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Abstract

An efficient algorithm is presented to find the most highly correlated pair of variables in a

dataset. The expected number of correlations that the algorithm needs to compute is shown to

be linear in the number of variables rather than quadratic.

1 Introduction

For several tasks in machine learning it is useful to know which two (or few1) variables in a dataset

are most highly correlated. Example #1: The treelet algorithm [1] repeatedly merges the two

most highly correlated variables in a dataset using a Jacobi rotation; the result is an analog of

the wavelet transform, but for unordered data. Example #2: A robot (or other learner) may have

a large number of tasks it wants to learn to perform and a large number of possible variables it

can observe. However, observing each variable has some cost, so it is desirable not to observe

superfluous variables in the field. One approach to determining which variables to select is to

choose those most highly correlated with the targets (e.g., [2], §2, and references therein).

A straightforward method for finding the most highly correlated pair of variables in a dataset is to

compute the correlation between each pair of variables and keep track of which pair’s correlation

is largest. For n observations of p variables, this approach requires O(np2) time, since computing

the correlation between two variables requires O(n) time, and there are p(p − 1)/2 pairs.

For small datasets, with a small number of variables, this approach is adequate. However, for many

modern datasets, O(np2) time is a burden, especially since finding the most highly correlated pair is

typically only a subroutine used to help solve another problem. As an example of the scale that may

be required, we mention the Web 1T 5-Gram corpus [3], which is generated from p = 13, 588, 391
word types and n = 95, 119, 665, 584 sentences. Even in more moderate cases, the complexity of

the straightforward method may be onerous.

In this paper, we present an new algorithm to find the most highly correlated pair of variables

in a dataset (§4). The algorithm relies on a geometrically motivated bound to avoid computing

correlations for many variable pairs that will not be most highly correlated. To our knowledge, this

1In the remainder of the paper, we talk only about the most highly correlated pair of variables, but all algorithms

discused can be used to find the top k pairs by keeping track of the k most highly correlated pairs of variables instead

of the single most highly correlated pair.

1



is the first such algorithm in the literature, although similar geometrical arguments have been used

in other domains (e.g., [4], ch. 24). We show that under appropriate conditions the algorithm can

be expected to require computation of the correlation between only Θ(p) pairs of variables (§5).

First, though, we briefly review notation (§2) and consider an instructive special case (§3).

2 Problem formulation and notation

We consider p input variables X1, X2, . . . , Xp. We assume for convenience that all variables are

quantitative and are centered on zero, but neither assumption is necessary.

We are given n observations of each variable, and we array the n observations of each variable Xi

in an n-dimensional vector xi := [x1i x2i · · · xni]
T .

Both p and n may be very large.

For the zero-centered variables Xi and Xj , the sample correlation is defined as

ρij :=
xT

i xj
√

xT
i xi

√

xT
j xj

.

The task is to find the pair of distinct variables (Xi, Xj) with greatest sample correlation ρij .

3 Warm-up

We suppose, for this section only, that our dataset has just n = 2 observations of the p variables.

In this case, the vectors x1, x2, . . . , xp lie in the plane R
2. Some examples, with p = 3, are plotted

below:
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Let θij denote the angle between xi and xj , measured counterclockwise from xi. Notice, first, that

in two dimensions,

θjk = θik − θij

for any variable indices i, j, and k. Second, observe that

cos(θij) =
xT

i xj

‖xi‖‖xj‖
= ρij,

where ‖ · ‖ is the ℓ2-norm. This suggests that, for n = 2 observations of an arbitrary number p of

variables, it is possible do the following:

Algorithm 1.

(a) Choose one arbitrary “bridge” variable Xb. Compute the angle θib between Xb and each

other variable Xi.

(b) For all i < j, compute

θij = θib − θjb, and

rij = arccos(θij), keeping track of which rij is largest.

(c) Designate the (Xi, Xj) pair whose rij is largest as the pair of most highly correlated vari-

ables.

This algorithm requires only p passes through the n observations, in order to compute the angle

θib in step (a) between the “bridge” and other variables. In contrast, the straightforward algorithm

mentioned in the introduction requires p2 passes through the n observations.

Algorithm 1 also requires, in step (b), to iterate over the p(p − 1)/2 variable pairs. However, the

computation required at each iteration is small: only algebra is performed.

Although we do not prove it rigorously, it seems that Algorithm 1 is optimal, or nearly so, in

the class of algorithms that compute the most highly correlated pair of variables exactly, without

making approximations. Any exact algorithm must (a) iterate over the pn observation-variable

combinations at least once—any unexamined combination could invalidate the result—and (b)

iterate over the p(p − 1)/2 variable pairs at least once—any unexamined pair could be the best.

This is precisely, and only, what Algorithm 1 does.

Unfortunately, Algorithm 1 is not practical, because it only works for n ≤ 2 observations. The

reason for this limitation is that Algorithm 1 works by moving back and forth between angles and

cosines (that is, correlations), and this is not well-defined when n > 2.

Nevertheless, Algorithm 1 suggests a way to construct a general-purpose method that, while not as

efficient as Algorithm 1, is better than the straightforward approach considered in the introduction.
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4 The main algorithm

The following upper bound on sample correlation is given by Langford, Schwertman, and Owens

[5].

Proposition 1. For variables Xi, Xj, Xk with sample correlations ρik, ρij, ρjk, the following in-

equality holds:

ρik ≤ ρijρjk +
√

(1 − ρ2
ij)(1 − ρ2

jk).

This result suggests an efficient algorithm for computing maximum correlations. If the upper

bound on the correlation between a pair of variables (Xi, Xk) is less than the largest correlation

seen so far, then (Xi, Xk) cannot be the most highly correlated pair, and we do not need to compute

the correlation between Xi and Xk to determine this. Formally:

Algorithm 2.

Initially, set ρ∗ = −∞.

(1) Choose one arbitrary “bridge” variable Xb. Compute the sample correlation ρib between Xb

and each other variable Xi.

(2) For i < j,

(a) Set rij = ρibρjb +
√

(1 − ρ2
ib)(1 − ρ2

jb), an upper bound on the sample correlation

between the variables Xi and Xj .

(b) If rij > ρ∗,

(i) Compute ρij , the sample correlation between Xi and Xj , from the observations xi

and xj , using the definition.

(ii) If ρij > ρ∗, set ρ∗ = ρij .

(3) Designate the (Xi, Xj) corresponding to the last ρ∗ as the most highly correlated variables.

As already mentioned, Algorithm 2 is in some respects similar to Algorithm 1. In both cases, we

aim to avoid computing the sample correlation from the definition, and in both cases, we achieve

this by comparing each variable in each pair individually to a “bridge” variable.

On the other hand, a key difference from Algorithm 1 is that in Algorithm 2, when the upper

bound rij is larger than the currently maximum correlation r∗, we do not thereby know the value

of ρij . Hence, in that case we need to compute the correlation from the definition, based on the

observations, in order to check whether it is the largest correlation so far.

This makes analysis of Algorithm 2 more difficult, as its complexity depends strongly on how many

times we need to compute the correlations. If we reach step (2bi) every iteration or nearly so, then

Algorithm 2 will be no better than the straightforward algorithm presented in the introduction. On
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the other hand, if we never reach step (2bi) more than once per execution, then Algorithm 2 is

almost as good as Algorithm 1.

It is clear that both of these are attainable: in the best case, we will only have to compute the

sample correlation between one non-“bridge” (Xi, Xj) pair, while in the worst case, we will need

to compute the sample correlation between every (Xi, Xj) pair. In the next section, we will carry

out a more precise analysis.

5 Analysis of the main algorithm

In this section, we seek a precise understanding as to how many times the sample correlation will

need to be computed from the definition in Algorithm 2. Our main result is as follows.

Theorem 1. If the correlations ρij , 1 ≤ i < j ≤ p, are iid uniformly between −1 and 1, then the

expected number of times rij > ρ∗ in Algorithm 2, i.e., the expected number of times Algorithm 2

will need to compute a correlation from scratch, is Θ(p).

The remainder of this section is devoted to a proof.

First, we formalize the problem.

Definition 1. (a) Let I be a one-to-one map t 7→ (i, j), for t = 1, . . . , p(p − 1)/2, so that

ρt = ρij and rt = rij = ρibρjb +
√

(1 − ρ2
ib)(1 − ρ2

jb).

(b) Let κt indicate whether the upper bound rt is greater than all previous correlations:

κt =

{

1, if rt > max{ρ1, ρ2, . . . , ρt−1},
0, otherwise.

(c) Let vt denote the number of times κt has been on so far:

vt =
t
∑

s=1

κs.

We always assume correlations are drawn iid from uniform[−1, 1].

In this notation, Theorem 1 claims that E[vp(p−1)/2] = Θ(p). We will establish the claim by (a)

finding the distribution of rt (Lemma 1), (b) using Watson’s lemma to approximate the expected

value of κt (Lemma 2), and (c) using Euler-Maclaurin summation to approximate the expected

value of vt (Lemma 3).

We begin with the distribution of rt.
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Lemma 1. For fixed −1 ≤ a ≤ 1, the cdf

Pr[rt ≤ a] =
1

2
(a + 1) +

1

4

√
1 − a2(arccos(a) − π).

Proof. Note that rt’s distribution does not depend on t, so for convenience of notation we write

r(x, y) = xy +
√

1 − x2
√

1 − y2, with x, y drawn uniformly from [−1, 1]. We seek the area of the

sublevel set

{(x, y) : r(x, y) ≤ a} = {(x, y) : −a ≤ x ≤ 1 , y ≤ ax −
√

1 − a2
√

1 − x2} ∪
{(x, y) : −1 ≤ x ≤ a , y ≥ ax +

√
1 − a2

√
1 − x2}.

The area is given by

2

∫ 1

−a

(

ax −
√

1 − a2
√

1 − x2 − (−1)
)

dx = 2(a + 1) +
√

1 − a2(arccos(a) − π).

Dividing by the area of [−1, 1] × [−1, 1] = 4, the result follows.

Next, we find an asymptotic approximation for E[κt], the expected number of times the upper

bound rt is greater than the current maximum correlation:

Lemma 2. As t → ∞,

E[κt] ∼
π3/2

4
√

t − 3/2
.

Proof. First, note that E[κt] =
∫ 1

−1
E[κt|r]f(r) dr, where

E[κt|r] = Pr[r > max{ρ1, ρ2, . . . , ρt−1}|r] = (Pr[ρ ≤ r])t−1 =

(

1 + r

2

)t−1

,

since the ρ are uniform iid, and

f(r) =
d

dr

[

1

2
(r + 1) +

1

4

√
1 − r2(arccos(r) − π)

]

=
1

4
+

r(π − arccos(r))

4
√

1 − r2
.

Substituting and simplifying, we have

E[κt] =
1

2t+1

∫ 1

−1

(1 + r)t−1

(

r(π − arccos(r))√
1 − r2

)

dr +
1

2t
:= I +

1

2t
.

We find an asymptotic approximation to I as follows. By substituting τ = t−3/2, x = − log(2)+
log(1 + r), and reflecting the integrand across x = 0, we obtain

I =
1

25/2

∫

∞

0

e−xτf(x), dx,
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where

f(x) : =
2e−x (−1 + 2e−x) (π − arccos(−1 + 2e−x))√

2 − 2e−x

=

√
2π√
x

− 2
√

2 − 11π
√

x

2
√

2
+

17
√

2x

3
+

265πx3/2

48
√

2
+ O(x2).

By Watson’s lemma (e.g., [6]), taking the first two terms of the series, we have

I ∼ π

25/2

√
2(−1/2)!

τ−1/2+1
− 1

25/2

2
√

2 0!

τ 0+1
=

π3/2

4
√

t − 3/2
− 1

t − 3/2
,

where we have substituted τ = t − 3/2 and (−1/2)! =
√

π and simplified. We conclude that

E[κt] ∼
π3/2

4
√

t − 3/2
− 1

t − 3/2
+

1

2t
∼ π3/2

4
√

t − 3/2
.

Lemma 3. As t → ∞,

E[vt] ∼
π3/2

√

t − 3/2

2
= Θ(

√
t).

Proof. We have

E[vt] =
t
∑

s=1

E[κs] ∼
t
∑

s=1

π3/2

4
√

s − 3/2
∼ π3/2

4

t
∑

s=a

1
√

s − 3/2
:=

π3/2

4

t
∑

s=a

f(s),

where we have used Lemma 2, and we choose a > 3/2 to avoid the singularity. By Euler-

Maclaurin summation (e.g., [7], §4.5), we have

E[vt] =
π3/2

4

[
∫ t

a

f(s)ds +
1

2
f(s)

∣

∣

∣

t

a
+ R

]

,

where f(s)|ta := f(t) − f(a), and the remainder

R :=

∫ t

a

(

s − ⌊s⌋ − 1

2

)

f ′(s)ds ≤ 1

2

∫ t

a

f ′(s)ds =
1

2

(

1
√

s − 3/2

)

∣

∣

∣

t

a
.

Thus

E[vt] =
π3/2

4

[

2
(

√

s − 3/2
) ∣

∣

∣

t

a
+

1

2

(

1
√

s − 3/2

)

∣

∣

∣

t

a
+ R

]

∼ π3/2
√

t − 3/2

2
,

since the first term dominates.

Theorem 1 now follows by substituting t = p(p − 1)/2:

E[vp(p−1)/2] ∼
π3/2

√

p(p − 1)/2 − 3/2

2
∼ π3/2

2
√

2
p = Θ(p).
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6 Discussion and future work

We have presented a new algorithm for efficiently computing the pair of variables most highly

correlated in a dataset. There are several directions of particular interest for future investigation.

First, we might model the correlations ρt as being drawn from a more complex distribution than

uniform[−1, 1]. In particular, it is of interest to explore how dependencies among correlations and

among variables affects the number of computations needed. Second, we intend to investigate how

existing learning algorithms can be improved using our algorithm, and how new algorithms can be

devised. Finally, it is of interest to carry out an extensive empirical validation; preliminary work in

this direction indicates that the algorithm is indeed quite effective on real datasets.

Acknowlegements

Thanks to Eric Bach for help with the analysis.

References

[1] Ann B. Lee, Boaz Nadler, and Larry Wasserman. Treelets—an adaptive multi-scale basis for

sparse unordered data. The Annals of Applied Statistics, 2(2):435–471, 2008.

[2] Isabelle Guyon. An introduction to variable and feature selection. Journal of Machine Learn-

ing Research, 3:1157–1182, 2003.

[3] Thorsten Brants and Alex Franz. Web 1T 5-gram version 1. Linguistic Data Consortium,

Philadelphia, 2006.

[4] Robert Sedgewick. Algorithms. Addison Wesley Longman, 1983.

[5] E. Langford, N. Schwertman, and M. Owens. Is the property of being positively correlated

transitive? The American Statistician, 55:322–325, 2001.

[6] L. Sirovich. Techniques of Asymptotic Analysis. Springer, 1971.

[7] Paul Walton Purdom, Jr. and Cynthia A. Brown. The Analysis of Algorithms. Holt, Rinehart,

& Winston, 1985.

8


	Introduction
	Problem formulation and notation
	Warm-up
	The main algorithm
	Analysis of the main algorithm
	Discussion and future work

