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1 Introduction

We use the graphical model showed in Figure 1. We denote the observed data as D. We denote |D|
as N , number of reads in the data. We assume there are M transcripts in the reference and they
are numbered from 1 to M . In addition, our model has an extra ”noise” transcript to account for
reads coming from background noise, numbered as 0. θ is the probability distribution of a read is
sequenced from a particular transcripts. We have θi = τili, i = 1...M and |θ| = M + 1. For details
about RSEM model, please see reference[1][2].

We denote an assembly (the reference set used in RSEM’s model) as A.

This project’s goal is to evaluate which assemble method performs better, given a fixed data set D.
That is to say, we want to find a function f , such that given any two assemblers, for their assemblies
A1 and A2 made from D, we have :

f(A1) > f(A2) ⇔ A1 is better than A2

Currently, we have four candidates for f . They are likelihood score, BIC, model evidence by Monte
Carlo approximation and model evidence by convex approximation. We want to show that the
latter three performs better than the first one. Ideally, we also want to find that the latter two are
better than BIC.

In the following four sections, I’ll describe the four measures. In addition, I’ll omit notation A int
all following formulae. We just need to know for all formulae, ”given A” is omitted.

2 Loglikelihood

First, pick up θMLE (MLE means maximum likelihood estimator) :

θMLE = argmax
θ

log P (D|θ)
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Figure 1: RSEM’s graphical model
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Then Loglikelihood score is defined as

log P (D|θMLE)

3 Bayesian information criterion

We are interested in P (D), model evidence.

P (D) =
∫

P (D|θ)p(θ)dθ

Under certain condition [3], by the Laplace approximation, we have

log P (D) ' log P (D|θMAP ) + log P (θMAP ) +
M + 1

2
log(2π)− 1

2
log |H|

θMAP is the Maximum a posteriori estimator. It is the model of the posterior distribution P (θ|D).
H is the Hessian matrix of second derivatives of the negative log posterior at θMAP .

If we further assume the Gaussian prior, then in the asymptotic case, we have

log P (D) ' log P (D|θMAP )− 1
2
(M + 1) log N

The above formula is what we used in this project for BIC. Because we assume θ follows Dir(1),
the MAP estimator is the same as MLE estimator.

However, because the ”certain condition” is not satisfied here, we do not prefer this measure.

For details, please read P213-P217 of Pattern Recognition and Machine Learning(PRML).

4 Model evidence by Monte Carlo approximation

Our goal is to compute the model evidence, P (D). Using Bayes rule, we can express the model
evidence as

P (D) =
P (D|θ′)P (θ′)

P (θ′|D)
(1)

Here, θ′ can be any particular value of the parameters. For example, we might choose θ′ = θPME

for numerical issues. PME means posterior mean estimator.The numerator of this fraction is easily
computed, as it is simply the product of the likelihood and the prior. The challenge is to compute
the denominator, P (θ′|D). One way to compute this value is via sampling of the latent variables,
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Z, from their posterior distribution:

P (θ′|D) =
∑

z

P (θ′, z|D) (2)

=
∑

z

P (θ′|z,D)P (z|D) (3)

=
∑

z

P (θ′|z)P (z|D) (4)

≈ 1
Ns

Ns∑
i=1

P (θ′|z(i)) (5)

where z(1), . . . , z(Ns) are samples from P (z|D), possibly via Gibbs sampling.

After we get P (D), the f is defined as log P (D).

5 Model evidence by convex approximation

This is another way to approximate P (D) and our goal is to calculate log P (D) here, too.

Refresh: There are N reads and M transcripts. So |θ| = M + 1 (including the noise transcript).

The data likelihood log P (D|θ) can be decomposed as follows:

log P (D|θ) =
∑
Z

q(Z) log
P (D,Z|θ)
P (Z|D, θ)

q(Z)
q(Z)

=
∑
Z

q(Z) log
P (D,Z|θ)

q(Z)
+

∑
Z

q(Z) log
q(Z)

P (Z|D, θ)

= F (q, θ) + KL(q(Z)||P (Z|D, θ))

F (q, θ) =
∑
Z

q(Z) log
P (D,Z|θ)

q(Z)

For any given θ∗, let q(Z) = P (Z|D, θ∗), we have

log P (D|θ) ≥ F (P (Z|D, θ∗), θ)

In addition, when θ = θ∗, logP (D|θ) = F (P (Z|D, θ∗), θ) for that KL(q(Z)||P (Z|D, θ)) = 0.

Therefore, assume a dirichlet prior of αi = 1, we have P (D) ≥
∫
θ p(θ)eF (P (Z|D,θ∗),θ)dθ for any θ∗.

We use θ∗ = θMLE .

Because

F (P (Z|D, θ∗), θ) =
M∑
i=0

c∗i log θi +
∑
Z

P (Z|D, θ∗) log
P (D|Z)

P (Z|D, θ∗)
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We have

P (D) ≥
∫

θ
p(θ)eF (P (Z|D,θ∗),θ)dθ

= e
P

Z P (Z|D,θ∗) log
P (D|Z)

P (Z|D,θ∗)

∫
θ
p(θ)

M∏
i=0

θ
c∗i
i dθ

= e
P

Z P (Z|D,θ∗) log
P (D|Z)

P (Z|D,θ∗)
Γ(M + 1)

∏M
i=0 Γ(c∗i + 1)

Γ(M + 1 + N)

So

log P (D) ≥ log Γ(M + 1) +
M∑
i=0

log Γ(c∗i + 1)− log Γ(M + 1 + N) +
∑
Z

P (Z|D, θ∗) log
P (D|Z)

P (Z|D, θ∗)

= log Γ(M + 1) +
M∑
i=0

log Γ(c∗i + 1)− log Γ(M + 1 + N) +
N∑

n=1

∑
zni∈πx

n

P (zni|rn, θ∗) log
P (rn|zni)

P (zni|rn, θ∗)

To have a better understand of this part, I’d suggest to read P450-P455 of PRML.
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