
Sparse online supervised PCA

Nathanael Fillmore
Computer Sciences Department
University of Wisconsin-Madison

nathanae@cs.wisc.edu

May 14, 2009

1 Introduction

For some machine learning problems the number of possible variables is extremely large.
Consider the following two examples:

Example #1. In text processing, any of the following could be used as variables:

- 1-gram counts, 2-gram counts, . . . , N -gram counts, for any N ;

- exact position indicators, i.e., the variable Xw,i can be defined to be 1 if word type w
occurs at position i in a document, and 0 otherwise;

- punctuated N -gram counts, i.e., for each index set S := {s1, s2, . . . } ⊂ {1, 2, . . . }, and
for each combination of word types w1, w2, . . . , w|S|, the variable XS,w0,w1,...,w|S|

can be
defined as the number of times word type w1 occurs s1 positions before word type
w0, word type w2 occurs s2 positions before w0, . . . , and word type w|S| occurs s|S|
positions before w0, in a document;

and so on. The number of possible combinations is unbounded.

Example #2. A robot may have the following capabilities:

- it can take photos arbitrarily frequently, in arbitrary directions, capturing light at
arbitrary wavelengths;

- it can record sounds, temperatures, motions, etc., in similarly diverse ways;

- it can move itself and it can push or pull other objects, and afterwards it can measure
the effects of its actions.

As in the previous example, these capabilities lead to an unlimited number of possible vari-
ables that the robot can, in principle, observe.

However, although the number of possible variables may be unbounded, the number of
variables it is practical to observe is always limited. This limitation has at least two causes.

First, as is well known, learning becomes increasingly difficult as the number of variables
increases, due to Bellman’s “curse of dimensionality” [2] and related issues; see [3] for an
overview. For example, it is a standard result of computational learning theory that learning

1

an unbiased estimator in p-dimensional boolean space has sample complexity exponential in
p [7].

Second, the computational complexity associated with a large number of variables is some-
times great. For example, when the number of variables p = 100 000, the covariance matrix
contains p(p + 1)/2 ≈ 5 billion unique entries. Note that this figure is independent of n,
the number of training examples: even if n is 1, computation of the covariance matrix will
require time quadratic in the number of variables, and—sometimes even worse—will also
require space quadratic in the number of variables.

Of course, it is clear that not all variables are equally important for a given problem. Thus
a large number of feature selection techniques have been devised to reduce the number of
variables; see [5] for an overview, and below for some specific techniques.

Many feature selection techniques address only the first problem mentioned above, that of
learning, but do not address the computational complexity problem. Indeed, use of feature
selection can require more computation than learning directly from the original variables.

In this paper, we present a feature selection algorithm, SOSPCA, that addresses both the
learning problem and the computational problem. The algorithm can select a small, trans-
formed subset of variables from arbitrarily many original variables, in time linear in the
number of variables in the worst case, and in expected constant space. The algorithm has
these properties because it is an “online” algorithm, not in the usual sense that it considers
a stream of observations, but rather in the sense that it considers a stream of variables.

2 Problem definition and algorithm

2.1 Problem definition

We consider p input variables X1, X2, . . . , Xp and one output variable Y . We assume for con-
venience that all variables are quantitative and are centered on zero, but neither assumption
is necessary. The number p may be very large.

During training, we make n observations of the output variable and of each input variable.
In contrast to usual practice, we do not assume that all variables are observed at once, but
we do assume that all observations of a particular variable are made at once. (For example,
we may not count all N -grams in a corpus up front, but when we consider one particular
N -gram, we do count it in all documents.) Our notation reflects this fact: we array the n
observations of the variable Xi in an n-dimensional vector xi := [x1i x2i · · · xni]

T , and the
n observations of the variable Y in an n-dimensional vector y := [y1 y2 · · · yn]T .

We seek a set of q ≪ p linearly transformed input variables Z1, Z2, . . . , Zq that captures the
correlation observed during training between the original p input variables and the output
variable. We will end up with a linear change-of-basis operator B ∈ R

p×q that maps each

2

observation from its representation under the p original variables to its representation under
the q transformed variables.

We always use i as an index for original variables (i = 1, . . . , p), j as an index for observations
(j = 1, . . . , n), and k as an index for transformed variables (k = 1, . . . , q).

2.2 Algorithm

At a high level, the SOSPCA algorithm is as follows:

- Begin with q arbitrary “transformed” variables, represented in the standard q-dimensional
basis.

- For each remaining original variable:

- If the original variable is more highly correlated with the output variable than
one of the transformed variables is correlated with the output variable:

- Add the original variable as a transformed variable.
- Merge the two transformed variables that are least correlated with the output

variable.

In more detail, the SOSPCA algorithm is as follows:

- Initially:

- Let Z1 = X1, Z2 = X2, . . . , Zq = Xq, and let z1 = x1, z2 = x2, . . . , zq = xq.

- Let B := [b1 b2 · · · bq], the change of basis operator, be the first q columns of the
p × p identity matrix.

- Compute the sample correlation

ρkY =
zT

k y
√

zT
k zk

√

yT y

between each of the variables Zk, k = 1, . . . , q, and the output variable Y .

- For i = q + 1, q + 2, ..., p:

- Compute the sample correlation ρiY between the variable Xi and Y as above (but
substituting xi for zk).

- If ρiY > mink=1,...,q ρkY :
- Temporarily let Zq+1 = Xi, zq+1 = xi, and B = [B | ei], where ei is the ith

standard basis vector, with a 1 in the ith place and 0s elsewhere.
- Let k′ = arg mink=1,...,q+1 ρkY , and let k′′ = arg mink=1,...,q+1, k 6=k′ ρkY be the

indices of the two variables Zk′ and Zk′′ that are least highly correlated with
Y .

- Let σ2
k′,k′′ be the sample covariance between Zk′ and Zk′′ , and let σ2

k′,k′ be the
sample variance.

- Let θ = (1/2) tan−1[(2σk′,k′′)/(σk′,k′σk′′,k′′)] be the angle between zk′ and zi′′ .

3

- Update

(

bk′ | bk′′

)

=
(

bk′ | bk′′

)

(

cos θ − sin θ
sin θ cos θ

)

, and

(

zk′ | zk′′

)

=
(

zk′ | zk′′

)

(

cos θ − sin θ
sin θ cos θ

)

,

thus rotating the basis so as to decorrelate zz′ and zz′′ .
- Recompute ρk′Y and ρk′′Y .
- If ρk′Y > ρk′′Y , discard Zk′′ , by shifting Zk = Zk+1 and zk = zk+1 for k =

k′ + 1, . . . , q and by updating B = [b1 · · · bk′−1 bk′+1 · · · bq+1].
- Otherwise, discard Zk′ similarly.

- Otherwise:
- Ignore variable Xi.

2.3 Example

To illustrate with the mechanics of the algorithm and its attractive properties, we consider
the following example. In the following, we denote X = [x1 x2 · · · xp] and Z = [z1 z2 · · · zq].

In our example, we are given p = 5 input variables, one output variable, and n = 3 observa-
tions of the variables, as follows:

X =





2.0000 1.6667 1.6667 −0.6667 2.6667
2.0000 −0.3333 2.6667 −1.6667 −2.3333
−4.0000 −1.3333 −4.3333 2.3333 −0.3333



 , y =





5.3333
−4.6667
−0.6667



 .

We seek to extract q = 2 variables.

We initialize Z as [x1 x2]:

Z =





2.0000 1.6667
2.0000 −0.3333
−4.0000 −1.3333



 ,

and the basis to the standard basis:

B =













1 0
0 1
0 0
0 0
0 0













.

This basis reflects the fact that so far we have simply chosen the first two variables. The
final preliminary step is to compute the correlation of each transformed variable Zk with the
output variable Y :

ρk=1,Y = 0.1147, ρk=2,Y = 0.7370.

4

Next, we enter the first iteration of the main loop. We compute the sample correlation
between Xi and Y for i = 3. This quantity is ρi=3,Y = −0.0175, which is less than both
ρk=1,Y = 0.1147 and ρk=2,Y = 0.7370. Thus, we ignore variable X3.

Next, we enter the second iteration of the main loop. We compute the sample correlation
between Xi and Y for i = 4. This quantity is ρi=4,Y = 0.1273, which is larger than ρk=1,Y =
0.1147. Thus we cannot simply throw away X4. Instead, we temporarily add X4 to the set
of transformed variables, under the alias Z3, and we add e4 to the basis B:

Z =





2.0000 1.6667 −0.6667
2.0000 −0.3333 −1.6667
−4.0000 −1.3333 2.3333



 , B =













1 0 0
0 1 0
0 0 0
0 0 1
0 0 0













.

Of Z1, Z2, and Z3, the variables Z1 and Z3(= X4) are least highly correlated with Y (see
above). Thus we rotate the basis B in dimensions 1 and 3 so as to decorrelate Z1 and Z3.
After the rotation, we end up with

Z =





2.0547 1.6667 0.4721
2.5753 −0.3333 −0.3817
−4.6299 −1.3333 −0.0903



 , B =













0.8538 0 0.5206
0 1.0000 0
0 0 0

−0.5206 0 0.8538
0 0 0













.

The new correlation of Z1 with Y is ρk=1,Y = 0.050110, while the new correlation of Z3 with
Y is ρk=3,Y = 0.997806. The new variable Z3 is almost parallel to Y , a fact that is highly
useful for future learning. In contrast, Z1 is less highly correlated with Y , so we discard Z1,
and the final representations of our data and the basis after the second iteration are:

Z =





1.6667 0.4721
−0.3333 −0.3817
−1.3333 −0.0903



 , B =













0 0.5206
1.0000 0

0 0
0 0.8538
0 0













.

We can continue this process as long as more variables Xi are available; in the present
example one more iteration will be taken.

3 Theory

Recall that we assume that p ≫ q; we also assume p ≫ n.

3.1 Time

The SOSPCA algorithm requires time only linear in the number p of original variables. The
analysis is as follows. Each step of our algorithm requires constant time with respect to the

5

number of original variables. At each step, we must compute the sample correlation between
the variable currently under consideration and the target variable; this requires O(n) time. If
this correlation is small, we immediatly go to the next step. Otherwise, we need to perform
more computations, but only at most O(min(qn2, nq2)) of them, to compute the sample
covariance between the n variables. Thus, the total runing time is O(p min(qn2, nq2)).

3.2 Space

In the worst case, the SOSPCA algorithm also requires space linear in the number of orig-
inal variables, in order to store the change-of-basis operator B. However, under certain
assumptions, only space constant in the number of original variables is required.

The analysis is as follows. Rows in B that correspond to

- variables that have not yet been considered, i.e., Xi′ , i
′ > i, and

- variables that have been considered but immediately discarded because they have low
correlation with the output variable

do not need to be stored in B. In [4], the following theorem is shown:

Theorem 1. If t correlation variables ρt are drawn iid from a uniform distribution over

the interval [−1, 1], then the expected number of times ρt > maxt′=1,...,t−1 ρt′ is asymptotic to

(log t)/t.

As an immediate consequence of this theorem, the expected number of rows required in B
is proportional to (log p)/p → 0 as p → ∞.

4 Experimental evaluation

In this section we present an experimental validation of the above results. The experiments
are not conclusive, but they do show that using our algorithm, dimensionality can be greatly
reduced without increasing average error by a large amount, and that in some cases error is
reduced by a significant amount.

Our methodology is as follows. We collect ten datasets prepared by other students in the
University of Wisconsin’s machine learning course. In all cases, the output variable is binary
{−1, 1}. Some input variables are quantitative and some are qualitative. Each K-valued
qualitative variable was replaced by K binary {−1, 1} indicator variables. The quantitative
variables were rescaled into [−1, 1] to avoid ill-conditioning.

We consider three classification algorithms: (a) linear discriminant analysis, (b) support
vector machine with a Gaussian kernel (σ = 0.3), and (c) 1-nearest neighbor. For each
algorithm, we train using no feature selection, or feature selection with p = 1, 2, 5, 10, 20 and
50 variables using the SOSPCA algorithm. In all cases, we use 10-fold cross-validation on
each of the datasets separately.

6

 q=1 2 5 10 20 50 q=p
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of dimensions

e
rr

o
r,

 w
it
h

 s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

(a) LDA

 q=1 2 5 10 20 50 q=p
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of dimensions

e
rr

o
r,

 w
it
h

 s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

(b) 1-NN

 q=1 2 5 10 20 50 q=p
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of dimensions

e
rr

o
r,

 w
it
h

 s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n

(c) SVM

Figure 1: Error plots. See text for details. q = p denotes the case where no feature selection
was performed.

7

Results are shown in Figure 1. Each plot corresponds to a distinct classification algorithm,
and each abscissa corresponds to a distinct number of variables in the transformed represen-
tation. Average error accross folds and datasets is indicated by a circle, and the standard
deviation is indicated by vertical bars.

For LDA and 1-NN, error increases somewhat as the number of variables selected decreases.
However, for LDA none of the increases are significant at the 95% level, and for 1-NN, only
the increases at q = 1 and q = 50 are significant. This result is somewhat encouraging,
because it shows that the SOSPCA algorithm can reduce dimensionality from p > 50 to
q = 2 without increasing error by a significant amount.

For SVM with a Gaussian kernel, the error actually decreases as the number of variables
selected decreases. Indeed, the lowest average error was obtained for q = 1. All the decreases
in error for SVM relative to the q = p case are significant at the 95% level.

Why is the difference significant in the case of SVM? It seems that the reason is related
to the use of a Gaussian kernel: with polynomial and linear kernels, the same effect was
not observed in preliminary experiments. One possibility is as follows. Recall that for
multivariate Gaussian density functions, the mean and covariance are sufficient statistics.
Thus it seems reasonable to suppose that a Gaussian kernel will work best to the extent
that the sample covariance of the input variables is related to the variability of the output
variable. But this property is precisely what the SOSPCA algorithm aims to achieve. So
it is reasonable that SOSPCA would be well-suited as a feature selection algorithm prior to
using SVM with a Gaussian kernel. In contrast, LDA and 1-NN do not have this “sufficient
statistic” property.

5 Related work

As mentioned in the introduction, a large number of feature selection algorithms have been
proposed. We briefly mention two approaches that are most significant to our work: su-
pervised principal components [1] and treelets [6]. In contrast to both these approaches,
SOSPCA is online with respect to the variables. In contrast to treelets, SOSPCA is super-
vised: it selects variables to decorrelate based on their correlation to the target variable,
whereas treelets selects variables based on their correlation to each other. In contrast to
supervised principal components, SOSPCA incrementally performs local Jacobi rotations on
pairs of variables; in contrast, supervised principal components chooses a subset of variables
(based on correlation to the target variable) and then performs PCA on all these variables
at once.

6 Future work

In the future, we would like, first, to explore further the theoretical properties of the SOSPCA
algorithm. Is the SOSPCA an algorithm asymptotically unbiased estimator of something?

8

Does it reduce to another algorithm under certain conditions? And so on. Second, it
is important to perform a much more thorough empirical validation. In particular, it is
desirable (a) to compare the SOSPCA algorithm to a large number of competing approaches,
and (b) to tune parameters of the classifiers more systematically, to see how this affects the
value of the SOSPCA as a feature selection algorithm.

References

[1] E. Bair, T. Hastie, D. Paul, and R. Tibshirani. Prediction by supervised principal com-
ponents. Journal of the American Statistical Association, 2006.

[2] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,
1961.

[3] Robert Clarke, Habtom W. Ressom, Antai Wang, Jianhua Xuan, Minetta C. Liu, Ed-
mund A. Gehan, and Yue Wang. The properties of high-dimensional data spaces: impli-
cations for exploring gene and protein expression data. Nature Reviews Cancer, 2008.

[4] Nathanael Fillmore. Efficient computation of correlation matrices.
Course project for CS809, University of Wisconsin-Madison, 2009.
http://pages.cs.wisc.edu/∼nathanae/corr.pdf.

[5] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157–1182, 2003.

[6] Ann B. Lee, Boaz Nadler, and Larry Wasserman. Treelets—an adaptive multi-scale basis
for sparse unordered data. The Annals of Applied Statistics, 2(2):435–471, 2008.

[7] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

9

http://pages.cs.wisc.edu/~nathanae/corr.pdf

	Introduction
	Problem definition and algorithm
	Problem definition
	Algorithm
	Example

	Theory
	Time
	Space

	Experimental evaluation
	Related work
	Future work

