Learning of Bayesian Network Structure from Massive Datasés:
The “Sparse Candidate” Algorithm
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Abstract

Learning Bayesian networks is often cast as an
optimization problem, where the computational
task is to find a structure that maximizes a sta-
tistically motivated score. By and large, exist-
ing learning tools address this optimization prob-
lem using standard heuristic search techniques.
Since the search space is extremely large, such
search procedures can spend most of the time
examining candidates that are extremely unrea-
sonable. This problem becomes critical when we
deal with data sets that are large both in the num-
ber of instances, and the number of attributes.

In this paper, we introduce an algorithm that
achieves faster learning by restricting the search
space. This iterative algorithm restricts the par-
ents of each variable to belong to a small sub-
set ofcandidates We then search for a network
that satisfies these constraints. The learned net-
work is then used for selecting better candidates
for the next iteration. We evaluate this algorithm
both on synthetic and real-life data. Our results
show that it is significantly faster than alternative
search procedures without loss of quality in the
learned structures.
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scores include Bayesian scores [10, 16] and MDL scores
[19]. The learner’s task is then to find a structure that opti-

mizes the score. In general, this is an NP-hard problem [7],
and thus we need to resort to heuristic search.

Although the constraint satisfaction approach is effigient
it is sensitive to failures in independence tests. Thus, the
common opinion is that the optimization approach is a bet-
ter tool for learning structure from data.

A crucial step in the optimization approach is the heuris-
tic search. Most existing learning tools apply standard
heuristic search techniques, such as greedy hill-climbing
and simulated annealing to find high-scoring structures.
See, for example, [16, 15, 8].

Such “generic” search procedures do not apply any
knowledge about the expected structure of the network to
be learned. For example, greedy hill-climbing search pro-
cedures examine all possible local changes in each step
and apply the one that leads to the biggest improvement
in score. The usual choice for “local’ changes are edge
addition, edge deletion, and edge reversal. Thus, there are
approximatelyO(n?) possible changes whengds the num-
ber of variables.

The cost of these evaluations becomes acute when we
learn from massive data sets. Since the evaluation of new
candidates requires collecting various statistics abloat t
data, it becomes more expensive as the number of instances
grows. To collect these statistics, we usually need to per-
form a pass over the data. Although, recent techniques
(e.g., [20]) might reduce the cost of this collection activ-

In recentyears there hgs been a growing interestin Iearnin@y' we still expect non trivial computation time for each
the structure of Bayesian networks from data [10, 19, 15ne set of statistics we need. Moreover, if we consider do-
16, 21, 23]. . mains with large number of attributes, then the number of
Somewhat generalizing, there are two approaches foﬁossible candidates grows exponentially.
finding structure. The first approach poses learning as a |t seems, however, that most of the candidates considered
constraint satisfactiopproblem. In this approach, we as- qyring the search can be eliminated in advance just by using
sess properties of conditional independence among the afyr statistical understanding of the domain. For example,
tributes in the data. Usually this is done using a statiktica;, greedy hill-climbing, most possible edge additions ntigh
hypothesis test, such as-test. We then build a network e removed from consideration. ¥ andY are almost
that exhibits the observed dependencies and indepe”dem'dependentin the data, we might decide not to consider
cies. This can be done using efficient procedures. Examsg g parent ofC. Of course, this is a heuristic argument,
ples of this approach include [21, 23]. The second approach
poses learning as amptimizationproblem. We start by 'Some of these changes introduce cycles, and thus are not
defining a statistically motivatestorethat describes the fit-  evaluated. Nonetheless, the number of feasible operaarsi-
ness of each possible structure to the observed data. Thesaky quite close ta)(n?).



since X andY can be marginally independent, yet have (G,0). The first component, namelg#, is a directed
strong dependence in the presence of another variable (e.@cyclic graph whose vertices correspond to the random
X is the XOR ofY andZ). In many domains, however, it variablesXy, ..., X,,. The graph encodes the following set
is reasonable to assume that this pattern of dependencies dbconditional independence assumptions: each varigble
not appear. is independent of its non-descendants given its parents in
The idea of using measure of dependence, such as th&. The second component of the p&r, represents the set
mutual information between variables to guide network of parameters that quantifies the network. It contains a pa-
construction is not new. For example, Chow and Liu’s al-rametem,,, pa(x,) = P(;|pa(X;)) for each possible value
gorithm [9] uses the mutual information to construct a tree-z; of X;, andpa(X;) of Pa(X;). HerePa(X;) denotes the
like network that maximizes the likelihood score. When set of parents oK ; in G andpa(X;) is a particular instan-
we consider networks with larger in-degree, several asthortiation of the parents. If more than one graph is discussed
use the mutual information to greedily select parents. Howthen we usé®a” (X;) to specify X,’s parents in graph G.
ever, these authors do not attempt to maximize any statistiA Bayesian networkB specifies a unique joint probability
cally motivated score. In fact, it is easy to show situationsdistribution overt” given by:
where these methods can learn erroneous networks. This
use of mutual information is a simple example of a statisti-
cal cue. Other cues can come about from examining algo-
rithms of constraint-based approach to learning. In this pa
per, we incorporate similar considerations within a proce- The problem of learning a Bayesian network can be
dure that explicitly attempts to maximize a score. We pro-stated as follows. Giventaaining setD = x', ..., xN}
vide an algorithm that empirically performs well in massive of instances oft, find a networkB thatbest matche®.
data sets. The common approach to this problem is to introduce a
The general idea is quite straightforward. We use statisscoring function that evaluates each network with respect
tical cues from the data, to restrict the set of networks weo the training data, and then to search for the best net-
are willing to consider. In this paper, we choose to restrictwork according to this score. The two scoring functions
the possible parents of each node. In many real world sitmost commonly used to learn Bayesian networks are the
uations it is reasonable to assume the number of parents @ayesian scoringnetric, and the one based on the principle
each variable is bounded by some constarithus, instead  of minimal description lengttMDL). For a full description
of havingn — 1 potential parents for a node, we only con- see [10, 16] and [4, 19].
siderk possible parents, wheke< n. We then attemptto  An important characteristic of the MDL score and the
maximize the score with respect to these restrictions. AnyBayesian score (when used with a certain clasgofor-
search techniques we use in this case will perform fastelizedpriors, such as thBDe priors[16]), is theirdecompos-
since the search space is significantly restricted. MOI’EOVGabthy in presence of full data. When all instanoédn D
as we show, in some cases we can find the best scoring nefrecomplete—thatis, they assign values to all the variables
work satisfying these constraints. In other cases, we cafh X— the above scoring functions can be decomposed in
use the constraints to improve our heuristics. the following way:
Of course, such a procedure might fail to find a high-
scoring network: a misguided choice of candidate parents ScordG : D) = Z Scord X; | Pa(X;) : Nx, pacx;))
in the first phase can lead to a low scoring network in the P
second phase, even if we manage to maximize the score o )
with respect to these constraints. The key idea of our algoWhereNx; pa(x,) are thestatisticsof the variablesX; and
rithm is that we use the network we found at the end of the®a(X;) in D—i.e., the number of instances Inthat match
second stage to find better candidate parents. We then c&fch possible instantiatian andpa(X;). _
find a better network with respect these new restrictions. 1his decomposition of the scores is crucial for learning

n

Py(Xy,..., X,) = [] Pe(Xi|Pa(X3))

i=1

We iterate in this manner until convergence. structure. Alocal search procedure that changes one arc
at each move can efficiently evaluate the gains made by

2 Background: Learning Structure t_his Change.. Such. a procedure can also reuse computa-
tions made in previous stages to evaluate changes to the

Consider a finite set’ = {X;,...,X,} of discrete ran- parents of all variables that have not been changed in the

dom variables where each variahle may take on val- last move. An example of such a procedure is a greedy
ues from a finite set, denoted by VAl;). We use capital hill-climbing procedure that at each step performs thelloca
letters, such a¥, Y, Z, for variable names and lowercase change that results in the maximal gain, until it reaches a
lettersz:, y, z to denote specific values taken by those vari-local maximum. Although this procedure does not neces-
ables. Sets of variables are denoted by boldface capital lesarily find a global maximum, it does perform well in prac-
tersX,Y, Z, and assignments of values to the variables intice; e.g., see [16]. Example of other search procedurés tha
these sets are denoted by boldface lowercase ledtgrg. advance in one-arc changes include beam-search, stochas-
A Bayesian networks an annotated directed acyclic tic hill-climbing, and simulated annealing.

graph that encodes a joint probability distribution over Any implementation of these search methods involves
X. Formally, a Bayesian network fot is a pairB = caching of computed counts to avoid unnecessary passes



over the data. This cache also allows usnarginalize ~ NPUt:

counts. Thus, ifVx y is in the cache, we can computge o AdatasetD = {x',....x"}
by summing over values df . This is usually much faster An initial networkj? ’ '
than making a new pass over the data. One of the dom- 0
inating factors in the computational cost of learning from * A decomposable score

complete data is the number of passes actually made over S¢0'€B | D) =3, Score X | Pa’(X;), D),
the training data. This is particularly true when learing ® A Parameter.

from very large training sets. Output: A network B.

3 The “Sparse Candidate” Algorithm Loop forn = 1,2, ... until convergence

In this section we outline the framework for oSparse Restrict

Candidatealgorithm S Based onD andB,,_+, select for each nod&; a
. _The underlying pr|n0|_ple for our algorithm is fairly intu- setC” (|C?| < k) of candidate parents.

itive. It calls for two variables with a “strong depepdency” This defines a directed grapH, = (X,E),
between them to be located “near” each other in the net- whereE = {X; — X;|Vi, j, X; € CI'}.

work. The strength of dependency between variables can (Note thatH,, is usually cyclic.)

often be measured using mutual information or correla- o

tion [12]. In fact, when restricting the network graph to Maximize

a tree, Chow and Liu’s algorithm [9] does exactly that. It Find network B, = (G,,®,) maximizing
measures the mutual information (formally defined below) ScoréB, | D) among networks that satisfy
between all pairs of variables and selects a maximal span- G, C H, (i.e.,VX;, Palr(X;) C Cr).

ning tree as the required network.
We aim to use a similar argument for finding networks ReturnB,,
that are not necessarily trees. Here, the general problem is
NP-hard [6]. However, a seemingly reasonable heuristic is Figure 1: Outline of th&Sparse Candidatalgorithm
to select pairg X, Y') with high dependency between them
and create a network with these edges.
This approach however, does not take more complex in-
teractions into account. For example, if the “true” struetu
includes a substructure of the fordd — Y — Z, we
might expect to observe a strong dependency betwéen
andY, Y and Z, and also betweeX andZ. However, mostly independent of one another. We examine each of
once we consider bot andY as parents o, we might  these in detail in the next two sections.
recognize thatX does not help in predicting once we Before we go on to discuss these issues, we address the
takeY into account. convergence properties of these iterations. Clearly, iat th
Our approach is based on the same basic intuition of usabstract level, we cannot say much about the performance
ing mutual information, but we do so in a refined manner.of the algorithm. However, we can easily ensure its mono-
We use measures of dependency between pairs of variablésnic improvement. We require that in tRestrict step, the
to focusour attention during the search. For each variableselected candidates fo¥;’s parents includeX;’s current
X, we find a set of variableky, . . ., Y} that are the most parents, i.e., the selection must satiE’ﬁf" (X;) C C;’“
promisingcandidateparents forX. We thenrestrict our  for all X;.
search to networks in which only these variables can be This requirementimplies that the winning netwdsk is
parents ofX . This gives us a smaller search space in whicha legal structure in the + 1 iteration. Thus, if the search
we can hope to find a good structure quickly. procedure at thiMaximize step also examines this struc-
The main drawback of this procedure is, that once weture, it must return a structure that scores at least as well
choose the candidate parents for each variable, we are coras B,,. Immediately, we get that Scq®,+,; | D) >
mitted to them. Thus, a mistake in this initial stage can leadscoré B,, | D).
us to find an inferior scoring network. We therefore iterate Another issue is the stopping criteria for our algorithm.
the basic procedure, using the constructed network to reFhere are two types of stopping criteriaseore basedri-
consider the candidate parents and choose better carglidaterion that terminates when Sc¢fg,) = ScoréB,, 1),
for the next iteration. In the example &af - Y — Z, X  and acandidate basedriterion that terminates whefi* =
would not be chosen as a candidate forallowing a vari- ~ C*~"' for all i. Since the score is a monotonically increas-
able with weaker dependency to replace it. ing bounded function, the score based criterion is guaran-
The resulting procedure has the general form shown irteed to stop. However, the candidate based criterion might
Figure 1. This framework defines a whole class of algo-be able to continue to improve after an iteration with no im-
rithms, depending on how we choose the candidates in therovement in the score. It can also enter a non-terminating
Restrict step, and how we perform the search in Wax- cycle, therefore we need to limit the number of iterations
imize step. The choice of methods for these two steps aravith no improvementin the score.



Input: two parents based on mutual information, we would select

« DatasetD = {x',...,x"}, C andD. These two, howe\{er, are r'edundant since once
we know(C, D adds no new information about. More-

e A networkB,,, X . )

e ascore over, this choice does not take into account the effed of

e parametek. onA. 1

. ] This example shows a general problem in pairwise selec-
Output: For each variable(; a set of candidate parerd$  {jon, which our iterative algorithm overcomes. After we
of sizek. selectC and D as candidates, and the learning procedure
Loop foreachX;i=1,...,n hopefully only set< as a parent ofi, we reestimate the
relevance ofB and D to A. How can this be done with the
o Calculate MeasufeX;, X;) forall X; # X; suchthat  mytual information? We outline two possible approaches:

X; ¢ Pa(X;) The first approach is based on an alternative definition of
e Choosery, ...,z with highest ranking , where= the mutual information. We can define the mutual infor-

|Pa(X;)|. mation betweenY and}” as the distance between the dis-
o SetC; = Pa(X;) U {z1,..., 751} tribution P(X,Y") and the distributiorP(X)P(Y"), which

assumesX andY are independent:
Return{C;} . . R
I(X;Y) = D (P(X,Y)[P(X)P(Y))

Figure 2: Outline of thérestrictstep ] ) )
whereDg 1, (P|Q) is theKullback-Leibler divergencele-
fined as:

4 Choosing Candidate Sets

P(X)
In this section we discuss possible measures for choosing Q(X)
the candidate set.

To choose candidate parents fiif, we assign eaclX; Thus, the mutual information measures the error we in-
some measure of relevanceXg. As the candidate set of troduce if we assume thaf andY are independent. If we
X;, we choose those variables with the highest measuralready have an estimate of a netwdtkwe can use a sim-
This general outline is shown in Figure 2. Itis clear that inilar test to measure thdiscrepancybetween our estimate
some cases, such as XOR relations, pairwise scoring funge, (X, v') and the empirical estimaté(X, V). We define
tions are not enough to capture the dependency between
variables. However, for computational efficiency we limit Measurgysc(X;, X; | B) = D rn(P(X;, X;)|Ps(X;, X;))
ourselves to this type of functions.

When considering each candidate, we essentially assunf¥otice that wherB, is an empty network, with parameters
that there are no spurious independencies in the data. Mo@stimated from the data, we get that Meagjyg(X. V" |
precisely, ifY” is a parent of\, thenX is notindependent Bo) = I(X : Y). Thus, our initial iteration in this case
(Or “almost” independent) oY, given 0n|y a subset of the uses mutual information to select candidates. Later itera-

Dicr(P(N]Q(X)) = 3 P(X) log

other parents. tions use the discrepancy to find variables for which our
A simple and natural measure of dependencmigual modeling of their joint empirical distribution is poor. In
information our example, we would expect th&g(A, B) in the net-
work, when onlyC is a parent ofA4, is quite different
- P(z,y) from P(A, B). Thus, B would measure highly relevant
I(X:Y) = ZP(w,y) log P(2)P(y) to A, while Pg(A, D) would be a good approximation of
z,y

15(A, D). Therefore, even “weak” parents have the oppor-

- L unity to become candidates at some point.
WhereP denotes the observed frequencies in the datase%. One of the issues with this measure is that it requires

The mutual information is always non-negative. It is equal : ;
. ) us to computePg (X;, X;) for pairs of variables. When
to 0 whenX andY are independent. The higher the mutual learning networks over large number of variables this can

information, the stronger the dependence betw&eand be computationally expensive. However, we can easily ap-

. roximate th r iliti in impl mplin
Researchers have tried to construct networks based dD oximate these probabilities by using a simple sampling

I(X:Y), ie.. add edges between variables with high mu_ébproach. Unlike computation of posterior probabilities

. i o given evidence, the approximation of such prior probabil-
tual information [9, 13, 22]. While in many cases mutual 3. _ : :
information is a good first approximation of the candidateItles is not hard. We simply sampl¥ instances from the

: . . -network, and from these we can estimate all pair-wise in-
parents, there are simple cases for which this measure fa"?eractions (In our experiments we uSe— 1000.)

Example 4.1 : Consider a network with 4 variables The second approach to extend the mutual information
A,B,C, andD such thatB — A, C — A, D — C. score is based on the semantics of Bayesian networks.
We can easily select parameters for this network such thaRecall that in a Bayesian networK;'s parentsshield it
I(A;C) > I(A; D) > I(A; B). Thus, if we select only from its non-descendants. This suggests that we measure



whether the conditional independence stateménti$ in- Calculating Measuighjelgand Measurgqgreis more ex-
dependent of; givenPa(X;)” holds. If it holds, then the pensive than calculating Measgyg.. Measurg)sc only
current parents separalg from X; and.X; is nota parent needs the joint statistics for all pairs; and X;. These
of X;. On the other hand, if it does not hold, then eithgr  require only one pass over the data and the computation
is a parent of\;, or X; is a descendant of ;. can be cached for later iterations. The other measures re-
Instead of testing whether the conditional independenceuire the joint statistics ok ;, X;, andPa(X;). In general
statement holds or not, we estimate how strongly it is vio-Pa(X;) changes between iterations, and usually requires a
lated. The natural extension of mutual information for thisnew pass over the data set each iteration. The cost of cal-
task, is the notion ofonditional mutual information culating these new statistics can be reduced by limiting our
. R . R attention to variabled; that have large enough mutual in-
I(X;Y|Z) =%, P(Z)Dk(P(X,Y|Z)|P(X|Z)P(Y|Z)) formation with X;. Note that this mutual information can

: . . be computed using previously collected statistics
This measures the error we introduce by assuming_hat P gp y

gn?Y are independent given different values of We g Learning with Small Candidate Sets
efine
In this section we examine the problem of finding a con-

Measurgniei Xi, X; | B) = I(X;; X;|Pa(X;)) strained Bayesian network attaining a maximal score. We
first show why the introduction of candidate sets im-
proves the efficiency of standard heuristic techniquedj suc
as greedy hill-climbing. We then suggest an alternative
heuristic “divide and conquer” paradigm that exploits the
sparse structure of the constrained graph.
1 Formally, we attempt to solve the following problem:

Once again, we have that#, is the empty network, then
this measure is equivalent f¢.X;; X ;). Although shield-
ing can removeX's ancestors from the candidate set, it
does not “shield’X from its descendants.

A deficiency of both these measures is that they do no
take into account the cardinality of various variables. For
example if botht” andZ are possible candidate parents of Maximal Restricted Bayesian Network

X, butY has two values (one bit of information), while (MRBN)
7 has eight values (three bits of information), we would Input:
expect that” is less informative abouX thanZ. On the 1 N e :
other hand, we can estimaf®(X|Y") more robustly than o AsetD = {x’,...,x"} of instances
P(X|Z) since it involves fewer parameters. o Adigraphf of bounded in-degrek
Such considerations lead us to use scores which penalize ¢ A decomposable scor®
structures with more parameters, when searching the struc-  Qutput: A network B = (G, 0) so that

ture space, since the more complex the model is, the easier @ C H, that maximizes S with respect .
we are misled by the empirical distribution. We use the
same considerations to design such a score for the Restrict
step.
To see how to define a measure of this form, we start by As can be expected, this problem has a hard combinato-
reexamining the shielding property. Using the chain rule offial aspect.

mutual information: Proposition 5.1: MRBN is NP-hard.

1(X;; X,|Pa(X,)) = I(X;; X;,Pa(X;)) — I(Xy; Pa(X,)) This follows from a slight modification of the NP-hardness
of finding an optimal unconstrained Bayesian network [7].

Thatis, the conditional mutual information is the addibn o

information we get by predicting’; using X, andPa(X;), -1 Standard Heuristics

compared to our prediction usirRa(X;). Since the term  Though MRBN is NP-hard, even standard heuristics are

I(X;;Pa(X;)) does not depend oX;, we don't need to computationally more efficient and give a better approxi-

compute it when we compare the information that differentmation compared to the unconstrained problem. This is due

X,'s provide aboutX;. Thus, an equivalent comparative to the fact that the search space is substantially smadlés, a

measure is the complexity of each iteration, and the number of counts

needed.

The search space of possible Bayesian networks is ex-
tremely large. By searching in a smaller space, we can
hope to have a better chance of finding a high-scoring net-
work. Although the search space size for MRBN remains
exponential, it is tiny in comparison to the space of all
Bayesian networks on the same domain. To see this, note
Measurggord Xi, X; | B) = Scoré X;; X;, Pa(X;), D). that even if we restrict the search to Bayesian networks with

at mostk parents, there ar@((ﬁ)) possible parent sets for
This simply measures the score when addifjgo the cur-  each variable. On the other hand, in MRBN, we have only
rent parents ofX;. O(2%) possible parent sets for each variable. (Of course,

Measurgpje|d Xi, X; | B) = I(X;; X, Pa(X;))

Now, if we consider the score of the Maximize step as
cautious approximation of the mutual information, with a
penalty on the number of parameters, we can gestoee
measure;



the acyclicity constraints disallow many of these networks nodes inH into maximal strongly connected components
but it does not change the order of magnitude in the size ofd,, ..., A,,. Every cycle inH will be contained within
the sets). a single component. Thus, once we ensure acyclicity “lo-
Examining the time complexity for each iteration in cally” within each component, we get an acyclic solution
heuristic searches also points in favor of MRBN. In greedyover all the variables. This means we can search for a max-
hill climbing the score for the)(n?) initial changes are imum on each component independently.
calculated, after which each iteration requi@én) new To formalize this idea, we begin with some definitions.
calculations. In MRBN we begin wittb(kn) initial calcu-  Let A,,... A,, be a partition of X1, ..., X,,}. We define
lations after which each iteration only requi@ék) calcu-  the following subgraphsHyx, = {Y — X;|Y € C;},
Iatioln. f e | ' Hj = Uyx,ca, Hx;. ForG C H;, let Wy [G] =
A large fraction of the learning time involves collecting PG Y.
the sufficient statistics from the data. Here again, retiitigc LoxieA, w(Xi, Par(Xy)).
to candidate sets saves time. WHeis reasonably small, Proposition5.2: For A,,..., A,, strongly connected
we can compute the statistics fok; } UC; in one pass over components off, if for eachj, GG; C H; is the acyclic
the input. All the statistics we need for evaluating subsetgraph that maximize®’ 4, [G] then
of C; as parents of{; can then be computed by marginal- . .
ization from these counts. Thus, we can dramatically re- * The graphG; = U;G; is acyclic.
duce the number of statistics collected from the data. o G maximizedVy [G].

5.2 Divide and Conquer Heuristics DecomposingH into strongly connected components
. . . . . takes linear time (e.g., see [11]), therefore we can apfidy th
In this section we describe algorithms that utilize the COM-yecomposition, and search for the maxima on each compo-
b"?a.to“a' properties O,f the Can_dldate graHhm order to nent separately. However, when the graph contains large
efficiently find the maximal scoring network, given the con- .,y nected components, we still face a hard combinatorial
straints. To simplify the following discussion, we abstrac ,.opiam of finding the graph&;. For the remainder of
2

the details of the que3|an ngtworl_< learning prob!em aNGhis section we will focus on further decomposition of such
focus on the underlying combinatorial problem. This pmb'components.

lem is specified as follows:

5.4 Separator Decomposition
Input: AdigraphH = {X; — X, : X; € C;}, and a set P P

of weightsw(X;, Y) for eachX; andY C C;. We now decompose strongly connected graphs, therefore
- we must consider cycles between the components. How-
Output: An acyclic subgrapli C H that maximizes ever, our goal is to find small “bottlenecks” through which
these cycles must go through. We then consider all possible
Wr[G] = Z w(X;, Pa%(X;)). ways of breaking the cycles at these bottlenecks.
i Definition 5.3: A separatorof H is a setS of vertices so
that:

One of the most effective paradigms for designing algo- )
rithms is “Divide and Conquer”. In this particular prob- 1. H \ S has two componentd; andH, with no edges
lem, the global constraint we need to satisfy is acyclic- between them.
ity. Otherwise, we would have selected, for each vari- 2. For eachX;,3j € {1,2} so that{X; U C;} C H;
able X;, the parents that attain maximal weight. Thus, we
want to decompose the problem into components, so th&k
we can efficiently combine the maximal solutions onthem. The second property means that eviemily { X; U C;}
We use standard graph decomposition methods to decornis fully contained within eithef; or H». This holds when
poseH. Once we have such a decomposition, we can finds “separates” the moralized graph Hf, (where each fam-
acyclic solutions in each component and combine them intdly appears as a clique), into two components. Thus, we

a global solution. can search for the maximal choice of a variable’s parents in
_ only one component.
5.3 Strongly Connected Components: (SCC) Unlike the SCC decomposition, however, this decompo-

The simplest decomposition of this form is one that disal-sition does not allow us to maximiZ& for eachH; inde-
lows cycles between components, istrongly connected pendently. Suppose that we find two acyclic graghsnd
components A subset of node# is strongly connected G, that maximizeW 4, [] and W4, [], respectively. If the

if for each X,Y € A, H contains a directed path from combined graplé = G; UG is acyclic, then it must max-

X to Y and a directed path fro to X. The setd is  imize Wg[]. Unfortunately,G might be cyclic. The first
maximalif there is no strongly connected supersettfit property of separators ensures that the source of potential
is clear that two maximal strongly connected componentgonflicts betweei7; andG,, involve variables in the sepa-
must be disjoint, and there cannot be a cycle that involvesatorS.

nodes in both of them (for otherwise theirunionwould bea For X, Y € S, if there is a path fromX to V in G,
strongly connected component). Thus, we can partition thand in addition there is a path froi to X in G, then



Separator-Algorithm We introduce some notation: Lét j) be an edge iff".
ThenS; ; = U; N U, is a separator id", breaking it into
two subtreed’; and7. DefineA; to be the set of variables
— Foreachi = 1,2, find G; , C H;, that maxi- assigned (with their parents) &5;: A; = {X;|J(i) = j}.

mizesWg, [G] among graphs that respect Define A[Ti] = U,er, 4;- In contrast defind’[T;] to be
—letG, =G, UGa s the set of variables appearlng 1, not necessarily with
their parents.

WheneverS; ;| is small andT| = |T>], i
efficiently used in algorithm 3. We now devise a dynamic
Figure 3: Outline of using a separator to efficiently solve programming algorithm for computing the optimal graph
MRBN using the cluster tree separators. First, let us root thetetu
tree at an arbitrary/, € U, inducing an order on the tree
nodes. Each clustdr; € U is the root of a subtre@},
spanning away frorVy. S; is the tree separator, separating
T; fromthe restofl". Thesub nodesf U; are its neighbors

o for of each possible orderon S

e ReturnG = argmaxg, WI[G,].

the combined graph will be cyclic. Conversely, it is also
easy to verify, that any cycle i@ must involve at least two
variables inS.

This suggests a way of ensuring that the combined graph
will be acyclic. If we force some order on the variables in
S, and require botli7; andG, to respect this order, then

Deflne for each clustel/; and each total order on S;
the weightiV[U;, o] of the maX|maI partial solution Wh|ch

we disallow cycles. Formally, let be a partial order on respects

{X4,...,X,}. We say that a grapfi respects, if when- R

ever there is a directed paffi; — ... — X; in G, then Wit ol = acycncglacx HIT] War G- (D)

Xi Ao Xj. respectingr

Proposition 5.4: Let S be a separator inf and leto be a

partial order that completely orders all variables f Let The crux of the algorithm is that finding these weights
G, C H, andG, C H, be two acyclic graphs that respect can be done in a recursive manner, based on previously
o. ThenG = G, U G, is acyclic. computed maxima.

Given S, a small separator ifif, this suggests a simple Proposition 5.7: For each clustel/; € U and ordero
algorithm described in figure 3. This approach considerver S;: Let Uy,...,U; be the sub nodes df;. Then
\S|' pairs of independent sub-problems. If the cost of find-W[Uj;, a] is equal to
ing a solution to each of the sub-problems is smaller than
for the whole problem, anb]| is relatively small, this pro- k
cedure can be more efficient. max( max Wa,[G] + Z WU;,o'|s;])

. . ) ) 7" acyclicG C H[A;j] =1
Proposition 5.5: Using the same notation as in the respectings’
separator-algorithm, i¥/o, G, maximize$¥Vy [| among the @)
?nriigrs'aftsat respect thenG = argmaxc, W{G,] maXi- \nere; ranges on all orders ofy; that are consistent with

o, ,ando’|g, is the restriction ob' to an order overs;.

5.5 Cluster-Tree Decomposition Equation 2 allows rapid evaluation of all the tables
In this section we presemiuster trees which are repre- WU, o] in one phase, working our way from the leaves
sentations of the candidate graphs, implying a recursivénwards towardd/y. At the end of this traversal, we have
separator decomposition df into clusters The idea is computed the weight of each ordering on all separators ad-
similar to those of standard clique-tree algorithms used fojacent to the root clustér,. A second phase then traverses
Bayesian network inference (e.g., [17]). We use this repred’ from the root outwards, in order to back-trace the choices
sentation to discuss a class of graphs for wHich ] can ~ made during the first phase, leading to the maximum total
be found in polynomial time. weightWg[G].

Definition 5.6: A Cluster Treeof H is a pair(U, T'), where ealf:ﬁagugltg%thg ?/?srrt]gtljei(vt?/cgf mf f?rlgto(rgc])rrne ;Vf Ziilggt
T = (J,F)isatree andJ = {U;|j € J} is a family of P

clusters subsets of X1, ..., X, }, one for each node &f visit requmngO(|S ! - 14;] - 2%) operations, wheré is
so that: ol ' the size of the candidate sets. Thus, we get the following
' result:

o ForeachX;, there exists a clustef(i) € J such that Theorem 5.8:1f ¢ is the size of the largest separator in the
(X UG} € Uy cluster tree, then finding’ that maximized¥V [G] can be

e Foralli,j, k € J, if j is on the path from to % in done inO(2% - (¢ + 1)! - |J)).
T, thenU; N U, C U;. This is called theunning

intersection property In summary, the algorithm ifnearin the size of the clus-

ter tree but worse than exponential in the size of the largest
| separator in the tree.



: : : . Method Time Score KL Stats
The discussion until now assumed a fixed cluster tree. In Greedy 201535 00499 2655

practice we also need to select the cluster tree. This is abiscs 14 -1841 3.0608 908

H 19 -16.71 1.3634 1063
wgll-known and hard problem that. is beyqnd the scope of 23 1621 08704 1183
this paper. However, we note that if there is a small clusterosc1o 20  -1553 0.2398 1235
tree, then it can be found in polynomial time [3].

=
(v}
4

26 -15.43  0.1481 1512
32 -15.43 0.1481 1733
14 -17.50 2.1675 915
29 -17.25  1.8905 1728
36 -16.92  1.5632 1907
20 -15.86  0.5357 1244
35 -15.50 0.1989 1968
41 -1550 0.1974 2109
12 -15.94  0.6756 893
27 -15.34  0.0550 1838
34 -15.33 0.0479 2206
17 -15.54 0.2559 1169
30 -15.31  0.0352 1917
34 -15.31 0.0352 2058

Shid 5

5.6 Cluster-Tree Heuristics
Although the algorithm of the previous section is linear in —sr@ 10
the number of clusters, it is worse than exponential in the
size of the largest cluster. Thus, in many situations we ex=—score 5
pect it to be hopelessly intractable. Nonetheless, this al-
gorithm provides some intuition on how to decompose the score 10
heuristic search for our problem.

The key idea is that although after computing a cluster

tree, many of the clusters might be large, we can use a mixfaple 1: Summary of results on synthetic data from alarm
ture of the exact algorithm on small clusters and heuristiciomain. These results report the quality of the network,
searches such as greedy hill climbing on the larger clustersneasured both in terms of the score (BDe score divided by
Due to space constraints, we only briefly outline the mainnumper of instances), and KL divergence to the generat-
ideas of this approach. o ing distribution. The other columns measure performance
WhenU; is sufficiently small, we can efficiently store poth in terms of execution time (seconds) and the number
the tablesiW[U}, o] used by the exact cluster tree algo- of statistics collected from the data. The methods reported
rithm. However, if the clusters are large, then we cannofyreDisc— discrepancy measurhld — shielding measure,
do the maximization of ( 2). Instead, we perform a heuris-3ndScore— score based measure.
tic search, such as greedy hill-climbing, over the space of
parents for variables ir; to find a partial network that is

consistent with the ordering induced by the current assign- , .
ment. change that results in a structure not on the list. Note that

By proceeding in this manner, we approximate the exacpecause of the TABU list, the best allowed qhange might
algorithm. This approximation examines a series of Sma”ac.tually reduce the score of the current candidate. We ter-
search spaces, that are presumably easier to deal with th&fjnate the procedure after some fixed number of changes
the original search space. This approach can be easily efailed to result in an improvement over the best score seen

tended to deal with cluster trees in which only some of theSO far. After termination, the procedure returns the best
separators are small. scoring structure it encountered.

In the reported experiments we use this greedy hill-

6 Experimental Evaluation climbing procedure both for the Maximize phase of the

sparse candidate algorithm, and as a search procedure by
In this section we illustrate the effectiveness of the sparsitself. In the former case, the only local changes that are
candidate algorithm. We examine both a synthetic exameonsidered are those allowed by the current choice of can-
ple and a real-life dataset. Our current experiments are detidates. In the latter case, the procedure considers all pos
signed to evaluate the effectiveness of the general schensble local changes. This latter case serves as a reference
and to show the utility of various measures for selectingpoint against which we compare our results. In the ex-
candidates in th&estrict phase. In the experiments de- panded version of this paper, we will also compare to other
scribed here we use greedy hill-climbing for thlaximize  search procedures.
phase. We are currently working on implementation of the To compare these search procedures we need to measure
heuristic algorithms described in Section 5, and we hopéoth their performance in the task at hand, and their com-
to report results. Some statistics about strongly conmlecteputational cost.

WNRWNRWNERWNRWNRPWN

component sizes are reported. The evaluation of quality is based on the score assigned
to the network found by each algorithm. In addition, for
6.1 Methodology synthetic data , we can also measure the true error with

The basic heuristic search procedure we use is a greedgspect to the generating distribution. This allows us to
hill-climbing that considers local moves in the form of edge assess the significance of the differences between thesscore
addition, edge deletion, and edge reversal. At each iteraduring the search.

tion, the procedure examines the change in the score for Evaluating the computational cost is more complicated.
each possible move, and applies the one that leads to thehe simplest approach is to measure running time. We re-
biggest improvement. These iterations are repeated untport running times on an unloaded Pentium 1l 300mhz ma-
convergence. In order to escape local maxima, the proceshines running Linux. These running times, however, de-
dure is augmented with a simple version of TABU search.pend on various coding issues in our implementation. We
It keeps a list of theV last candidates seen, and insteadattempted to avoid introducing bias within our code for ei-
of applying the best local change, it applies the best locather procedure, by using the same basic library for evaluat-
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Figure 4: Graphs showing the performance of the differegoiathms on the text domains. The graphs on the top row
show plots of scoreyf-axis) vs. running time#-axis). The graphs on the bottom row show the same run mehgure
terms of scoreyf-axis) vs. number of statistics computeddxis). The reported methods vary in terms of the candidate
selection measurésc — discrepancy measurghld — shielding measure&core— score based measure) and the size of
the candidate set (k = 10 or 15). The points on each curve osgarse candidate algorithm are the end result of an
iteration. The points on the curves for greedy hill-climipare the intermediate steps in the hill-climb.

ing the score of candidates and for computing and cachingers, and is treated as a common benchmark in the field.
of sufficient statistics. Moreover, the actual search is carThis network contains 37 variables, of which 13 have 2 val-
ried by the same code for greedy-hill climbing procedure. ues, 22 have 3 values, and 2 have 4 values.

As additional indication of computational cost, we also We note that although we do not consider this data set
measured the number of sufficient statistics computed fronparticularly massive, it does allow us to estimate the be-
the data. In massive datasets these computations can havior of our search procedure. In the future we plan to use
the most significant portion of the running time. To min- synthetic data from larger networks.
imize the number of passes over the data we use a cacheThe results for this small data set are reported in Table 6.
that allows us to use previously computed statistics, and tén this table we measure both the score of the networks
marginalize statistics to get the statistics of subsets. Wéound and their error with respect to generating distribu-
report the number of actual statistics that were computedions.
from the data. The results on this toy domain show that our algorithm,

Finally, in all of our experiments we used the BDe scorein particular with theScore selection heuristic, finds net-
of [16] with a uniform prior with equivalent sample size of works with comparable score to the one found by greedy
ten. This choice is a fairly unformed prior that does nothill climbing. Although the timing results for this small
code initial bias toward the correct network. The strengthscale experiments are not too significant, we do see that the
of the equivalent sample size was set prior to the experisparse candidate algorithm usually requires fewer siegist

ments and was not tuned. records.
Finally, we note that the first iteration of the algo-
6.2 Synthetic Data rithm finds reasonably high scoring networks. Nonethe-

i . less, subsequent iterations improve the score. Thus, the re
In the first set of experiments we used a sample of 1000@stimation of candidate sets based on our score does lead
instances from the “alarm” network [2]. This network has o important improvements.
been used for studies of structure learning in various pa-



For the next set of experiments, we used gene express much higher, since instead of counting number of in-
sion data from [1]. The data describes expression level otances, we have to perform inference for each of the in-
800 cell-cycle regulated genes, over 76 experiments. Wastances. As a consequence the reduction in the number of
learned a network from this dataset, and then sampled 500@quested statistics (as shown in our results) leads tifsign
instances from the learned network. We then used this syrieant saving in running time. Similar cost issues occur in
thetic dataset. [14], where a variant of our algorithm is used for learning

The results are reported in figure 4. In these experimentgrobabilistic models from relational databases.
the greedy hill-climbing search stopped before it reached a Second, we showed that by restricting each variable to
maximum, for lack of memory. However, if we try to assessa small group of candidate parents, we can sometimes get
the time it would run until reaching a comparable score totheoretical guarantees on the complexity of the learning al
the other searches, it seems at least 3 times slower, even lggrithm. This result is of theoretical interest: to the bafst
conservative extrapolation. We also note that the discrepeur knowledge, this is the first non-trivial case for which
ancy measure has a slower learning curve than the scone can find a polynomial time learning algorithm for net-
measure. Note that after the first iteration, where the ini-works with in-degree greater than one. This theoretical
tial O(n?) statistics are collected, each iteration adds onlyargument might also have practical ramifications. As we
a modest number of new statistics, since we only calculatshowed, even if the exact polynomial algorithm is too ex-
the measure for pairs of variables initially had a significan pensive, we can use it as a guide for finding good approxi-

mutual information. mate solutions. We are in the process of implementing this
) new heuristic strategy and evaluating it.
6.3 Real-Life Data There are several directions for future research. Our ul-

To test our learning algorithms on more challenging do-timate aim is to use this type of algorithm for learning in
mains we examined data from text. We used the datg@lomains with thousands of attributes. In such domains the
set that contains messages from 20 newsgroups (approx¢ost of theRestrict step of our algorithm is prohibitive
mately 1000 from each) [18]. We represent each messagince it is quadratic in the number of variables). We are
as a vector containing one attribute for the newsgroup angurrently examining heuristic approximations for thispste
attributes for each word in the vocabulary. We constructedhat will find approximations for the best candidates. Once
data sets with different numbers of attributes by focusingwe learn a network based on these candidates, we can use
on subsets of the vocabulary. We did this by removingit to help focus on other variables that should be examined
common stop words, and then sorting words based on theif the nextRestrict step. Another direction of interest is
frequency in the whole data set. The data sets included thié@e combination of our methods with other recent ideas for
group designator and the 9&xt 100set) or 199 {ext 200  efficient learning from large datasets, such as [20].
set) most common words. We trained on 10,000 messages
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