CS 540, HW2 Solution, Spring 2010

Problem 1

1. BFS is complete in general. BFS is optimal in this case, because edge costs are 1.
2. DFS is not complete, because the search space is infinite. DFS is not optimal; for example, if the start state is $(0,0)$ and the goal state is $(2,1)$, then $(0,0) \rightarrow(2,1)$ is an optimal path, but BFS could find $(0,0) \rightarrow(-1,2) \rightarrow(1,3) \rightarrow(2,1)$.
3. The Manhattan distance heuristic is not admissible. For example, say the goal state is $(0,0)$. Let s be the state $(2,1)$. Denote the heuristic by h and the true cost to the goal by h^{*}. Then $h(s)=$ $|2-0|+|1-0|=3 \not \leq 1=h^{*}(s)$.
4. Yes, the heuristic

$$
h(s)= \begin{cases}0 & \text { if } s \text { is a goal node } \\ 1 & \text { otherwise }\end{cases}
$$

is consistent, since for any state s and successor s^{\prime}, we have $h(s) \leq 1 \leq 1+h\left(s^{\prime}\right)=c\left(s, s^{\prime}\right)+h\left(s^{\prime}\right)$, where $c\left(s, s^{\prime}\right)=1$ denotes the cost of moving from s to s^{\prime}.

Problem 2.

1. The goal state G_{3} is reached after expanding the states S A B C D E G G_{3}. Details:

Pop	Expand?	Queue
S	Y	A B
A	Y	B ; B C D
B	Y	B C D ; D E G ${ }_{3}$
B	N	C D ; D E G ${ }_{3}$
C	Y	$\mathrm{D} ; \mathrm{DE} \mathrm{G} \mathrm{E}_{3} ; \mathrm{S}$
D	Y	D E G $\mathrm{F}_{3} ; \mathrm{S} ; \mathrm{G}_{1} \mathrm{G}_{2}$
D	N	$\mathrm{E} \mathrm{G}_{3} ; \mathrm{S} ; \mathrm{G}_{1} \mathrm{G}_{2}$
E	Y	$\mathrm{G}_{3} ; \mathrm{S} ; \mathrm{G}_{1} \mathrm{G}_{2} ; \mathrm{D}$
G_{3}	Y	

2. The goal state G_{1} is reached after expanding the states $\mathrm{S} A \mathrm{~B} D \mathrm{G}_{1}$. Details:

Pop	Expand?	Queue
S	Y	A B
A	Y	B C D $; \mathrm{B}_{\mathrm{B}}^{\mathrm{Y}}$
Y	$\mathrm{D} \mathrm{E} \mathrm{G}_{3} ; \mathrm{C} \mathrm{D} ; \mathrm{B}$	
G_{1}	Y	$\mathrm{G}_{1} \mathrm{G}_{2} ; \mathrm{E} \mathrm{G}_{3} ; \mathrm{CD} ; \mathrm{B}$

(We also accepted G_{2} as the goal state reached.)
3. The goal state G_{3} is reached after expanding the states S A B in the first iteration and S A B C D B $E \mathrm{G}_{3}$ in the second iteration. Details:

Iter	Pop	Expand?	Queue (length of path from S)
1	S	Y	$\mathrm{A} \mathrm{(1)} \mathrm{~B} \mathrm{(1)}$
	A	Y^{*}	$\mathrm{~B}(1)$
	B	Y^{*}	
2	S	Y	$\mathrm{A}(1) \mathrm{B}(1)$
	A	Y	$\mathrm{B}(2) \mathrm{C}(2) \mathrm{D}(2) ; \mathrm{B}(1)$
	B	Y^{*}	$\mathrm{C}(2) \mathrm{D}(2) ; \mathrm{B}(1)$
	C	Y^{*}	$\mathrm{D}(2) ; \mathrm{B}(1)$
	D	Y^{*}	$\mathrm{~B}(1)$
	B	Y	$\mathrm{D}(2) \mathrm{E}(2) \mathrm{G}_{3}(2)$
	D	N	$\mathrm{E}(2) \mathrm{G}_{3}(2)$
	E	Y^{*}	$\mathrm{G}_{3}(2)$
	G_{3}	Y	

(*Because the maximum path length is reached, no successors are added, and the state is not added to the closed list. We accepted several variations on this answer.)
4. The goal state G_{2} is reached after expanding the states S A C D G_{2}. Details:

Pop	Expand?	Queue $(g+h)$
S	Y	$\mathrm{A}(1+10=11) \mathrm{B}(7+23=30)$
A	Y	$\mathrm{C}((1+1)+1=3) \mathrm{D}((1+15)+3=19) \mathrm{B}((1+2)+23=26) \mathrm{B}(7+23=30)$
C	Y	$\mathrm{D}((1+15)+3=19) \mathrm{B}((1+2)+23=26) \mathrm{B}(7+23=30)$ $\mathrm{S}((1+1+2)+100=104)$
D	Y	$\mathrm{G}_{2}((1+15+3)+0=19) \mathrm{G}_{1}((1+15+5)+0=21) \mathrm{B}((1+2)+23=26)$ G_{2}
	Y	$\mathrm{B}(7+23=30) \mathrm{S}((1+1+2)+100=104)$

