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Background - The Transcriptome

Definition: The collection of RNA molecules in a cell or sample.
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Background - RNA-Seq

Figure from Martin and Wang, “Next-generation transcriptome assembly”, Nature Reviews Genetics, 2011.
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Figure from Martin and Wang, “Next-generation transcriptome assembly”, Nature Reviews Genetics, 2011.



Background - Assembly

  

Reads Contigs

Assembler

A contig is a continguous subsequence of a transcript sequence.



Background - Assembly

Edited figure from Haas and Zody, “Advancing RNA-Seq analysis”, Nature Biotechnology, 2010.



Background - Complications

I Non-uniform expression.
I Alternative splicing.
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Background - de novo Assembly

Figure from Grabherr et al., “Full-length transcriptome assembly from RNA-Seq data without a reference genome”, Nature Biotechnology,

2011.



Evaluation Problem

Without the ground truth reference transcript set,

determine which assembly is best

based only on the RNA-Seq data

from which the assemblies were constructed.



Evaluation Problem - Desiderata

I Start from first principles.

I Avoid trivialalities.

I Achieve the same ordering as a simple reference-based score.

Non-solution: N50, the largest n such that the contigs with length ≥ n
compose at least 50% of the total bases of the contigs set.



Our Contributions

I A score that satisfies the given desiderata.

I A reference-based precision/recall framework for transcriptome
assembly.

I A software package, DETONATE, that implements the above.

I A comprehensive meta-evaluation of the score.



The Score Is Based on a Probability Model

Our score: P(assembly, reads) ∝ P(assembly|reads).

P(assembly, reads)

=

∫
P(assembly, coverage, reads)dcoverage

=

∫
P(assembly, coverage)︸ ︷︷ ︸

prior

P(reads|assembly, coverage)︸ ︷︷ ︸
likelihood

dcoverage

A contig’s “coverage” is the expected number of reads generated
from each position of the contig’s original transcript.



The Probability Model Is Based on Ideal Assembly
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The Probability Model - Prior

P(assembly, reads)

=

∫
P(assembly, coverage, reads)dcoverage

=

∫
P(assembly, coverage)︸ ︷︷ ︸

prior

P(reads|assembly, coverage)︸ ︷︷ ︸
likelihood

dcoverage



The Probability Model - Prior

Generative story:
I Transcript lengths ∼iid negative binomial.
I Given the transcript lengths:

I Transcript sequences ∼iid uniform.
I Number of reads starting at each position of a transcript

∼iid Poisson (mean = coverage).
I The assembly is formed from the reads at overlap 0.
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One can work out a recurrence for the prior probability of the
assembly and coverage.



The Probability Model - Likelihood

P(assembly, reads)

=

∫
P(assembly, coverage, reads)dcoverage

=

∫
P(assembly, coverage)︸ ︷︷ ︸

prior

P(reads|assembly, coverage)︸ ︷︷ ︸
likelihood

dcoverage



The Probability Model - Likelihood

Previous work, RSEM, introduced a generative model of reads,
given transcripts and their expression.



The Probability Model - Likelihood

Key observation:

I Generating from contigs ≡ generating from transcripts,
except that contigs are guaranteed to be covered by reads.

Therefore, we stipulate:

P(reads|assembly, coverage)

=
PRSEM (reads|transcripts = assembly, expression = f (coverage))

PRSEM (reads cover assembly|transcripts = assembly, expression = f (coverage))



The Probability Model - Marginalization

P(assembly, reads)

=

∫
P(assembly, coverage, reads) dcoverage

=

∫
P(assembly, coverage)︸ ︷︷ ︸

prior

P(reads|assembly, coverage)︸ ︷︷ ︸
likelihood

dcoverage



The Probability Model - Marginalization

Approximate the integral by BIC:

log P(assembly, reads)

= log
∫

P(assembly, coverage, reads)dcoverage

= log P(assembly, reads|coverage∗)− 1
2

M log N

where M = number of contigs, N = number of reads,
coverage∗ = maximum likelihood estimate.

4.4. The Laplace Approximation 215
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Figure 4.14 Illustration of the Laplace approximation applied to the distribution p(z) ∝ exp(−z2/2)σ(20z + 4)
where σ(z) is the logistic sigmoid function defined by σ(z) = (1 + e−z)−1. The left plot shows the normalized
distribution p(z) in yellow, together with the Laplace approximation centred on the mode z0 of p(z) in red. The
right plot shows the negative logarithms of the corresponding curves.

We can extend the Laplace method to approximate a distribution p(z) = f(z)/Z
defined over an M -dimensional space z. At a stationary point z0 the gradient ∇f(z)
will vanish. Expanding around this stationary point we have

ln f(z) " ln f(z0) − 1

2
(z − z0)

TA(z − z0) (4.131)

where the M × M Hessian matrix A is defined by

A = − ∇∇ ln f(z)|z=z0
(4.132)

and ∇ is the gradient operator. Taking the exponential of both sides we obtain

f(z) " f(z0) exp

{
−1

2
(z − z0)

TA(z − z0)

}
. (4.133)

The distribution q(z) is proportional to f(z) and the appropriate normalization coef-
ficient can be found by inspection, using the standard result (2.43) for a normalized
multivariate Gaussian, giving

q(z) =
|A|1/2

(2π)M/2
exp

{
−1

2
(z − z0)

TA(z − z0)

}
= N (z|z0,A

−1) (4.134)

where |A| denotes the determinant of A. This Gaussian distribution will be well
defined provided its precision matrix, given by A, is positive definite, which implies
that the stationary point z0 must be a local maximum, not a minimum or a saddle
point.

In order to apply the Laplace approximation we first need to find the mode z0,
and then evaluate the Hessian matrix at that mode. In practice a mode will typi-
cally be found by running some form of numerical optimization algorithm (Bishop

Figure from Bishop, Pattern Recognition and Machine Learning, Springer, 2009.



Experiment 0 - Setup

I Goal: Make sure we have avoided trivialities.

I Procedure:

I Construct ideal assembly at every possible overlap.

I Compute score.

I Desired result: Best overlap is fairly close to 0.



Experiment 0 - Results



Experiment 1 - Setup

I Goal: Make sure the true best assembly has the best score, on
average.

I Procedure:

I Construct ideal assembly at overlap 0.

I Perturb this assembly:
I Substitution - substitute a base.
I Fusion - join two contigs into one contig.
I Fission - split one contig into two contigs.
I Indel - insert or delete a fragment from a contig.

I Compute score for ideal and perturbed assemblies.

I Desired result: The ideal assembly has the best score.



Experiment 1 - Results
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Experiment 2 - Setup

I Goal: Study the correlation between our score and simple
reference-based scores.

I Five datasets:
I Mouse from Trinity paper.
I Mouse from Oases paper.
I Yeast from Trinity paper.
I Axolotl from Thompson lab.
I Simulated mouse.

I ∼100 assemblies per dataset, using:
I Trinity.
I Oases.
I SOAPdenovo-trans.
I Trans-ABySS.



Experiment 2 - Setup

I 3 reference-based F1 scores (harmonic mean of precision and
recall):

I Nucleotide F1.
I Transcript F1.
I Pair F1.

I 1 reference-based “k-mer” score:
I Jensen-Shannon divergence between k-mer distributions.

I Procedure:
I For each assembly: compute our de novo score and each

reference-based score.

I Expected result:
I Monotone relationship between the scores.



Experiment 2 - Results
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Experiment 2 - Results
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Experiment 2 - Results

spearman = -0.97
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Thanks.
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