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Approximate (Monte Carlo)
Inference in Bayes Nets

• Basic idea: Let’s repeatedly sample
according to the distribution represented by
the Bayes Net.  If in 400/1000 draws, the
variable X is true, then we estimate that the
probability X is true is 0.4.

• To sample according to Bayes Net, just set
the variables one at a time using a total
ordering consistent with the partial...

Monte Carlo (continued)

• (Samping continued)… ordering
represented by the underlying DAG of the
Net.  In this way, when we wish to draw the
value for X we already have the values of its
parents, so we can find the probabilities to
use from the CPT for X.

• This approach is simple to implement using
a pseudorandom  number generator.
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So it seems we’re done, right?

• Wrong: what if we take into account
evidence (observed values for variables)?

• If the evidence happens to be in the “top”
nodes of the network (nodes with no
parents), we’re still fine.  Otherwise...

• No efficient general method exists for
sampling according to the new distribution
based on the evidence.  (There are
inefficient ways, e.g., compute full joint.)

Rejection Sampling

• One natural option for sampling with
evidence is to use our original sampling
approach, and just throw out (reject) any
setting that does not agree with the
evidence.  This is rejection sampling.

• Problem: if evidence involves many
variables, most of our draws will be rejected
(few will agree with the evidence).
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Likelihood Weighting

• Another approach is to set the evidence
variables, sample the others with the
original Monte Carlo approach, and then
correct for improbable combinations by
weighting each setting by its probability.

• Disadvantage: with many evidence
variables, probabilities become vanishingly
small.  We don’t sample the more probable
events very thoroughly.

Markov Chain Monte Carlo

• Key idea: give up on independence in
sampling.

• Generate next setting probabilistically based
on current setting (Markov chain).

• Metropolis-Hastings Algorithm for the
general case, Gibbs Sampler for Bayes Nets
in particular.  Key property: detailed
balance yields stationary distribution.
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Gibbs Sampling by Example
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Gibbs Sampling Example
(Continued)

• Let our query be P(HeartDisease | smoking,
shortnessOfBreath).  That is, we know
we’ve been smoking (Smoking=True) and
we know we’re experiencing shortness of
breath (ShortnessOfBreath=True), and we
wish the know the probability that we have
heart disease.

• Might as well keep a tally for LungDisease
while we’re at it.
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Other Decisions

• Let’s assume we use an off-the-shelf
pseudorandom number generator for the
range [0..1].

• We can loop through the non-evidence
variables in a pre-established order or
randomly, uniformly.  Let’s go with the
latter.  Tally at each step.  (If the former, we
could tally at each step or each iteration.)

Other Decisions (Continued)

• One chain or many: let’s go with one.

• Length or burn-in: ordinarily 500-1000, but
let’s go with 2 (don’t tally for original
setting or setting after first step).

• Initial values: let’s say all True.  Note that
Smoking and ShortnessOfBreath must be
initialized to True, since this is our
evidence.  The initial settings for non-
evidence variables are arbitrary.
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Other Decisions (Continued)

• Use of random numbers in selecting a
variable to draw.  We have only two non-
evidence variables: HeartDisease and
LungDisease.  Let’s adopt a policy that a
random number greater than 0.5 leads us to
draw a value for LungDisease, and a
random number of 0.5 or less leads us to
draw for HeartDisease.

Other Decisions (Continued)

• Use of random numbers in selecting values
of variables.  Since all our variables are
Boolean, our distributions will be over the
values <True,False> and will have the form
<P(True),1-P(True)>.  If our random
number is less than or equal to  P(True),
then we will set the variable to True, and
otherwise we will set it to False.
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A Final Supposition for our
Example

• Having made all our choices, the only other
factor that will affect the activity of the
Gibbs Sampling algorithm is the sequence
of random numbers that we draw.

• Let’s suppose our sequence of random
numbers begins 0.154, 0.383, 0.938, 0.813,
0.273, 0.739, 0.049, 0.233, 0.743, 0.932,
0.478, 0.832, …

Round 1

• Our first random number is 0.154, so we
will draw a value for HeartDisease.

• To draw the value, we must first determine
the distribution for HeartDisease given its
Markov Blanket.

• First, we compute a value for True.  We
multiply P(heartDisease|smoking) by
P(shortnessOfBreath | heartDisease,
lungDisease).  Notice we take LungDisease
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Round 1 (Continued)

• (Continued)… to be True because that is its
current setting.  (We use the current settings
of all variables in the Markov Blanket.)
This product is (0.6)(0.9) = 0.54.

• Next we repeat the process for
HeartDisease=False.  We multiply the
probability that HeartDisease is False given
smoking by the probability of
shortnessOfBreath given HeartDisease is

Round 1 (Continued)

• (Continued)… False and LungDisease is
True.  The resulting product is (0.4)(0.7) =
0.28.

• We now normalize <0.54,0.28> to get the
probability distribution <0.66,0.34>.  Hence
we will set HeartDisease to True if and
only if our random number is at most 0.66.
It is 0.383, so HeartDisease remains True.
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Round 2

• Our next random number is 0.938, so we
next will draw a value for LungDisease
given the current settings for the other
variables.

• To obtain a value for LungDisease=True,
we multiply P(lungDisease | smoking) by
P(shortnessOfBreath | heartDisease,
lungDisease).  (Recall that True is our
current setting for HeartDisease and True

Round 2 (Continued)

• (Continued)… is our candidate setting for
LungDisease.  This product is (0.8)(0.9) =
0.72.

• Similarly, for LungDisease=False, we
multiply P(LungDisease=False | smoking)
by P(shortnessOfBreath | heartDisease,
LungDisease=False).  This product is
(0.2)(0.8) = 0.16.
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Round 2 (Continued)

• Normalizing <0.72, 0.16> we get the
distribution <0.82, 0.18>.

• Our next random number is 0.813, so we
(barely) keep LungDisease set to True.

• This is the first round after our burn-in, so
we record the frequencies.  We now have
counts of 0 for HeartDisease and
LungDisease set to False, and counts of 1
for each of these set to True.

Round 3

• Our next random number is 0.273, so we
draw a value for HeartDisease next.

• Because all the variables have the same
value as the last time we drew for
HeartDisease, the distribution is the same:
<0.66, 0.34>.  Our next random number is
0.739, so we set HeartDisease to False.
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Round 3 (Continued)

• Updating our tallies, we have counts of: 1
for HeartDisease=False, 1 for
HeartDisease=True, 0 for
LungDisease=False, and 2 for
LungDisease=True.

Round 4

• The next random number is 0.049.
Therefore we draw a value for
HeartDisease again.  Because all other
variables are unchanged, and we consider
both values of HeartDisease, once again the
distribution is <0.66, 0.34>.  Our next
random number is 0.233, so we reset
HeartDisease to True.
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Round 4 (Continued)

• Our new counts are as follows: 2 for
HeartDisease=True, 1 for
HeartDisease=False, 3 for
LungDisease=True, and 0 for
LungDisease=False.

Round 5

• Our next random number is 0.743, so we
next draw a value for LungDisease.

• The values for all other variables are as they
were the first time we drew a value for
LungDisease, so the distribution remains
<0.82,0.18>.  Our next random number is
0.932, so we set LungDisease to False.
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Round 5 (Continued)

• Our new tallies are as follows: 3 each for
HeartDisease=True and
LungDisease=True, and 1 each for
HeartDisease=False and
LungDisease=False.

Round 6

• The next random number is 0.478, so again
we sample HeartDisease.  But since the
setting for LungDisease has changed, we
must recompute the distribution over
HeartDisease.

• To get a value for HeartDisease=True, we
multiply P(heartDisease | smoking) by
P(shortnessOfBreath | HeartDisease=True,
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Round 6 (Continued)

• (Continued)… LungDisease=False).  This
results in the product (0.6)(0.8) = 0.48.

• For HeartDisease=False, we multiply
P(HeartDisease=False | smoking) by
P(shortnessOfBreath | HeartDisease=False,
LungDisease=False).  The result is
(0.4)(0.1) = 0.04.

• Normalizing these values to obtain a

Round 6 (Continued)

• (Continued)… probability distribution, we
get <0.92, 0.08>.  Our next random number
is 0.832 so we choose HeartDisease=True.

• Our tallies now stand at 1 for
HeartDisease=False, 4 for
HeartDisease=True, 2 for
LungDisease=False, and 3 for
LungDisease=True.
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Final Results

• Of course, we have not run the Markov
chain nearly long enough to expect an
accurate estimate.  Nevertheless, let’s ask
what the answer is to our query at this point.

• We assign a probability of 4/5 or 0.8 to
heartDisease.

• We also might ask about lungDisease, to
which we assign 3/5 or 0.6.

How Do These Compare With
Exact Results

• Try using variable elimination.

• We find the probability of heartDisease
given smoking and shortnessOfBreath is
0.695.

• And we find the probability of lungDisease
given smoking and shortnessOfBreath is
0.864.
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For Review

• Use variable elimination to compute the
answers just given.

• Repeat with the junction tree for this net.

• Use Gibbs Sampling with the same
sequence of random numbers, same initial
setting, and no burn-in to estimate the
probability that a person is a smoker given
that you know they have heart disease.

For Review (Continued)
Are the graphs below triangulated?  (Use MaximumCardinalityTest.)


