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Dynamic Bayes Nets

An Approach to Temporal Reasoning
and Planning under Uncertainty

Motivation

• Bayes Nets worked in the context of static
worlds.

• Imagine treating a diabetic patient.
Dynamic aspects of the problem, such as
blood sugar levels and measurements
thereof, change rapidly over time.

• How can we model dynamic processes?
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States and Observations

• View the process of change as a series of
snapshots, or time slices.

• Each time slice contains random variables,
some of which are observable and some of
which are not.

• Evidence (observable) variables at time t
are denoted by Et and state (unobservable)
variables are denoted by Xt .

Example

• You are a security guard at a secret
underground installation.  You want to
know if it is raining today, but your only
access to the outside world occurs each
morning when you see the directory coming
in with or without an umbrella.

• For each day t, the set Et contains a single
evidence variable Ut (whether or not the
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Example (Continued)

• (Continued)… umbrella appears), and the
set Xt contains the single state variable Rt

(whether or not it is raining).

• For simplicity, we often assume everything
starts at t=0.

General Approach and Problems

• Now that we have random variables, we
might now reason about conditional
independencies and construct a Bayes Net.

• Problem: the set of variables is unbounded,
since we may have arbitrarily many time
slices.

• Number of CPTs is therefore unbounded,
and the number of parents for a single CPT
might be unbounded.



4

Stationary Process Assumption

• We assume the changes in world state are
caused by a stationary process: change is
governed by laws that themselves do not
change.  (Different from a static process, in
which no change occurs at all).

• Therefore, we need only specify CPTs for a
representative time slice -- solves the
problem of infinitely many CPTs to specify.

Markov Assumption

• The current state depends only on a finite
history of previous states.

• Solves the problem of infinitely many
parents for a CPT.

• A process obeying the Markov assumption
is called a Markov process or Markov
chain.
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Order of a Markov Process

• First-order Markov process: a state depends
only on the previous state.

• Second-order: a state depends only on the
previous two states.

• Etc.

Transition Model

• A transition model describes how the state
evolves over time.

• In a first-order Markov Process, the
transition model is simply the distribution
P(Xt|Xt-1).  In a second-order process, it is
P(Xt|Xt-2,Xt-1).  Etc.



6

The Evidence Variables

• The Markov Assumption actually is a
restriction only on the state variables.

• We assume that the evidence variables for a
time slice depend only on (some subset of)
the state variables at that time slice.

• Thus we specify a distribution P(Et|Xt).
This conditional distribution is called the
sensor model.

Types of Inference

• Filtering (monitoring): computing the
posterior distribution over the current state
given all the evidence to date -- P(Xt|E1:t).

• Prediction: computing the posterior
distribution over a future state given all the
evidence to date -- P(Xt+k|E1:t).

• Smoothing (hindsight): computing the
posterior distribution over a past state given
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Types of Inference (Continued)

• (Continued)… all the evidence to date (to
the present) -- P(Xk|E1:t).

• Most likely explanation: Given a sequence
of observations, what is the most likely
sequence of states that generated those
observations -- ARGMAXX1:t P(X1:t|E1:t).

Examples of the Inference Types

• Filtering: What is the probability that it is
raining today, given all the umbrella
observations up through today?

• Prediction: What is the probability that it
will rain the day after tomorrow, given all
the umbrella observations up through
today?

• Smoothing: What is the probability that it
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Examples (Continued)

• (Continued)… rained yesterday, given all
the umbrella observations through today?

• Most likely explanation: if the umbrella
appeared the first three days but not on the
fourth, the most likely explanation is that it
rained the first three days but not on the
fourth.

Fifth Inference Type: Learning

• We may wish to learn transition and sensor
models from data (either just the CPTs or
the arcs as well).

• Use EM algorithm (we won’t cover this
application).

• Use with smoothing rather than merely
filtering -- otherwise, it won’t converge.
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Contrasting Forward and
Backward

• “Forward” and “Backward” are somewhat
poor names.

• If we run the forward algorithm recursively
rather than iteratively, it’s still the forward
algorithm but it looks backward rather than
forward.

• If we run the backward algorithm
recursively rather than iteratively, it looks
forward rather than backward.

Contrasting Forward and
Backward (Continued)

• The distinction is subtle because both
algorithms take all the same paths through
the possible state settings.

• But they group these paths differently and
hence give different results.

• Key point: forward gives probability of a
state given the evidence (up to the state),
while backward gives probability of
(subsequent) evidence given a state.
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Contrasting Forward and
Backward (Continued)

• Easiest to see with an example given the
same evidence.  Let’s use our running
example.

• Suppose our evidence is u1, u2, ~u3, ~u4.
We’ve already examined filtering to predict
rain at time 2 (based on u1, u2).  This leaves
us with a distribution over rain =
<true,false> of <.883,.117>.

Forward and Backward
(Continued)

• The next two slides compare the action of
the forward and backward algorithms over
the same span (evidence at times t=3 and
t=4).

• The first slide is the backward algorithm,
and the second is the forward algorithm
(they appear reversed because we’re using
the recursive versions).
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r2: +

P(r3|r2) P(~u3|r3)
.7 .1 P(~r4|r3) P(~u4|~r4)

P(r4|r3) P(~u4|r4)
.7 .1

.3 .8

+

P(~r3|r2) P(~u3|~r3)
.3 .8 P(~r4|~r3) P(~u4|~r4)

P(r4|~r3) P(~u4|r4)
.3 .1

.7 .8

+

~r2: +

P(r3|~r2) P(~u3|r3)
.3 .1 P(~r4|r3) P(~u4|~r4)

P(r4|r3) P(~u4|r4)
.7 .1

.3 .8

+

P(~r3|~r2) P(~u3|~r3)
.7 .8

.7 .8
P(~r4|~r3) P(~u4|~r4)

P(r4|~r3) P(~u4|r4)
.3 .1+

.1442

.0398

Normalized:

<.7841,.2159>

r4: P(~u4|r4) +

P(r4|r3) P(~u3|r3)
.7 .1

.1

P(r4|~r3) P(~u3|~r3)

+

P(r3|r2)

P(r3|~r2)

+

P(~r3|r2)

P(~r3|~r2).3 .8

.7

.3

.3

.7

~r4: P(~u4|~r4)
.8

+

P(~r4|r3) P(~u3|r3)
.3 .1

P(~r4|~r3) P(~u3|~r3)

P(~r3|~r2).7 .8

+

P(r3|r2)

P(r3|~r2)

.7

.3

+

P(~r3|r2)
.3

.7

.0129

.1710

Normalized:

<.0702,.9298>



12

Observations

• Both algorithms consider exactly the same
“paths” (possible state settings).  There is a
one-to-one correspondence between the
values at the leaves for the for the backward
algorithm and those for the forward
algorithm.

• Nevertheless, the results are different
because the groupings are different.

Dynamic Programming

• Forward, Forward-Backward, and Viterbi
algorithms all are instances of Dynamic
Programming.

• For more details about Dynamic
Programming, take Mark Craven’s
Bioinformatics Course.

• These algorithms are polynomial in the
number of states, though exponential in the
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Approximation

• (Continued)… number of state variables.

• We would like an algorithm that is
polynomial in the number of state variables.

• This brings us to approximation algorithms.

• Much room for further research.  Consider
the filtering task in particular.

• Current best approach is particle filtering.

Particle Filtering

• Choose sample size N (higher N tends to
yield better accuracy but more time.)  Draw
N initial states according to prior over state.

• For each time step, starting from t = 0:
– For each state in the sample, draw a

corresponding state in the next time step
according to the transition probabilities.  These
new states become the sample at the next time
step.
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Particle Filtering (Continued)

– Weight each state for the new time slice by the
probability it assigns to the evidence for the
new time slice.

– Sampling with replacement according to these
weights, draw N states from this set of N states
to be the new (unweighted) sample.

• Answer query using the last sample.  For
example, if the query is the probability
distribution over states, use the state
frequencies in this sample.

AI & Statistics (Looking Back)

• Probabilistic Reasoning: Bayes Nets,
Utility Theory, Accuracy estimates of
learned rules in ILP, Dynamic Bayes Nets.

• Stochastic Search and Approximation:
Markov Chain Monte Carlo, GSAT and
WSAT, Particle Filtering.

• Knowledge Discovery and Model Building:
ILP for drug design & mutagenicity, much
more in the Machine Learning course.
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Much More Available

• Bayesian inference: STAT 775

• Bioinformatics, dynamic programming:
Bioinformatics (currently a CS 838), also a
course by Ann Palmenberg in Biochem

• Machine learning: CS 760

• Neural nets and fuzzy logic: ECE 539

• Computer vision: CS 766

• Robotics: ME 439


