
S. Kollias et al. (Eds.): ICANN 2006, Part II, LNCS 4132, pp. 943 – 951, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Fast Algorithm for Words Reordering Based on
Language Model

Theologos Athanaselis, Stelios Bakamidis, and Ioannis Dologlou

Institute for Language and Speech Processing
Artemidos 6 and Epidavrou, GR-15125,

Maroussi, Greece
Tel.: +302106875300, Fax: +302106854270
{tathana, bakam, ydol}@ilsp.gr

http://www.ilsp.gr

Abstract. What appears to be given in all languages is that words can not be
randomly ordered in sentences, but that they must be arranged in certain ways,
both globally and locally. The “scrambled” words into a sentence cause a mean-
ingless sentence. Although the use of manually collected grammatical rules can
boost the performance of grammar checker in word order diagnosis, the repair-
ing task is still very difficult. This work proposes a method for repairing word
order errors in English sentences by reordering words in a sentence and choos-
ing the version that maximizes the number of trigram hits according to a lan-
guage model. The novelty of this method concerns the use of a permutations’
filtering approach in order to reduce the search space among the possible sen-
tences with reordered words. The filtering method is based on bigrams’ prob-
abilities. In this work the search space is further reduced using a threshold over
bigrams’ probabilities. The experimental results show that more than 95% of
the test sentences can be repaired using this technique. The comparative advan-
tage of this method is that it is not restricted into a specific set of words, and
avoids the laborious and costly process of collecting word order errors for creat-
ing error patterns. Unlike most of the approaches, the proposed method is appli-
cable to any language (language models can be simply computed in any lan-
guage) and does not work only with a specific set of words. The use of parser
and/or tagger is not necessary.

1 Introduction

Automatic grammar checking is traditionally done by manually written rules, con-
structed by computer linguists. Methods for detecting grammatical errors without
manually constructed rules have been presented before. Atwell (1987) uses the prob-
abilities in a statistical part-of the speech tagger, detecting errors as low probability
part of speech sequences. Golding (1995) showed how methods used for decision lists
and Bayesian classifiers could be adapted to detect errors resulting from common
spelling confusions among sets such as “there”, “their” and “they’re”. He extracted
contexts from correct usage of each confusable word in a training corpus and then
identified a new occurrence as an error when it matched the wrong context.

944 T. Athanaselis, S. Bakamidis, and I. Dologlou

Chodorow and Leacock (2000) suggested an unsupervised method for detecting
grammatical errors by inferring negative evidence from edited textual corpora. Heift (
1998, 2001) released the German Tutor, an intelligent language tutoring system where
word order errors are diagnosed by string comparison of base lexical forms. Bigert
and Knutsson (2002) presented how a new text is compared to known correct text and
deviations from the norm are flagged as suspected errors. Sjobergh (2005) introduced
a method of grammar errors recognition by adding errors to a lot of (mostly error free)
unannotated text and by using a machine learning algorithm.

Unlike most of the approaches, the proposed method is applicable to any language
(language models can be computed in any language) and does not work only with a
specific set of words. The use of parser and/or tagger is not necessary. Also, it does
not need a manual collection of written rules since they are outlined by the statistical
language model.

The paper is organized as follows: the architecture of the entire system and a de-
scription of each component follow in section 2. The language model is described in
section 3. The 4th section shows how permutations are filtered by the proposed
method. The 5th section specifies the method that is used for searching valid trigrams in
a sentence. The results of using WSJ experimental scheme are discussed in section 6.
Finally, the concluding remarks are made in section 7.

2 System’s Architecture

This work presents a new method for detecting and repairing sentences with word
order errors that is based on the statistical language model (N-grams). It is straight
forward that the best way for reconstructing a sentence with word order errors is to
reorder the words. However, the question is how it can be achieved without knowing
the attribute of each word. Many techniques have been developed in the past to cope
with this problem using a grammar parser and rules. However, the success rates re-
ported in the literature are in fact low. A way for reordering the words is to use all the
possible permutations. The crucial drawback of this approach is that given a sentence
with length N words the number of all permutations is N!. This number is very large
and seems to be restrictive for further processing. The novelty of the proposed method
concerns the use of a technique for filtering the initial number of permutations. The
process of repairing sentences with word–order errors incorporates the followings
tools:

• a simple, and efficient confusion matrix technique
• and language model’s trigrams and bigrams.

Consequently, the correctness of each sentence depends on the number of valid tri-
grams. Therefore, this method evaluates the correctness of each sentence after filter-
ing, and provides as a result, a sentence with the same words but in correct order
(Figure 1).

 A Fast Algorithm for Words Reordering Based on Language Model 945

Fig. 1. System’s architecture

3 Language Model

The language model (LM) that is used subsequently is the standard statistical N-
grams (Young, 1996). The N-grams provide an estimate of)(WP , the probability of

observed word sequenceW . Assuming that the probability of a given word in an
utterance depends on the finite number of preceding words, the probability of N-word
string can be written as:

1 2 (1)
1

() (| , ,...,)
N

i i i i N
i

P W P w w w w− − − −
=

= ∏ (1)

One major problem with standard N-gram models is that they must be trained from
some corpus, and because any particular training corpus is finite, some perfectly ac-
ceptable N-grams are bound to be missing from it. That is, the N-gram matrix for any
given training corpus is sparse; it is bound to have a very large number of cases of
putative “zero probability N-grams” that should have some non zero probability.
Some part of this problem is endemic to N-grams; since they can not use long dis-
tance context, they always tend to underestimate the probability of strings that happen
no tot have occurred nearby in their training corpus. There are some techniques that
can be used in order to assign a non zero probability to these zero probability N-
grams. In this work, the language model has been trained using BNC and consists of
trigrams with Good-Turing discounting (Good, 1953) and Katz back off (Katz, 1987)
for smoothing. BNC contains about 6.25M sentences and 100 million words. The
figure below depicts the number of bigrams of the LM (Language Model) with re-
spect to their logarithmic probabilities. The 80% of the LM’s bigrams are between -
5,2 and -1,6.

946 T. Athanaselis, S. Bakamidis, and I. Dologlou

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

-7
,2

-6
,8

-6
,4

-5
,9

-5
,5 -5

-4
,6

-4
,2

-3
,7

-3
,3

-2
,9

-2
,4 -2

-1
,6

-1
,1

-0
,7

-0
,3

log Probability

#
 b

ig
ra

m
s

Fig. 2. The bigrams’ distribution with regard to their log probabilities

4 Filtering Permutations

Considering that an ungrammatical sentence includes the correct words but in wrong
order, it is plausible that generating all the permuted sentences (words reordering) one
of them will be the correct sentence (words in correct order). The question here is
how feasible is to deal with all the permutations for sentences with large number of
words. Therefore, a filtering process of all possible permutations is necessary. The
filtering involves the construction of a confusion matrix NxN in order to extract pos-
sible permuted sentences.

Given a sentence []][],1[],...1[],0[nwnwwwa −= with N words, a confusion ma-

trix NXNRA∈ can be constructed.
The size of the matrix depends on the length of the sentence. The objective of this

confusion matrix is to extract the valid bigrams according to the language model. The

element],[jiP indicates the validness of each pair of words ()][][jwiw according

to the list of language model’s bigrams. If a pair of two words ()][][jwiw cannot be

found in the list of language model bigrams then the corresponding],[jiP is taken

equal to 0 otherwise it is equal to one. Hereafter, the pair of words with],[jiP equals

to 1 is called as valid bigram. Note that, the number of valid bigrams is M lower

 A Fast Algorithm for Words Reordering Based on Language Model 947

Table 1. The construction of a NxN confusion matrix, for the sentence
[]][],1[],...1[],0[nwnwwwa −=

WORD w[0] w[1] ……. w[n]

w[0] P[0,0] P[1,0] ……. P[n,0]

w[1] P[0,1] P[1,1] ……. P[n,1]

.

.

.

.

.

.

.

.

.

 .
.
.

w[n] P[0,n] P[1,n] ……. P[n,n]

than the size of the confusion matrix which is 2N , since all possible pairs of words
are not valid according to the language model. In order to generate permuted sen-
tences using the valid bigrams all the possible words’ sequence must be found. This is
the search problem and its solution is the domain of this filtering process.

Fig. 3. Illustration of the lattice with N-layers and N states

As with all the search problems there are many approaches. In this paper a left to
right approach is used. To understand how it works the permutation filtering process,
imagine a network of N layers with N states. The factor N concerns the number of
sentence’s words. Each layer corresponds to a position in the sentence. Each state is a
possible word. All the states on layer 1 are then connected to all possible states on the
second layer and so on according to the language model. The connection between two

states),(ji of neighboring layers),1(NN − exists when the bigram ()][][jwiw

948 T. Athanaselis, S. Bakamidis, and I. Dologlou

is valid. This network effectively visualizes the algorithm to obtain the permutations.
Starting from any state in layer 1 and moving forward through all the available con-
nections to the N-th layer of the network, all the possible permutations can be ob-
tained. No state should be “visited” twice in this movement.

5 Searching Valid Trigrams

The prime function of this approach is to decompose any input sentence into a set of
trigrams. To do so, a block of words is selected. In order to extract the trigrams of the
input sentence, the size of each block is typically set to 3 words, and blocks are nor-
mally overlapped by two words. Therefore, an input sentence of length N, includes N-
2 trigrams.

The second step of this method involves the search for valid trigrams for each sen-
tence. A probability is assigned to a valid trigram, which is derived by the frequency
of its occurrences in the corpus.

In the third step of this method the number of valid trigrams per each permuted
sentence is calculated. Considering that the sentence with no word-order errors has
the maximum number of valid trigrams, it is expected that any other permuted sen-
tence will have less valid trigrams. Although some of the sentence’s trigrams may be
typically correct, it is possible not to be included into the list of LM’s trigrams. The
plethora of LM’s trigrams relies on the quality of corpus. The lack of these valid tri-
grams does not affect the performance of the method since the corresponding trigrams
of the permuted sentence will not be included into LM as well. The criterion for rank-
ing all the permuted sentences is the number of valid trigrams. The system provides as
an output, a sentence with the maximum number of valid trigrams. In case where two
or more sentences have the same number of valid trigrams a new distance metric
should be defined. This distance metric is based on the total log probability of the
sentence’s trigrams. The total log probability is computed by adding the log probabil-
ity of each valid trigram, whereas the probability of non valid trigrams is assigned to -
100000. Therefore the sentence with the maximum total log probability is the sys-
tem’s response.

6 Experimentation

6.1 Experimental Scheme

The experimentation involves a test set of 500 sentences, with 4518 words. Test sen-
tences have been selected randomly from WSJ (Wall Street Journal) corpus. They
have variable length with minimum 7 words and maximum 12 words. The 90% of the
test words belong to the BNC vocabulary (training data). For experimental purposes
our test set consists of sentences with no word order errors and the system’s response
incorporates 10-best sentences. The goal of this experimentation is to show that the
input sentence is included into the 10-best sentences. Note that the test sentences are
not included into the training set of the statistical language model that is used as tool
for the proposed method.

 A Fast Algorithm for Words Reordering Based on Language Model 949

6.2 Experimental Results

6.2.1 WSJ Test Cases
Figure 4 shows the repairing results using the test sentences. This figure depicts the
capability of the system to give as output the correct sentences in the 10-best list. The
x-axis corresponds to the place of the correct sentence into this list. The last position
(11) indicates that the correct sentence is out of this list.

The findings from the experimentation show that 455 sentences (91% in total) have
been repaired using the proposed method (True Corrections). On the other hand, the
result for 45 sentences (9% in total) was false (False Corrections). In case of “False
Corrections” the system’s response does not include the correct sentence into the N-
best. The incorrect output of the system can be explained considering that some words
are not included into the BNC vocabulary, hence some of the sentences’ trigrams are
considered as invalid.

It is obvious that the system’s performance for detecting and repairing method of
ill-formed sentences with word order errors depends mainly on the quality of the
corpus. The high success rate of the system is achieved using the grammatically and
syntactically correct sentences of BNC.

52

18
13

4
1 0 0 1 1 1

9

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

Place in N - best

%
 s

e
n

te
n

ce
s

Fig. 4. The percentage of test sentences in different places into the N-best list (N=10)

6.2.2 Reducing Search Space
The figure below depicts the differences in the number of permutations for sentences
with length from 7 to 12 words. The point is that the number of permutations that are
extracted with the filtering process is significantly lower than the corresponding value
without filtering. For sentences with length up to 6 words, the number of permutations
is slightly lower when the filtering process is used, while for sentences with length
greater than 7 words the filtering process provides a drastical reduction of permuta-
tions. It is obvious that the performance of filtering process depends mainly on the

950 T. Athanaselis, S. Bakamidis, and I. Dologlou

0

1

2

3

4

5

6

7

8

9

10

7 8 9 10 11 12

words

lo
g

 #
 p

e
rm

u
ta

ti
o

n
s

with fi ltering no filtering

Fig. 5. The logarithmic number of permutations with and without filtering for TOEFL’s sen-
tences with 7 up to 12 words

number of valid bigrams. This implies that the language model’s reliability affects the
outcome of the system and especially of the filtering process.

7 Conclusions

The findings show that most of the sentences can be repaired by this method independ-
ently from the sentence’s length and the type of word order errors. The major advan-
tage of this technique concerns the application of novel fast algorithm in reducing
permutations. The results show that the gain factor for permutations in case of sen-
tences with 12 words is 35dB. With no filtering the number of permutations is
479001600 while with the confusion matrix this quantity decreases drastically to
8790541. The proposed method is effective in repairing erroneous sentences. Therefore
the method can be adopted by a grammar checker as a word order repairing tool. The
necessity of the grammar checkers in educational purposes and e-learning is more than
evident.

By the permutation’s filtering process, the system takes advantage of better per-
formance, rapid response and smaller computational space. A comparative advantage
of this method is that avoids the laborious and costly process of collecting word order
errors for creating error patterns. One of the key questions for further research is
whether the use of language model can correct other grammatical errors such as sub-
ject- verb disagreement, and if it is possible a further reduction in permutations using
probabilities thresholds.

Acknowledgments

The authors would like to thank Mr Kostantinos Mamouras for his programming
skills and the insightful comments.

 A Fast Algorithm for Words Reordering Based on Language Model 951

References

1. Atwell, E.S., How to detect grammatical errors in a text without parsing it. In Proceedings
of the 3rd EACL, (1987) 38–45

2. Bigert, J., Knutsson. O., Robust error detection: A hybrid approach combining unsuper-
vised error detection and linguistic knowledge. In Proceedings of Robust Methods in
Analysis of Natural language Data, (ROMAND 2002), (2002) 10–19

3. Chodorow M., Leacock C. An unsupervised method for detecting grammatical errors. In
Proceedings of NAACL’00, (2000) 140–147

4. Feyton, C. M., Teaching ESL/EFL with the internet. Merill Prentice- Hall, (2002)
5. Folse, K.S., Intermediate TOEFL Test Practices (rev. ed.). Ann Arbor, MI: The University

of Michigan Press., (1997)
6. Good, I.J., The population frequencies of species and the estimation of population parame-

ters. Biometrika, 40(3 and 4): (1953) 237-264,
7. Golding, A. A., Bayesian hybrid for context-sensitive spelling correction. Proceedings of

the 3rd Workshop on Very Large Corpora, (1995) 39-53
8. Hawkins, J. A., A Performance Theory of Order and Constituency. Cambridge, Cambridge

University Press, (1994)
9. Heift, T., Intelligent Language Tutoring Systems for Grammar Practice. Zeitschrift für

Interkulturellen Fremdsprachenunterricht (Online), 6 (2), (2001) 15 pp
10. Katz S.M., Estimation of probabilities from sparse data for the language model component

of a speech recogniser. IEEE Transactions on Acoustics, Speech and Signal Processing,
35(3): (1987) 400-401,

11. Sjöbergh, J., Chunking: an unsupervised method to find errors in text, Proceedings of the
15th Nordic Conference of Computational Linguistics, NODALIDA (2005)

12. Young, S.J., Large Vocabulary Continuous Speech Recognition, IEEE Signal Processing
Magazine 13, (5), (1996) 45-57,

	Introduction
	System’s Architecture
	Language Model
	Filtering Permutations
	Searching Valid Trigrams
	Experimentation
	Experimental Scheme
	Experimental Results

	Conclusions
	References

