

Motivation

- Bayes Nets worked in the context of *static* worlds.
- Imagine treating a diabetic patient. Dynamic aspects of the problem, such as blood sugar levels and measurements thereof, change rapidly over time.
- How can we model dynamic processes?

States and Observations

- View the process of change as a series of snapshots, or time slices.
- Each time slice contains random variables, some of which are observable and some of which are not.
- Evidence (observable) variables at time t are denoted by \mathbf{E}_t and state (unobservable) variables are denoted by \mathbf{X}_t .

Example (Continued)

- (Continued)... umbrella appears), and the set X_t contains the single state variable R_t (whether or not it is raining).
- For simplicity, we often assume everything starts at t=0.

General Approach and Problems

- Now that we have random variables, we might now reason about conditional independencies and *construct a Bayes Net*.
- **Problem**: the set of variables is unbounded, since we may have arbitrarily many time slices.
- Number of CPTs is therefore unbounded, and the number of parents for a single CPT might be unbounded.

Stationary Process Assumption

- We assume the changes in world state are caused by a *stationary process:* change is governed by laws that themselves do not change. (Different from a static process, in which no change occurs at all).
- Therefore, we need only specify CPTs for a *representative* time slice -- solves the problem of infinitely many CPTs to specify.

- The current state depends only on a *finite* history of previous states.
- Solves the problem of infinitely many parents for a CPT.
- A process obeying the Markov assumption is called a Markov process or Markov chain.

Order of a Markov Process

- First-order Markov process: a state depends only on the previous state.
- Second-order: a state depends only on the previous two states.
- Etc.

Transition Model

- A transition model describes how the state evolves over time.
- In a first-order Markov Process, the transition model is simply the distribution P(X_t|X_{t-1}). In a second-order process, it is P(X_t|X_{t-2},X_{t-1}). Etc.

The Evidence Variables

- The Markov Assumption actually is a restriction only on the state variables.
- We assume that the evidence variables for a time slice depend only on (some subset of) the state variables at that time slice.
- Thus we specify a distribution $\mathbf{P}(\mathbf{E}_t | \mathbf{X}_t)$. This conditional distribution is called the *sensor model*.

Examples (Continued)

- (Continued)... rained yesterday, given all the umbrella observations through today?
- Most likely explanation: if the umbrella appeared the first three days but not on the fourth, the most likely explanation is that it rained the first three days but not on the fourth.

Contrasting Forward and Backward

- "Forward" and "Backward" are somewhat poor names.
- If we run the forward algorithm recursively rather than iteratively, it's still the forward algorithm but it looks backward rather than forward.
- If we run the backward algorithm recursively rather than iteratively, it looks forward rather than backward.

Contrasting Forward and Backward (Continued)

- Easiest to see with an example given the same evidence. Let's use our running example.
- Suppose our evidence is *u1*, *u2*, ~*u3*, ~*u4*. We've already examined filtering to predict rain at time 2 (based on *u1*, *u2*). This leaves us with a distribution over rain = <*true*,*false*> of <.883,.117>.

Observations

- Both algorithms consider exactly the same "paths" (possible state settings). There is a one-to-one correspondence between the values at the leaves for the for the backward algorithm and those for the forward algorithm.
- Nevertheless, the results are different because the groupings are different.

Approximation

- (Continued)... number of state variables.
- We would like an algorithm that is polynomial in the number of state variables.
- This brings us to approximation algorithms.
- Much room for further research. Consider the filtering task in particular.
- Current best approach is *particle filtering*.

- Choose sample size N (higher N tends to yield better accuracy but more time.) Draw N initial states according to prior over state.
- For each time step, starting from t = 0:
 - For each state in the sample, draw a corresponding state in the next time step according to the transition probabilities. These new states become the sample at the next time step.

Particle Filtering (Continued)

- Weight each state for the new time slice by the probability it assigns to the evidence for the new time slice.
- Sampling with replacement according to these weights, draw N states from this set of N states to be the new (unweighted) sample.
- Answer query using the last sample. For example, if the query is the probability distribution over states, use the state frequencies in this sample.

Much More Available

- Bayesian inference: STAT 775
- Bioinformatics, dynamic programming: Bioinformatics (currently a CS 838), also a course by Ann Palmenberg in Biochem
- Machine learning: CS 760
- Neural nets and fuzzy logic: ECE 539
- Computer vision: CS 766
- Robotics: ME 439