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Background - The Transcriptome

Definition: The collection of RNA molecules in a cell or sample.
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Figure from Brendan Frey, http://www.psi.toronto.edu/isit2006/.



Background - RNA-Seq

1) mRNA or total RNA
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Figure from Martin and Wang, “Next-generation transcriptome assembly”, Nature Reviews Genetics, 2011.



Background - RNA-Seq
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Figure from Martin and Wang, “Next-generation transcriptome assembly”, Nature Reviews Genetics, 2011.



Background - RNA-Seq
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Figure from Martin and Wang, “Next-generation transcriptome assembly”, Nature Reviews Genetics, 2011.



Background - Assembly

Reads Contigs

Assembler

A contig is a continguous subsequence of a transcript sequence.



Background - Assembly
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Edited figure from Haas and Zody, “Advancing RNA-Seq analysis”, Nature Biotechnology, 2010.




Background - Complications

» Non-uniform expression.
» Alternative splicing.

The modern transcriptome
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Figure from Brendan Frey, http://www.psi.toronto.edu/isit2006/.



Background - de novo Assembly
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Figure from Grabherr et al., “Full-length transcriptome assembly from RNA-Seq data without a reference genome”, Nature Biotechnology,



Evaluation Problem

Without the ground truth reference transcript set,
determine which assembly is best
based only on the RNA-Seq data

from which the assemblies were constructed.



Evaluation Problem - Desiderata

» Start from first principles.
» Avoid trivialalities.

» Achieve the same ordering as a simple reference-based score.

Non-solution: N50, the largest n such that the contigs with length > n
compose at least 50% of the total bases of the contigs set.



Our Contributions

» A score that satisfies the given desiderata.

» A reference-based precision/recall framework for transcriptome
assembly.

» A software package, DETONATE, that implements the above.

» A comprehensive meta-evaluation of the score.



The Score Is Based on a Probability Model

Our score: x P(assembly|reads).

P(assembly, reads)

= / P(assembly, coverage, reads) dcoverage

= / P(assembly, coverage) P(reads|assembly, coverage) dcoverage

prior likelihood

A contig’s “coverage” is the expected number of reads generated
from each position of the contig’s original transcript.



The Probability Model |Is Based on Ideal Assembly
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The Probability Model |Is Based on Ideal Assembly

—_— —_— Contigs at overlap 3
—_— —_— —_— Contigs at overlap 2

—_— —_— —_— Contigs at overlap 1

—_— — Contigs at overlap 0

Transcript



The Probability Model - Prior

P(assembly, reads)

= / P(assembly, coverage, reads) dcoverage

= / P(reads|assembly, coverage) dcoverage

likelihood



The Probability Model - Prior

Generative story:
» Transcript lengths ~ ;4 negative binomial.

» Given the transcript lengths:
» Transcript sequences ~jgy uniform.
» Number of reads starting at each position of a transcript
~iig Poisson (mean = coverage).
» The assembly is formed from the reads at overlap 0.

e — Contigs at overlap 0
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One can work out a recurrence for the prior probability of the
assembly and coverage.



The Probability Model - Likelihood

P(assembly, reads)

= / P(assembly, coverage, reads) dcoverage

= / P(assembly, coverage)

P(reads|assembly, coverage)

prior

likelihood

dcoverage



The Probability Model - Likelihood

Previous work, RSEM, introduced a generative model of reads,
given transcripts and their expression.




The Probability Model - Likelihood

Key observation:

» Generating from contigs = generating from transcripts,
except that contigs are guaranteed to be covered by reads.

Therefore, we stipulate:

P(reads|assembly, coverage)
-~ Prsem(reads|transcripts = assembly, expression = f(coverage))
" Pgrseu(reads cover assembly|transcripts = assembly, expression = f(coverage))




The Probability Model - Marginalization

P(assembly, reads)

= P(assembly, coverage, reads)

P(assembly, coverage) P(reads|assembly, coverage)

prior likelihood



The Probability Model - Marginalization

Approximate the integral by BIC:

log P(assembly, reads)

= log / P(assembly, coverage, reads) dcoverage

”
= log P(assembly, reads|coverage®) — §Mlog N

where M = number of contigs, N = number of reads,
coverage* = maximum likelihood estimate.

Figure from Bishop, Pattern Recognition and Machine Learning, Springer, 2009.



Experiment 0 - Setup

» Goal: Make sure we have avoided trivialities.

» Procedure:

» Construct ideal assembly at every possible overlap.

» Compute score.

» Desired result: Best overlap is fairly close to 0.



Experiment O - Results
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Experiment 1 - Setup

» Goal: Make sure the true best assembly has the best score, on
average.

» Procedure:

» Construct ideal assembly at overlap 0.

> Perturb this assembly:

Substitution - substitute a base.

Fusion - join two contigs into one contig.
Fission - split one contig into two contigs.

Indel - insert or delete a fragment from a contig.
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» Compute score for ideal and perturbed assemblies.

» Desired result: The ideal assembly has the best score.



Experiment 1 - Results
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Experiment 2 - Setup

» Goal: Study the correlation between our score and simple
reference-based scores.

» Five datasets:

» Mouse from Trinity paper.
Mouse from Oases paper.
Yeast from Trinity paper.
Axolotl from Thompson lab.
Simulated mouse.
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» ~100 assemblies per dataset, using:
> Trinity.
» Oases.
» SOAPdenovo-trans.
» Trans-ABySS.



Experiment 2 - Setup

» 3 reference-based F1 scores (harmonic mean of precision and
recall):

> Nucleotide F1.
» Transcript F1.
> Pair F1.

» 1 reference-based “k-mer” score:
» Jensen-Shannon divergence between k-mer distributions.

» Procedure:

» For each assembly: compute our de novo score and each
reference-based score.

» Expected result:
» Monotone relationship between the scores.



Experiment 2 - Results
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Experiment 2 - Results

spearman = 0.86
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Experiment 2 - Results

spearman = 0.89
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Experiment 2 - Results

spearman = -0.97
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