## Stat 571 - HW3 - Nathanael Fillmore

1. We use point estimate $p^{\prime}=(x+2) /(n+4)$ and confidence interval $\left(p^{\prime}-1.96 \sqrt{p^{\prime}\left(1-p^{\prime}\right) / n^{\prime}}, p^{\prime}+1.96 \sqrt{p^{\prime}\left(1-p^{\prime}\right) / n^{\prime}}\right)$ where $n^{\prime}=n+4$.
```
> input <- data.frame(n = c(10, 50, 1000), x = c(3, 24, 635))
> output <- adply(input, 1, function(row) {
+ x2 <- row$x + 2
+ n4 <- row$n + 4
+ p <- x2/n4
+ ci <- 1.96 * sqrt(p * (1 - p)/n4)
+ c(`point estimate` = p, `ci lower` = p - ci, `ci upper` = p +
+ ci)
+ })
> rownames(output) <- c("(a)", "(b)", "(c)")
> print(xtable(output))
```

|  | n | x | point estimate | ci lower | ci upper |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (a) | 10.00 | 3.00 | 0.36 | 0.11 | 0.61 |
| (b) | 50.00 | 24.00 | 0.48 | 0.35 | 0.61 |
| (c) | 1000.00 | 635.00 | 0.63 | 0.60 | 0.66 |

2. (a) For $p=.5, n=10$, note that $\{0, \ldots, 4\} \cup\{6, \ldots, 10\}$ are at least as far from the mean as $x=4$. So
$>(\mathrm{p}$. value $<-$ sum(dbinom(c(0:4, 6:10), size $=10$, prob $=0.5)$ )
[1] 0.7539063
(b) For $n=50, p=.35, H_{A}: p>.35$, doublecheck that $21 / 50>.35$ and note that on this side of the mean $\{21,22, \ldots, 50\}$ are at least as far from the mean as $x=21$. So
> (p.value <- sum(dbinom(c(21:50), size = 50, prob = 0.35)))
[1] 0.1860549
(c) For $n=37, p=.45, H_{A}: p<.45$, doublecheck that $16 / 37<.45$ and note that on this side of the mean $\{0,1, \ldots, 16\}$ are at least as far from the mean as $x=16$. So
> (p.value <- sum(dbinom(c(0:16), size $=37$, prob $=0.45)$ )
[1] 0.4824959
3. Let $X \sim \operatorname{Binomial}(n=1000, p=0.4)$.
(a) Want $P(X=380)$.
> dbinom(380, size $=1000$, prob $=0.4$ )
[1] 0.01123732
(b) Want $P(370 \leq X \leq 390)$
$>\operatorname{sum}(\mathrm{dbinom}(370: 390$, size $=1000$, prob $=0.4)$ )
[1] 0.2462151
(c) Want $P(X \leq 380)$.
$>\operatorname{sum}($ dbinom ( $0: 380$, size $=1000$, prob $=0.4)$ )
[1] 0.1038245
(d) Let $Y$ be $\operatorname{Binomial}(n=1000, p=0.37)$. Want $P(Y \leq 380)$.
$>\operatorname{sum}(d \mathrm{binom}(0: 380$, size $=1000$, prob $=0.37)$ )
[1] 0.7546507
4. Since $P(\Omega)=1$, we have $P(X=5)=1-0.2-0.3-0.2-0.1$
```
> (prob.X.equals.5 <- 1-0.2 - 0.3 - 0.2 - 0.1)
```

[1] 0.2
Let $k_{0}$ be the missing value of $k$. Since $E X=-.3$, we have $-.3=0.2 *(-10)+0.3 * k_{0}+0.2 * 3+0.2 * 5+0.1 * 7$ so

```
> (missing.k <- (0.3 + 0.2 * (-10) + 0.2 * 3 + 0.2 * 5 + 0.1 *
+ 7)/(-0.3))
[1] -2
```

5. Binomial assumptions apply. We have $n=169, x=27$. As in question 1 , we use point estimate $p^{\prime}=(x+$ 2) $/(n+4)$ and confidence interval $p^{\prime} \pm 1.96 \sqrt{p^{\prime}\left(1-p^{\prime}\right) /(n+4)}$ :
```
> (function() {
+ x <- 27
+ n <- 169
+ p<- (x+2)/(n + 4)
+ ci <- 1.96 * sqrt(p * (1 - p)/(n + 4))
+ print(xtable(data.frame(`point estimate` = p, `ci lower` = p -
+ ci, `ci upper` = p + ci)))
+ })()
\begin{tabular}{lrrr}
\hline & point.estimate & ci.lower & ci.upper \\
\hline 1 & 0.17 & 0.11 & 0.22 \\
\hline
\end{tabular}
```

We are $95 \%$ confident that, out of women who have a family history of breast cancer, the proportion with a BRCA1 mutation is between 0.11 and 0.22 .
6. The number of crickets is $n=141$, and the number of spiders who choose dead crickets is $x=98$. The null hypothesis that the spiders have no preference for dead crickets is $H_{0}: p=0.5$. The alternative that they prefer dead crickets is $H_{A}: p>0.5$. The test statistic is the number of spiders who choose dead crickets. The null distribution of the test statistic is Binomial $(141,0.5)$. The p -value is $P(X>98)$ where $X$ has the null distribution.

```
> (p.value <- sum(dbinom(98:141, size = 141, prob = 0.5)))
[1] 2.076751e-06
```

The proportion of spiders who prefer dead crickets, $98 / 141$, is significantly larger than one half (binomial test, $P=2.08 \times 10^{-6}$ ).
7. $n=12, x=5$.
(a) We use the point estimate $p^{\prime}=(x+2) /(n+4)$ :
$>($ point.estimate $<-(5+2) /(12+4))$
[1] 0.4375
(b) We use $p^{\prime} \pm 1.96 \sqrt{p^{\prime}\left(1-p^{\prime}\right) /(n+4)}$ :

```
> (function() {
+ p<- (5 + 2)/(12 + 4)
+ ci <- 1.96 * sqrt(p * (1 - p)/(12 + 4))
+ cat(sprintf("ci.lower is %f\n", p - ci))
+ cat(sprintf("ci.upper is %f\n", p + ci))
+ })()
ci.lower is 0.194422
ci.upper is 0.680578
```

(c) Let $y=n-x$ be the number of students who failed to notice the woman. We use the point estimate $p^{\prime}=(y+2) /(n+4)$ :
$>($ point.estimate $<-(12-5+2) /(12+4))$
[1] 0.5625
Note that this answer differs from one minus the answer to (a), basically because we are using different priors.
8. (a) $n=200, x=109$. Our point estimate and confidence interval for the proportion of shoppers who have injured themselves are:

```
> (function() {
+ p<- (109 + 2)/(200 + 4)
+ ci <- 1.96 * sqrt(p * (1 - p)/(200 + 4))
+ print(xtable(data.frame(`point estimate` = p, `ci lower` = p -
+ ci, `ci upper` = p + ci)))
+ }) ()
\begin{tabular}{rrrr}
\hline & point.estimate & ci.lower & ci.upper \\
\hline 1 & 0.54 & 0.48 & 0.61 \\
\hline
\end{tabular}
```

(b) It's not exactly a simple random sample of all UK consumers. For example, people who do not cook frequently are less likely to be included.

