose a new point were added to the
dataset and it was merged with the closest cluster. It seems more probable that
in both 1(a) and 1(c) it would join the same cluster. However, for 1(b), it is more
likely that it might join a different cluster than 1(a). This is because 1(a) and 1(c)
share a higher structural similarity, than 1(a) and 1(b). However, the available com-
parison measures are not able to recognize this difference. For example, a popular
pair-counting measure, the Rand Index [7], gives a similarity value of 0.44 for both
comparisons4. In fact, it is easily possible to generate arbitrary clusterings, which
give the exactly same Rand index value when compared to 1(a), provided it has just
five points clustered differently. Therefore treating point-to-cluster assignments as
a primary (if not only) measure of comparison has limitations and does not neces-
sarily correspond with intuition.

In this paper, we address this problem by developing a new clustering (dis)similarity
measure we term ADCO5. The contribution of ADCO is to address two main limi-
tations of existing methods.:

4 see section 3 for details of this and other measures and section 5 for more detailed exper-
imental results.
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– Addressing Non intuitive Behaviour : ADCO incorporates distribution in-
formation of data points along each attribute, allowing consideration of the
shapes or density profiles of the clusters. This can provide more detailed and
intuitive comparisons than simple membership based techniques such as Rand
[7] or Jaccard [8] indices.

– Applicability to stream data clustering : ADCO can compare clusterings that
may be built upon entirely different point sets and thus support the post-
analysis phase in stream data clustering, where clusterings using different stream
windows are compared. Comparison of clusterings using different sets of points
is impossible for membership based techniques.

3 Related Work

The traditional clustering comparison methods are divided into three categories :
1) pair counting, 2) set matching and 3) variation of information (see table 1). In
the pair-counting category, Rand Index [7] and Jaccard Index [8] have been widely
used for their simplicity. These methods are based on whether a pair of points be-
long to the same or different clusters in each clustering and these methods have
also been extended in [4, 6]. For set-matching methods, Clustering Error [17] has
been a popular choice which matches the ‘best’ clusters between two clusterings
based on the number of points they share. The comparison is given by the total
number of points shared between pairs of matching clusters over all the points.
Other set-matching methods are described in [3, 17]. Finally, Variation of Informa-
tion introduced in [18] is based on information theory measuring the amount of
mutual information between two clusterings via the number of points they share.
More recently, authors in [20] applied Mallows distance function to cluster repre-
sentatives to calculate a comparison. Its method, although it addresses a similar
problem to ours, is nevertheless still more similar to the membership-based ap-
proaches, supplementing them additional information about cluster centroids.

Table 1. Definitions of Rand index (RI), Jaccard index (JI), Clustering Error (CE) and Varia-
tion of Information (VI). For RI and JI, N11 and N00 refer to the ‘agreement’ while N10 and
N01 are ‘disagreement’ values between two clusterings. For CE, n is the number of objects
and K is the number of clusters in each clustering. nk,σ(k) finds the ‘best match’ between
pairwise clusters. For VI, H(C) refers to the entropy of the clustering C, while H(C,C′) is
the joint entropy of two clusterings.

RI RI(C,C′) = N11+N00

N
JI JI(C, C′) = N11

N11+N10+N01

CE CE(C, C′) = 1 − 1
n
max

∑K

k=1
nk,σ(k) VI V I(C, C′) = 2H(C, C′) − H(C) − H(C′)

Clustering comparison methods have also been applied within the context of
ensemble clustering, where several clusterings are merged to form a consensus clus-
tering. A popular technique for merging is called ‘majority voting’ [11, 12] which is
a pair-counting method extended over multiple clusterings. Using a co-association
matrix of data points, where pairs of points are given a score if they appear in the
same cluster over all available clusterings. The pairs with a score higher than pre-
defined threshold are then ‘voted’ to be in the same cluster. In [14], clusterings are



represented as a set of connected hypergraphs. Here, vertices connected by edges
are objects in the same cluster over all clusterings. HyperGraph Partitioning algo-
rithm [2] is then applied to find the consensus clustering by cutting a minimum
number of hyper-edges. Although the approach is different, its underlying idea is
to find highly dense intersections between clusterings and the method is consid-
ered as a variant to membership based methods.

Another area where comparison methods are used is in stream data cluster-
ing [5, 6], which has become increasingly popular in recent times. This raises an
interesting analysis task, as clusterings can evolve over time and studying this
evolution can uncover valuable information. In [5] Aggarwal describes this evolu-
tion and its evaluation where clusterings at different time periods are compared.
In this work, clusterings at different periods are compared by observing any newly
formed, removed or modified clusters. The technique used is membership-based
and it is assumed that clusterings have at least some non-empty overlaps of data
points, meaning windows for which clusterings do not share any points cannot be
compared.

4 The ADCO Similarity Measure

We now present our new measure for comparing (dis)similarity between cluster-
ings. Firstly though, we provide some necessary definitions.

4.1 Background and Terminology

Let D = {d1, d2, .., dn} be a dataset of n objects, described by r attributes {a1, . . . , ar}.
Let di[aj ] refer to the value of object di on attribute aj . A clustering C, is partition of
d into a set of clusters. i.e. C = {c1, . . . , ck}, where each ci is a cluster (set of points).

Let C1 = {c1, . . . , ck} and C2 = {c′
1
, . . . , c′k} be the two clusterings which will

be compared. Note that we assume the number of clusters in each clustering must
be the same (an assumption also shared by existing measures). The similarity be-
tween two clusterings, Sim(C1, C2), is a function which computes their similarity,
with higher values of the measure indicating higher dissimilarity (less similarity).
Various similarity measures have been defined in existing work, e.g. Rand index
(SimRand) [7], Jaccard index (SimJaccard [8]). Our measure will be referred to as
ADCO, or SimADCO.

4.2 Computing the ADCO Similarity Measure

Our ADCO similarity measure aims to determine the similarity between two clus-
terings based on their density profiles along each attribute. Essentially, r-dimensional
space is chopped up into a “hyper grid”. Points from the dataset occupy exactly
one of the cells in this grid. The similarity between two clusters corresponds to
how similarly the point sets from each cluster are distributed across the grid. The
similarity between two clusterings then corresponds to the amount of similarity
between their component clusters.

Suppose (the range of) each attribute ai is divided into q bins, using some dis-

cretisation method. Let a
j
i refer to the set of values of attribute ai within bin j.



Figure 2 shows two clusterings, each with two clusters (k = 2) and each attribute
has been divided into two bins (q = 2).

x1 x2

y1

y
2

c�1

c�2

c2

c1

Fig. 2. Two Clusterings C and C′ with attributes X and Y binned into q number of intervals
where C = {c1, c2} and C′ = {c′1, c

′

2}

To compute SimADCO, we start by computing the density of cluster c for each
bin j along each attribute ai.

densc(ai, j) = |{d ∈ c | d[ai] ∈ a
j
i}| (1)

where densci
(ai, j) is the density (or number of points) of cluster c for an attribute-

bin pair (ai, j). For a given cluster c, we can compute the densc(ai, j) measure for
all bins (r of them), of all attributes (q of them), giving r × q measures in total.
Using some arbitrary ordering scheme, we can then form a vector of length r × q

containing these measures, densc = {densc(a1, 1), densc(a1, 2), . . . , densc(ar, q)}.
Example : For figure 2 where two clusterings C and C′ are present, let (X, x1), (X, x2),

(Y, y1), (Y, y2) be the ordering of the attribute bin pairs. Then densc1
= (8, 0, 5, 3),

densc2
= (0, 6, 3, 3), densc′

1
= (5, 2, 2, 5), densc′

2
= (3, 4, 6, 1).

It is now possible to compare two clusterings, by measuring the similarity be-
tween their component clusters with a dot product operation as follows:

C · C′ =

k∑

i=1

densci
· densc′

i

. (2)

where the · refers to the dot product between two vectors, with a zero value indicat-
ing that the two clusterings are orthogonal (dissimilar) and a large value indicating
that they are similar.

Equation 2 compares clusters on a pairwise basis, (c1 versus c′
1
, c2 versus c′

2
,

etc). However, it is important that our similarity measure be independent of the
actual cluster names assigned. We thus need to be able to permute the second clus-
tering, so as to calculate all possible pairings of clusters from C1 and C2. From
these permutations, we select the pairing which gives a maximum value. i.e.

PairwiseSim(C, C′) = maxP [C · P (C′)] (3)

where P ranges over all permutations of C′. For figure 2 with a pairing C = (c1, c2)
and C′ = (c′

1
, c′

2
), we get C · C′ = 110. In contrast, if C′ is permuted such that c′

2
is

renamed to c′
1

and c′
1

is renamed to c′
2
, we get C · P (C′) = 90. This indicates that

the first pairing of c1 and c′
1

and c2 and c′
2

gives the largest value.



The final step is then to normalize this pairwise similarity value, with respect to
the maximum possible similarity. This is then subtracted from 1, so that 0 indicates
highly similar and 1 indicates highly dissimilar.

SimADCO(C, C′) = 1 −
PairwiseSimD(C, C′)

MaxSim(C, C′)
(4)

where MaxSim(C, C′) = max(C ·C, C′ ·C′). Note that MaxSim(C, C′) = max(C ·
C, C′ · C′) is the upper bound on the dot product values involving at least one of
C and C′. For the example of figure 2, SimADCO(C, C′) = 0.276.

ADCO Properties Finally, we briefly describe properties ADCO.

– Positivity6 : The value of ADCO(C, C′) = 0 if and only if C = C′

– Symmetry : ADCO(C, C′) = ADCO(C′, C)
– Triangle inequality : For any three clusterings C, C′ and C′′,

ADCO(C, C′) + ADCO(C′, C′′) ≥ ADCO(C, C′′). (5)

The advantages of the above two properties are well understood and described
in [17].

5 Experiments

(a) pre-defined clus-
tering

(b) clustering A (c) clustering B

Fig. 3. Pre-defined clustering compared to two clusterings 3(b) and 3(c). Membership based
measures give exactly same values for both comparisons.

We compared the behaviour of ADCO with several of the existing measures for
comparing clusterings. The following measures were compared against: Rand In-
dex (RI) [7], Jaccard Index (JI) [8], Clustering Error (CE) [17], Variation of Informa-
tion (VI) [17]. Clusterings were generated using k-means, Expectation Maximiza-
tion (EM), CURE, FarthestFirst (FF), Average-Linkage (AL), Complete-Linkage (CL)
and Single-Linkage (SL). All initial parameters of these algorithms were kept con-
stant throughout the experiment and values are measured between 0 and 1 where
a high value indicates a high dissimilarity. For all experiments, we set the number

6 This property may not apply when ADCO is used for stream clusterings where no points
are shared between clusterings



of bins q to 10, which is a commonly used choice for discretising data [1].

Synthetic Datasets: Two synthetic datasets are shown in figure 1 and 3. As already
mentioned in section 2, in figure 1 clusterings in figure 1(a) and 1(c) are more sim-
ilar than 1(a) and 1(b). Similarly in figure 3, figure 3(a) and 3(c) are closer with in
regards to point distributions in clusters than 3(a) and 3(b). Table 2 clearly shows
how ADCO can recognise this distinction, while other measures completely fail to
do so, giving the same value for all comparisons.

Table 2. Dissimilarity values when comparing 3(a) with 3(c) and 3(b) as well as compar-
ing 1(a) with 1(c) and 1(b). For both datasets, ADCO is the only measure that detects the
structural difference.

ADCO RI JI CEM VI

figures 1(a) vs. 1(c) 0.16 0.17 0.41 0.17 0.16

figures 1(a) vs. 1(b) 0.47 0.17 0.41 0.17 0.16
figures 3(a) vs. 3(c) 0.16 0.44 0.45 0.32 0.15

figures 3(a) vs. 3(b) 0.33 0.44 0.45 0.32 0.15

Real Datasets: We looked at two real world datasets, ‘diabetes’ and ‘credit’. Each
dataset comes with a pre-defined clustering (the natural clusters, identified using
the class labels), which we then compared against clusterings generated by each of
the clustering algorithms.

The dataset ‘diabetes’ in Fig. 4, contains two natural clusters. In Fig. 4 we also
display the clusterings of k-means and AL, projected onto two attributes, to assist
in visualisation. Similar to previous examples, we can see that figure 4(c) is more
dissimilar to the pre-defined clustering than the clustering in figure 4(b). However,
when we observe the table of comparison measures in 3, this dissimilarity is not
reflected by four membership based measures. In fact, ADCO is the only measure
that can correctly describe this increase in dissimilarity from k-means to AL.

cluster 1
cluster 2

(a) pre-defined

cluster 1
cluster 2

(b) k-means

cluster 1
cluster 2

(c) average-link

Fig. 4. Three clusterings of the diabetes dataset projected onto two attributes

On another dataset ‘credit’, we also see a similar trend. In figure 5, the com-
parison between 5(a) and 5(c) is more dissimilar than the comparison between 5(a)
and 5(b). Looking at table 3, ADCO is the only measure that can recognise this
correctly.

We can connect these results to the problems of traditional membership based
methods mentioned in the section 2. It is clear that from the figures 4 and 5, the
clusterings differ in membership of the points, as well as their point distributions.



cluster 1
cluster 2

(a) pre-defined

cluster 1
cluster 2

(b) CURE

cluster 1
cluster 2

(c) single-link

Fig. 5. Three clusterings of the credit dataset.

Table 3. Dissimilarity values when comparing seven clusterings using five dissimilarity
measures for dataset diabetes and credit

dataset measures k-means EM FF CURE AL CL SL

diabetes

ADCO 0.02 0.03 0.03 0.07 0.25 0.07 0.3
RI 0.5 0.5 0.49 0.5 0.44 0.5 0.42
JI 0.61 0.61 0.61 0.62 0.46 0.62 0.42

CE 0.44 0.43 0.42 0.45 0.33 0.46 0.3
VI 0.18 0.18 0.18 0.19 0.12 0.19 0.09

credit

ADCO 0.17 0.1 0.2 0.16 0.33 0.26 0.26
RI 0.5 0.5 0.49 0.5 0.45 0.5 0.5
JI 0.63 0.64 0.57 0.62 0.47 0.63 0.64

CE 0.45 0.48 0.42 0.45 0.35 0.45 0.45
VI 0.2 0.2 0.17 0.19 0.11 0.2 0.2

In particular, 4(c) and 5(c) show higher dissimilarity when compared to the pre-
defined clusterings 4(a) and 5(a), than clusterings of other algorithms. This dis-
similarity is correctly displayed through the ADCO measure. However, all other
measures incorrectly capture these comparisons by actually giving a smaller value,
implying that 4(c) and 4(c) are actually more similar to the pre-defined clusterings
than others. This is because these methods consider only the intersected groups of
points between two clusterings, regardless of the overall structures of clusterings.
For all other real world datasets that were tested, we have observed the same prob-
lem and ADCO was the only measure which was able to highlight the differences
accurately.

5.1 Using ADCO for evolution analysis in data stream clustering

As mentioned in section 2, clustering comparison methods can be useful for stream
data, for determining how clusters/clusterings evolve over time [5]. However, the
membership based measures have the requirement that the data points in each
clustering should be the same. Hence clusterings with a large time gap between
them in the stream (thus using totally different points) cannot be compared. In
contrast, ADCO’s use of attribute based density profiles of attributes makes such
a comparison possible, as we now illustrate.

In figure 6 we have divided the dataset ‘IRIS’ into five subsets, where subset 1
and 2 share 50% of the points while rest of the points are different, though similar
in their values. Therefore, when comparing 1 and 2, ADCO should return a low
dissimilarity value. Subsets 2 and 3 are similar to 1 and 2, but non-overlapping
points are different, hence ADCO value should be higher. Subsets 3 and 4 are in-



dependent, but their values are similar and subsets 4 and 5 are independent and
their values are highly different. Hence, ADCO values should be low for the com-
parison of 3 and 4, while comparing 4 and 5 should be high. These comparisons
can be seen as evaluating clustering evolution by comparing data at different time
periods.
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(a) sample 1
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(e) sample 5

Fig. 6. 5 samples IRIS dataset. Each sample has 30 points and 3 clusters. 6(a) and 6(b) share
15 points and other 15 do not overlap but of similar values. 6(b) and 6(c) also share 15 points,
but other 15 are quite different. 6(c) and 6(d) do not share any points yet the points are of
similar values and 6(d) and 6(e) do not share any points and are quite different.

As can be seen from the table 4, ADCO measure corresponds with expectation.
This means that using ADCO may be able to help speed up the stream analysis
process, by allowing users to compare clusterings from any time windows, and
they can investigate further if ADCO value indicates there is significant dissimi-
larity.

Table 4. Dissimilarity values between different samples of the dataset IRIS

sample pairs ADCO
sample 1 & sample 2 0.15

sample 2 & sample 3 0.37
sample 3 & sample 4 0.31

sample 3 & sample 5 0.41

5.2 ADCO Limitations

Although providing more accurate measures by corresponding to the intuition,
current state of ADCO is limited to only serve clusterings with equal number of
clusters. Moreover, we have not discussed methods to handle soft clusterings or
subspace clusterings. ADCO would need to be generalized to handle these cases.
Finally while we have used q = 10 as a best-practice value for the number of bins,
the real impact of this variable can be studied further.

6 Future Work and Conclusion

Clustering comparison is an important task in the overall cluster analysis process.
In this paper we have discussed the limitations of existing methods, which con-
sider only point-to-cluster assignments as the determining factor for dissimilarity
between clusterings. This ignores other important feature-related information and
may mislead users with inaccurate or even incorrect evaluations.



We have presented a new measure, ADCO, which takes a different approach
to determining clustering dissimilarity, by using the distribution information for
each attribute. We have experimentally shown that ADCO can indeed lead to more
reasonable measures, than existing methods. Furthermore, we have identified an
important application of ADCO for stream data clustering, where it is able post
analysis on clusterings from a stream drawn from non overlapping windows. This
kind of analysis is impossible with the other clustering comparison measures.

For future work, we would like to investigate generalizing ADCO for compar-
ison of clusterings which may contain different numbers of clusters. This could
facilitate the tighter integration of ADCO into areas such as ensemble and stream
clustering. We would also like examine the use other cluster features for compari-
son, such as boundaries and centroids.
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