Stat 571-HW10 - Nathanael Fillmore

1. (a) Minimum is at 150 .
(b) Value at minimum is 0.10 .
(c) The minimum is in the middle of the graph, as opposed to being at one extreme.
(d) 146,154 .
(e) The minimum occurs as $\mu \rightarrow \infty$ and is 0.1 at $\mu=150$:

(f) The curve is tighter around the minimum, i.e., there is more power because the sample size is bigger:

(g) The value at minimum 0.05 instead of 0.10 :

2. Please see attached sheets.
3. (a) > c = read.csv("cichlids.csv")
$>\operatorname{str}(c)$
'data.frame': 11 obs. of 2 variables:
\$ Status: Factor w/ 2 levels "NT","T": 1 1 1 1 1 1 2222 ...
$\$$ mRNA : num $0.5040 .432 \quad 0.7440 .792 \quad 0.672 \ldots$
> plot (xyplot (status~mRNA, data=c, pch=16))

(b) > plot(xyplot(Status~log(mRNA), data=c, pch=16))

(c) The second one shows less skewness.
(d) > a = c[c\$Status == "NT", "mRNA"]
$>b=c[c \$ S t a t u s==" T ", \quad$ mRNA"] $>0=t . t e s t(a, b, p a i r e d=F A L S E)$
$>$ o\$conf.int
[1] -2.2631808 0.1879808
attr(, "conf.level")
[1] 0.95
$(\mathrm{e})>\mathrm{a}=\log (\mathrm{c}[\mathrm{c} \$$ Status $==$ "NT", "mRNA"]) $>\mathrm{b}=\log (\mathrm{c}[\mathrm{c} \$$ Status $==" \mathrm{~T} ", \quad$ "mRNA"]) $>0=t . t e s t(a, b, p a i r e d=F A L S E)$ $>\exp (o \$ c o n f . i n t)$
[1] 0.22270280 .8728930 attr(,"conf.level")
[1] 0.95
(f) The intervals are substantially different. The second one looks more reasonable, since based on the plots it seems that T"definitely" has a bigger mean than NT.
