
CS731, Project, 2008-12-20, Nathanael Fillmore (nathanae)1

An EM-algorithm for non-parametric
separable mixture models

1 Introduction

In this paper, we seek an efficient and theoretically justified algorithm to learn the parameters
of a separable mixture of kernel density estimators; this model is detailed and motivated in §2. An
efficient algorithm to learn the parameters already exists, namely Benaglia et al.’s heuristic ([1]; §4
below)—but it is not derived from any first principles, and it is not guaranteed to find a locally
optimal solution. Our novel contributions are as follows:

• We derive a principled but slow expectation maximization (EM) algorithm to solve the prob-
lem (§3).

• We show that Benaglia et al.’s heuristic is an approximation to this EM algorithm (§4–§6).

• We propose an enhancment of Benaglia et al.’s heuristic that is principled and fast (§7).

We conclude with experimental results (§8) and discussion (§9).
Mixture models have been studied and applied extensively over the past decades; see the

monographs [8, 9, 10]. Kernel density estimators have also been studied in detail; see, for ex-
ample, [11]. The specific type of mixture model under consideration here is less well-studied,
and there has been recent progress. In particular, Hall and others [6, 7] recently showed that the
model is identifiable if the dimensionality of the data is large enough in comparison to the number
of mixture components, and EM-like algorithms for learning the model’s parameters have been
proposed by [2, 3], in addition to [1].

2 Problem formulation

We seek to estimate a probability density function (pdf) f(x) from n points of D-dimensional
training data x1, . . . ,xn. We assume that f(x) is a mixture, that is, a convex combination, of m
components fj(x):

f(x) =
m∑

j=1

λjfj(x), (1)

where all mixing weights λj ≥ 0 and
∑m

j=1
λj = 1. Each component density fj(x) is separable as a

product of D one-dimensional densities:

fj(x) =
D∏

d=1

fjd(xd) (2)

1This report is based on joint work with Jingci Meng and Jerry Zhu. We have also talked to Steve Wright

1

In other words, the D features are conditionally independent. Each one-dimensional density fjd

is a weighted kernel density estimator (KDE) based on the training data x1, . . . ,xn:

fjd(xd) =
1

h

n∑

i=1

αijK

(
xd − xid

h

)

(3)

where the KDE weight αij specifies how much the ith training datum should contribute to the jth
KDE. As with λ, we require that all αij ≥ 0 and that

∑n
i=1

αij = 1 for all j = 1, . . . , m. For the
kernel function K(·), any pdf where K(z) = K(−z) for all z in its domain can be used; in this paper
we use the Gaussian kernel

K(z) =
1√
2π

exp

(

−1

2
z2

)

, (4)

a common choice. Finally, h is the bandwidth of the KDE. A small bandwidth causes each kernel
to be a pointy butte; large bandwidth causes plateaus. Ideally, the bandwidth will be neither too
small nor too large. We assume that each kernel evaluation is relatively expensive, and that the
number of training data n is too large to tractably store a precomputed kernel matrix K̄ii′d =

K
(

xid−xi′d

h

)

.

We aim to find the “best” parameters Θ = {λ,w}. (For simplicity we assume an appropriate
bandwidth h is known.) A common and natural objective by which to judge the “goodness” of
a particular choice of parameters is the log likelihood, defined for any training set x1, . . . ,xn and
Θ-parameterized distribution PΘ as ℓ(Θ) =

∑n
i=1

log PΘ(xi). Substituting our density f leads to
the following concrete formula to calculate log likelihood:

ℓ(Θ) =
n∑

i=1

log
1

hD

m∑

j=1

λj

D∏

d=1

n∑

i′=1

αi′jK

(
xid − xi′d

h

)

(5)

To find the parameters Θ that maximize log likelihood, we solve the following optimization prob-
lem:

max
Θ

ℓ(Θ)

s.t.
∑m

j=1
λj = 1

∑n
i=1

αij = 1 for j = 1, . . . , m
λj ≥ 0 for j = 1, . . . , m
αij ≥ 0 for i = 1, . . . , n, j = 1, . . . , m

(6)

3 EM algorithm: principled but slow

One way to solve problem (6) is to use an expectation-maximization (EM) algorithm [5]. EM has
proved quite effective for learning the parameters of many mixture models (e.g. [8] chs. 2 and 12).
The EM algorithm cycles between two steps, one (the E step) which calculates the expected value
of a hidden variable, and one (the M step) which finds the best parameters, given that expected
value. Ideally, by providing a concrete value for the hidden variable, the M-step objective will be
simpler than the overall objective—in the best case it will have a closed-form maximizer. A key

2

property of the EM algorithm is that it is guaranteed (a) to increase the original objective at each
iteration, and (b) to converge to a local maximum of the objective.

To derive an EM algorithm for problem (6), we introduce a distribution Pq(j|xi), as follows.
First, for convenient manipulation we will write our target pdf f(xi) as a generic probability dis-
tribution parameterized by Θ, that is, as PΘ(xi). With this notation, the log likelihood is expressed
as

ℓ(Θ) =

n∑

i=1

log PΘ(xi) (7)

as before. Next, we introduce a new discrete probability distribution Pq(j|xi), parameterized by
an n × m matrix [qij], where each row represents the conditional probability that datum xi was
drawn from component j. Since any discrete probability distribution sums to 1,

∑m
j=1

Pq(j|xi) = 1
for all i, and our log likelihood can be trivially rewritten as

ℓ(Θ) =
n∑

i=1

m∑

j=1

Pq(j|xi)

︸ ︷︷ ︸

=1

log PΘ(xi) (8)

Finally, we introduce a joint distribution, again parameterized by Θ, namely

PΘ(xi, j) = PΘ(j)PΘ(xi|j) = λjfj(xi) (9)

and perform technical manipulations to find a useful decomposition of the log likelihood into
Kullback-Leibler (KL) divergence and a new objective function F (Θ; q):

ℓ(Θ) =
n∑

i=1

m∑

j=1

Pq(j|xi) log

[
PΘ(xi)Pq(j|xi)

PΘ(xi, j)

PΘ(xi, j)

Pq(j|xi)

]

(10)

=
n∑

i=1

m∑

j=1

Pq(j|xi) log
PΘ(xi)Pq(j|xi)

PΘ(xi, j)
+

n∑

i=1

m∑

j=1

Pq(j|xi) log
PΘ(xi, j)

Pq(j|xi)
(11)

=
n∑

i=1

m∑

j=1

Pq(j|xi) log
PΘ(xi)Pq(j|xi)

PΘ(xi)PΘ(j|xi)
+

n∑

i=1

m∑

j=1

Pq(j|xi) log
PΘ(xi, j)

Pq(j|xi)
(12)

=
n∑

i=1

m∑

j=1

Pq(j|xi) log
Pq(j|xi)

PΘ(j|xi)
+

n∑

i=1

m∑

j=1

Pq(j|xi) log
PΘ(xi, j)

Pq(j|xi)
(13)

=

[
n∑

i=1

KL(Pq(·|xi)||PΘ(·|xi))

]

+ F (Θ; q) (14)

The KL divergence, defined for discrete distributions Pa and Pb by

KL(Pa||Pb) =
n∑

i=1

Pa(xi) log(Pa(xi)/Pb(xi)) (15)

is (i) always non-negative and (ii) is zero only when Pa = Pb. Due to these properties, F is a lower
bound on the log likelihood, and F equals the log likelihood when Pq = PΘ, since in that case the
first term of Eq. (14) is zero.

3

This leads to an EM algorithm. In the E step, we will compute the parameter q of Pq(j|xi)
for all i and j, based on the current information in Θ. In the M step, we will use this q to find
the Θ that maximizes F (Θ; q). By looping between these steps, we are guaranteed to converge
monotonically to a local maximum of the original log likelihood function.

Concretely, in the E step, we will set qij so that

qij ≡ Pq(j|xi) = PΘ(j|xi) (16)

i.e., to minimize KL divergence. By Bayes’ rule,

PΘ(j|xi) = PΘ(j)PΘ(j|xi)/PΘ(xi) (17)

Substituting for PΘ in the right-hand side of (17), we obtain our update:

qij =
λj

∏D
d=1

fjd(xid)
∑n

j′=1
λj′

∏D
d=1

fj′d(xid)
(18)

In the M step, we will maximize F (Θ; q) over Θ subject to the constraints of problem (6).
Substituing for F , Pq and PΘ, we have

F (Θ; q) =

n∑

i=1

m∑

j=1

Pq(j|xi) log
PΘ(xi, j)

Pq(j|xi)
(19)

=

n∑

i=1

m∑

j=1

qij log
λjfj(xi)

qij

(20)

=

n∑

i=1

m∑

j=1

[qij log λjfj(xi) − qij log qij] (21)

Since the second term of (21) does not include λ or α, we can ignore it while optimizing:

F (Θ; q) =
n∑

i=1

m∑

j=1

qij log λjfj(xi) + const (22)

Finally, we substitute for fj and rearrange:

F (Θ; q) =
n∑

i=1

m∑

j=1

qij log

[

λj

D∏

d=1

1

h

n∑

i′=1

αi′jK

(
xid − xi′d

h

)]

+ const (23)

=
n∑

i=1

m∑

j=1

qij

[

log λj +
D∑

d=1

log
1

h

n∑

i′=1

αi′jK

(
xid − xi′d

h

)]

+ const (24)

Note that the objective Eq. (24) is separable into a part involving λ and a part involving α.
These can be optimized separately. To find the optimal λ we formulate the Lagrangian:

Λ(λ, β) =
n∑

i=1

m∑

j=1

qij log λj + β

m∑

j=1

λj − 1

 (25)

4

Next we compute the gradient:

∂Λ

∂λj

=

∑n
i=1

qij

λj

+ β (26)

∂Λ

∂β
=

m∑

j=1

λj − 1 (27)

Setting the gradient to zero and solving for λj leads to the following closed-form solution:

λt+1
j =

1

n

n∑

i=1

qij (28)

Unfortunately the situation with α is not so nice. The Lagrangian is

Λ(α, γ) =
n∑

i=1

m∑

j=1

qij

D∑

d=1

log
1

h

n∑

i′=1

αi′jK

(
xid − xi′d

h

)

+
m∑

j=1

γj

[
n∑

i=1

αij − 1

]

(29)

The gradient is

∂Λ

∂αkj

=

n∑

i=1

qij

D∑

d=1

[

1

1

h

∑n
k′=1

αk′jK
(

xid−xk′d

h

) · 1

h
K

(
xid − xkd

h

)]

+ γj (30)

=
n∑

i=1

qij

D∑

d=1

[

K
(

xid−xkd

h

)

∑n
k′=1

αk′jK
(

xid−xk′d

h

)

]

+ γj (31)

∂Λ

∂γj

=
n∑

i=1

αij − 1 (32)

There is no closed form update of α. However, the objective is concave in α, since it is a non-
negative weighted sum of the log of a linear function of α ([4], chapter 3). Therefore we will use a
gradient projection line search algorithm [12] to find the globally optimal α in the simplex where
the constraints of problem (6) are satisfied, that is, where all αij are nonnegative and

∑n
i=1

αij = 1
for all j = 1, . . . , m. In other words, we will take a step in the direction of the gradient, project into
the feasible set, and repeat until convergence.2

In sum, we have the following algorithm:

Algorithm 1 (True EM). Repeat for t = 0, 1, 2, . . . until convergence:

1. E step: for all i, j, set

qt
ij =

λt
j

∏D
d=1

f t
jd(xid)

∑m
j′=1

λt
j′

∏D
d=1

f t
j′d

(xid)
(40)

2In practice, the gradient with respect to α as written above is numerically unstable. We avoid this problem by

5

2. M step: For λ, there is a closed form maximizer. For all j, set

λt+1
j =

1

n

n∑

i=1

qt
ij (41)

For α, we use backtracking line search with gradient projection to find the maximizer. Ini-
tially, let step size s = 1, and choose ρ = 1/2 ∈ (0, 1). Repeat:

(a) For all i, j, set

ᾱij = αt
ij + s (∂F/∂αij) (42)

α̂ij =
ᾱij

∑n
i=1

ᾱij

(43)

(b) If F (α̂) ≥ F (αt), terminate and set αt+1 = α̂. Otherwise, set s = s ρ.

Unfortunately, as mentioned above and shown empirically by our experiments (§8), the inner
line search makes this EM algorithm as a whole extremely inefficient.

4 Benaglia et al.’s heuristic: fast but unprincipled

Benaglia et al. [1] propose the following “pseudo-EM” heuristic algorithm to find the parameters
Θ. The heuristic is based on a slightly different model than the one we’re interested in. Instead

substituting for qij and cancelling:

∂Λ

∂αkj

=

n
X

i=1

qij

D
X

d=1

"

Kikd
Pn

k′=1
αk′jKik′d

#

+ γj (33)

=

n
X

i=1

λj

QD

d=1
fjd(xid)

Pn

j′=1
λj′

QD

d=1
fj′d(xid)

D
X

d=1

"

Kikd
Pn

k′=1
αk′jKik′d

#

+ γj (34)

=

n
X

i=1

λj

QD

d=1
fjd(xid)

Pn

j′=1
λj′

QD

d=1
fj′d(xid)

D
X

d=1

"

Kikd

hfjd(xid)

#

+ γj (35)

=

n
X

i=1

λj

QD

d=1
fjd(xid)

f(xi)

D
X

d=1

"

Kikd

hfjd(xid)

#

+ γj (36)

=

n
X

i=1

D
X

d=1

λj

QD

d′=1
fjd′(xid′)

f(xi)

Kikd

hfjd(xid)
+ γj (37)

=

n
X

i=1

D
X

d=1

λj

Q

d′ 6=d
fjd′(xid′)

hf(xi)
Kikd + γj (38)

=

n
X

i=1

λj

hf(xi)

D
X

d=1

Kikd

Y

d′ 6=d

fjd′(xid′) + γj (39)

6

of column-normalized data weights α, the Benaglia et al. use row-normalized weights w. That is,
the component KDE fjd(xid) is replaced by f̄jd(xid), defined as

f̄jd(xid) =
1

h

n∑

i′=1

[
wi′j

∑n
i′=1

wi′j

]

K

(
xid − xi′d

h

)

(44)

As Eq. (44) suggests, we can translate between α and w using

wij =
αij

∑

j′ αij′
and αij =

wij
∑

i′ wi′j

, (45)

that is, by renormalizing. The heuristic is as follows:

Algorithm 2 (heuristic). Repeat for t = 0, 1, 2, . . . until convergence:

1. “E step”: for all i, j, set

wt
ij =

λt
j

∏D
d=1

f t
jd(xid)

∑m
j′=1

λt
j′

∏D
d=1

f t
j′d

(xid)
(46)

2. “M step”: for all j, set

λt+1
j =

1

n

n∑

i=1

wt
ij (47)

For t = 0, Benaglia et al. skip the “E step” and instead use k-means clustering to obtain w0
ij .

As our experimental results indicate (§8), this heuristic is efficient and typically converges to a
result near—though not quite at—a locally optimal parameter set Θ. In a way, it makes intuitive
sense that the heuristic works. Observe that we can interpret λj as PΘ(j) (the prior probability

of component j), and
∏D

d=1
fjd(xid) as PΘ(xi|j) (the conditional probability of datum xi given

component j). Then the wij update can be interpreted as

PΘ(j)PΘ(xi|j)
∑m

j′=1
PΘ(j′)PΘ(xi|j′)

=
PΘ(j)PΘ(xi|j)

PΘ(xi)
= PΘ(j|xi) (48)

exactly as it ought. The update to the mixing weight λj also has a simple—and very reasonable—
interpretation as the fraction of training data points we currently believe were drawn from com-
ponent j, where we allow data to be split fractionally among several components.

Unfortunately, there’s not much else to say about this algorithm. In particular, there is no
theoretical guarantee that it will converge to a local optimum, or even get close. In practice, the
algorithm does seems to converge quickly to a good result—but why?

7

5 “Lemma”: Benaglia et al.’s heuristic in terms of q and α

We will be able to answer this question shortly, but first, to simplify the analysis, we reformulate
Benaglia et al.’s heuristic so that instead of w it uses (i) q and (ii) α. This can be done as follows. (i)
First, observe that the heuristic’s “E-step” update (Eq. 46) is identical to the true E-step update (Eq.
40), except that the former updates w and the latter updates q. Similarly note that the heuristic’s
“M-step” update to λ (Eq. 47) is exactly the same as the true update (Eq. 41), except one sums over
w and one over q. (ii) On the other hand, we already observed (Eq. 45) that wij/

∑n
i′=1

wi′j = αij .
This leads to the following algorithm, which substitutes q for w and fjd for f̄jd, and sets α at

each iteration to the column-normalized q:

Algorithm 3. Repeat for t = 0, 1, 2, . . . until convergence:

1. E step: for all i, j, set

qt
ij =

λt
j

∏D
d=1

f t
jd(xid)

∑m
j′=1

λt
j′

∏D
d=1

f t
j′d

(xid)
(49)

2. M step: for all i, j, set

λt+1
j =

1

n

n∑

i=1

qt
ij (50)

αt+1
ij =

qt
ij

∑

i′ q
t
i′j

(51)

For t = 0, we skip the E step and instead use k-means clustering to obtain q0
ij .

On one hand, this algorithm is equivalent to Benaglia et al.’s heuristic, in the sense that at each
iteration the parameters λ and α (or renormalized w) will match between the two algorithms. On
the other hand, this algorithm has the same superficial form (though not the same properties) as
the true EM algorithm (Alg. 1), apart from the update to α.

This reformulation makes clear just what the shortcoming to Benaglia et al.’s algorithm is:
although as we saw above in §4, Benaglia et al.’s update to wij is intuitively sensible, it may not
increase log likelihood. The update to λ, on the other hand, is correct in Benaglia et al.’s algorithm.
So the key thing to focus on is the update of α.

6 Benaglia et al. as EM with a delta kernel

We are now able to show why Benaglia et al.’s algorithm usually works: it is an approximation to
a degenerate EM algorithm.

To see this, let’s look at what happens as the bandwidth h approaches zero. In this case, each
kernel becomes a delta function above xid:

lim
h→0

K

(
xid − xi′d

h

)

=

{

∞ i = i′

0 otherwise
(52)

8

Next let’s examine what happens to the gradient of the M-step Lagrangian in α as this happens.
Recall the Lagrangian’s gradient:

∂Λ

∂αkj

=
n∑

i=1

qt
ij

D∑

d=1

K

(
xid−xkd

h

)

∑n
i′=1

αi′jK
(

xid−xi′d

h

)

 + γj (53)

In the limit, all the sums over i and i′ disappear, since only K(xkd−xkd

h
) = K(0) has support. That

is, we have

lim
h→0

∂Λ

∂αkj

= qt
kj

D∑

d=1

[
K(0)

αkjK(0)

]

+ γj (54)

= qt
kj

D∑

d=1

[
1

αkj

]

+ γj (55)

= qt
kjD/αkj + γj (56)

Setting this gradient to zero and solving for αkj , we obtain Bengalia et al.’s update (Eq. 51):

αt+1

kj =
qt
kj

∑n
i′=1

qt
i′j

(57)

This result explains why the heuristic’s update to α generally works: in the special case of a
delta kernel, it is the correct update. Of course, in practice, a delta kernel cannot be used—severe
overfitting would result—and in that case, as we have observed, the update is not guaranteed to
move in a direction of ascent.

7 Generalized EM: fast and principled

There is a simple but effective way to fix Benaglia et al.’s heuristic so that it is guaranteed to
increase log likelihood at each iteration. As in true EM, we do a backtracking line search to update
α, but we search on a line that interpolates between the heuristic update and the gradient.

Algorithm 4 (GEM). Repeat for t = 0, 1, 2, . . . until convergence:

1. E step: for all i, j, set

qt
ij =

λt
j

∏D
d=1

f t
jd(xid)

∑m
j′=1

λt
j′

∏D
d=1

f t
j′d

(xid)
(same as Alg. 1) (58)

2. M step: for all j, set

λt+1
j =

1

n

n∑

i=1

qt
ij (same as Alg. 1) (59)

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: From left to right: the unifs, holy, and betas datasets. Component 1 is in blue; component 2 is in
red.

For α, we use backtracking line search on a line between the heuristic and steepest-ascent
steps. Initially, we compute the heuristic update

α̃ij =
qt
ij

∑

i′ q
t
i′j

, (60)

and let p = α̃ − αt denote the step from the current α to the heuristic α. Let step size s = 1,
and choose ρ = 1/2 ∈ (0, 1). Repeat:

(a) For all i, j, set

ᾱij = αt
ij + s (s pij + (1 − s) (∂F/∂αij)) (61)

α̂ij =
ᾱij

∑n
i=1

ᾱij

(62)

(b) If F (α̂) ≥ F (αt), terminate and set αt+1 = α̂. Otherwise, set s = s ρ.

During the first iteration of the inner line search above, s = 1, so ᾱij = αt
ij + pij = α̃ij , the

heuristic update. Since the heuristic update usually works, Alg. 4 will usually be fast. When
the heuristic doesn’t work, the inner loop will search along a line that is tangent to the gradient
near αt. This guarantees that, except at a local maximum, Alg. 4 will always find and take an
ascent step—so Alg. 4 is principled. Since we do not maximize the M-step objective F in α, Alg.
4 is only generalized EM, not full EM. Nevertheless, like full EM, it is guaranteed to converge
monotonically to a local optimum.

8 Experiments

We ran experiments on the following synthetic datasets, all lying in [0, 1]3:

“unifs”, a simple mixture of two uniforms: For i = 1, . . . , n, we sample j = 1 with probability
3/10 and j = 2 otherwise. If j = 1, we sample xid ∼ uniform[0, 1/2] for d = 1, . . . , 3. If j = 2, we
sample xid ∼ uniform[1/4, 1] for d = 1, . . . , 3.

10

EM heuristic GEM truth
dataset n iters time iters/ls ℓ iters time ℓ iters time iters/ls ls ℓ ℓ
unifs 10 7 0.60s 58 20.19 15 0.06s 23.17 19 0.32s 57 1 23.17 21.66

50 1492 1663s 280 18.64 143 1.4s 38.86 28 15s 402 9 37.85 38.64
100 126 2087s 1059 19.40 14 0.40s 65.12 19 23s 234 6 65.11 65.30

holy 10 152 1.8s 2 14.99 25 0.06s 20.03 14 0.15s 56 1 20.03 14.94
50 >3775 >2h >21.34* 276 2.8s 34.67 267 4.0s 63 1 34.67 32.71

100 >727 >2h >34.54* 29 0.58s 51.77 472 93s 737 6 51.61 51.28
betas 10 6 0.52s 59 19.63 45 0.09s 21.59 44 1.77s 1074 1 21.59 21.59

50 10 23s 569 39.15 60 0.36s 50.27 13 17s 1074 1 50.26 49.78
100 9 133s 963 80.16 8 0.17s 97.17 16 38s 401 6 97.12 95.72

∗ This test did not finish in a reasonable amount of time; when I killed the job, the log likelihood had plateaued for
hundreds of iterations at the indicated value.

Table 1: Summary of experimental results. See text for details.

“holy”, a mixture where the first component spans a hole left by the second component; the effect
is that component 2 consists of nine cubes while component 1 consists of background noise: For
i = 1, . . . , n, we sample j = 1 with probability 1/2 and j = 2 otherwise. If j = 1, we sample
xid ∼ uniform[0.1, 0.9], for d = 1, . . . , 3. If j = 2, we sample xid ∼ uniform[0.0, 0.3] ∪ [0.7, 1.0], for
d = 1, . . . , 3.

“betas”, a mixture of two beta-distributed components with different parameterizations in differ-
ent dimensions; the effect is that the components are less well-separated in dimension 3 than in
dimension 1: For i = 1, . . . , n, we sample j = 1 with probability 3/5 and j = 2 otherwise. If j = 1,
we sample xid ∼ beta(d, 4), for d = 1, . . . , 3. If j = 2, we sample xid ∼ beta(6, d), for d = 1, . . . , 3.

These datasets are plotted in Fig. 1. From each dataset, we drew samples of n = 10, 50, and 100
points for our experiments.

We ran true EM (Alg. 1), Benaglia et al.’s heuristic (Alg. 2), and GEM (Alg. 4) on each sam-
ple, starting in all cases from a k-means clustering. Bandwidth of h = 0.05 was chosen based
on an informal analysis of plots. For all algorithms, we recorded the total number of EM itera-
tions required (the “iters” column), the total time required (“time”), and the ending log likelihood
(“ℓ”). For true EM, we also recorded the average number of iterations required in the line search
(“iters/ls”). For GEM, we recorded the number of times the line search was required (“ls”) and
the average number of iterations per line search (“iters/ls”). Finally, we also computed the log
likelihood of the “true” parameters, i.e. the parameters based on the true component labels of
each datum. Results are summarized in Table 1.

The experiments demonstrate several key points—and raise further questions. First, as already
asserted several times above, the time required by Benaglia et al.’s heuristic is much less than
the time required by EM, especially as n increases. This is due to the expense of computing the
gradient and performing an inner line search every iteration.

Second, despite its lack of a theoretical convergence guarantee, the heuristic actually finds a
better—sometimes much better—solution than EM in all our experiments. Although we do not yet
know precisely why this happens, it is clear why it can happen: the log likelihood is highly non-
convex, so the local optimum found by gradient ascent is not likely to be the best optimization
technique available. The “ls” column of Table 1 is never zero; this indicates that the heuristic
is indeed making “unjustified” steps that temporarily decrease the log likelihood, but ultimately

11

may lead to a better solution.
Third, GEM finds a solution with nearly equal log likelihood to the heuristic, while maintain-

ing a theoretical convergence guarantee. In other words, GEM is not just theoretically successful—
it’s also empirically successful at converging quickly to a good solution. This makes sense, since
GEM usually takes the same step as the heuristic, and even when it doesn’t, GEM tries to at least
stay close to the heuristic’s suggestion while still increasing log likelihood monotonically.

Finally, note that sometimes the solution found by the heuristic (or GEM) has greater log like-
lihood than that of the “true” parameter set. This can happen if one of the training data points is
drawn from (say) component 1, in a region where component 1’s true pdf is lower than compo-
nent 2’s pdf. The “true” parameters would assign this point to component 1, but assigning it to
component 2 would increase log likelihood.

9 Conclusion

We have made progress analyzing—and improving upon—Benaglia et al.’s heuristic, but much
fascinating work remains. In particular, we intend (a) to seek a deeper understanding as to why
Benaglia et al.’s heuristic works, (b) to explore different techniques (perhaps using second-order
information) for finding the global optimum, and (c) to perform experiments on larger and more
varied datasets.

References

[1] Tatiana Benaglia, Didier Chauveau, and David R. Hunter. An em-like algorithm for semi- and non-
parametric estimation in multivariate mixtures. December 2007.

[2] Gregory Beylkin, Jochen Garcke, and Martin J. Mohlenkamp. Multivariate regression and machine
learning with sums of separable functions. 2007.

[3] Laurent Bordes, Didier Chauveau, and Pierre Vandekerkhove. An em algorithm for a semiparametric
mixture model. 2006.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38, 1977.

[6] Peter Hall, Amnon Neeman, Reza Pakyari, and Ryan Elmore. Nonparametric inference in multivariate
mixtures. Biometrika, 92(3):667–678, September 2005.

[7] Peter Hall and Xiao-Hua Zhou. Nonparametric estimation of component distributions in a multivari-
ate mixture. The Annals of Statistics, 31(1):201–224, 2003.

[8] Geoffrey McLachlan and David Peel. Finite mixture models. Wiley, 2000.

[9] B.W. Silverman. Density estimation for statistics and data analysis. 1986.

[10] D.M. Titterington, A.F.M. Smith, and U.E. Makov. Statistical analysis of finite mixture distributions. 1985.

[11] Larry Wasserman. All of Nonparametric Statistics. Springer, 2007.

[12] Stephen J. Wright. Gradient projection handout, 2008. http://www.cs.wisc.edu/∼swright/726/handouts/
gradient-projection-2008.pdf.

12

