1. We use point estimate \(p' = \frac{x + 2}{n + 4} \) and confidence interval \((p' - 1.96 \sqrt{p'(1 - p')/n'}, p' + 1.96 \sqrt{p'(1 - p')/n'}) \) where \(n' = n + 4 \).

```r
> input <- data.frame(n = c(10, 50, 1000), x = c(3, 24, 635))
> output <- adply(input, 1, function(row) {
+   x2 <- row$x + 2
+   n4 <- row$n + 4
+   p <- x2/n4
+   ci <- 1.96 * sqrt(p * (1 - p)/n4)
+   c(`point estimate` = p, `ci lower` = p - ci, `ci upper` = p + ci)
+ })
> rownames(output) <- c("(a)", "(b)", "(c)"
> print(xtable(output))
```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>10.00</td>
<td>3.00</td>
<td>0.36</td>
<td>0.11</td>
</tr>
<tr>
<td>(b)</td>
<td>50.00</td>
<td>24.00</td>
<td>0.48</td>
<td>0.35</td>
</tr>
<tr>
<td>(c)</td>
<td>1000.00</td>
<td>635.00</td>
<td>0.63</td>
<td>0.60</td>
</tr>
</tbody>
</table>

2. (a) For \(p = .5, n = 10 \), note that \(\{0, \ldots, 4\} \cup \{6, \ldots, 10\} \) are at least as far from the mean as \(x = 4 \). So

```r
> (p.value <- sum(dbinom(c(0:4, 6:10), size = 10, prob = 0.5)))
[1] 0.7539063
```

(b) For \(n = 50, p = .35, H_A : p > .35 \) doublecheck that \(21/50 > .35 \) and note that on this side of the mean \(\{21, 22, \ldots, 50\} \) are at least as far from the mean as \(x = 21 \). So

```r
> (p.value <- sum(dbinom(c(21:50), size = 50, prob = 0.35)))
[1] 0.1860549
```

(c) For \(n = 37, p = .45, H_A : p < .45 \) doublecheck that \(16/37 < .45 \) and note that on this side of the mean \(\{0, 1, \ldots, 16\} \) are at least as far from the mean as \(x = 16 \). So

```r
> (p.value <- sum(dbinom(c(0:16), size = 37, prob = 0.45)))
[1] 0.4824959
```

3. Let \(X \sim Binomial(n = 1000, p = 0.4) \).
 (a) Want \(P(X = 380) \).

```r
> dbinom(380, size = 1000, prob = 0.4)
[1] 0.01123732
```

(b) Want \(P(370 \leq X \leq 390) \).

```r
> sum(dbinom(370:390, size = 1000, prob = 0.4))
[1] 0.2462151
```

(c) Want \(P(X \leq 380) \).

```r
> sum(dbinom(0:380, size = 1000, prob = 0.4))
[1] 0.1038245
```

(d) Let \(Y \) be Binomial \(n = 1000, p = 0.37 \). Want \(P(Y \leq 380) \).

```r
> sum(dbinom(0:380, size = 1000, prob = 0.37))
[1] 0.7546507
```

4. Since \(P(\Omega) = 1 \), we have \(P(X = 5) = 1 - 0.2 - 0.3 - 0.2 - 0.1 \)
Let \(k_0 \) be the missing value of \(k \). Since \(EX = -0.3 \), we have
\[-0.3 = 0.2 * (-10) + 0.3 * k_0 + 0.2 * 3 + 0.2 * 5 + 0.1 * 7 \]
so
\[
> (\text{missing.k} <- (0.3 + 0.2 * (-10) + 0.2 * 3 + 0.2 * 5 + 0.1 *
+ 7)/(-0.3))
\]

[1] -2

5. Binomial assumptions apply. We have \(n = 169, \ x = 27 \). As in question 1, we use point estimate \(p' = (x + 2)/(n + 4) \) and confidence interval \(p' \pm 1.96 \sqrt{p'(1-p')/(n+4)} \):

\[
> \text{(function() \{
+ x <- 27
+ n <- 169
+ p <- (x + 2)/(n + 4)
+ ci <- 1.96 * sqrt(p * (1 - p)/(n + 4))
+ print(xtable(data.frame(`point estimate` = p, `ci lower` = p -
+ ci, `ci upper` = p + ci)))
+ \})())
\]

<table>
<thead>
<tr>
<th>point.estimate</th>
<th>ci.lower</th>
<th>ci.upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.17</td>
<td>0.22</td>
</tr>
</tbody>
</table>

We are 95% confident that, out of women who have a family history of breast cancer, the proportion with a BRCA1 mutation is between 0.11 and 0.22.

6. The number of crickets is \(n = 141 \), and the number of spiders who choose dead crickets is \(x = 98 \). The null hypothesis that the spiders have no preference for dead crickets is \(H_0 : p = 0.5 \). The alternative that they prefer dead crickets is \(H_A : p > 0.5 \). The test statistic is the number of spiders who choose dead crickets. The null distribution of the test statistic is Binomial\((141, 0.5)\). The p-value is \(P(X > 98) \) where \(X \) has the null distribution.

\[
> (p.value <- \text{sum(dbinom(98:141, size = 141, prob = 0.5)))})
\]

[1] 2.076751e-06

The proportion of spiders who prefer dead crickets, 98/141, is significantly larger than one half (binomial test, \(P = 2.08 \times 10^{-6} \)).

7. \(n = 12, x = 5 \).

(a) We use the point estimate \(p' = (x + 2)/(n + 4) \):

\[
> (\text{point.estimate} <- (5 + 2)/(12 + 4))
\]

[1] 0.4375

(b) We use \(p' \pm 1.96 \sqrt{p'(1-p')/(n+4)} \):

\[
> (\text{function() \{
+ p <- (5 + 2)/(12 + 4)
+ ci <- 1.96 * sqrt(p * (1 - p)/(12 + 4))
+ cat(sprintf("ci.lower is \%f\n", p - ci))
+ cat(sprintf("ci.upper is \%f\n", p + ci))
+ \})())
\]

ci.lower is 0.194422

ci.upper is 0.680578
(c) Let \(y = n - x \) be the number of students who failed to notice the woman. We use the point estimate
\[p' = \frac{y + 2}{n + 4} \]

> (point_estimate <- (12 - 5 + 2)/(12 + 4))

[1] 0.5625

Note that this answer differs from one minus the answer to (a), basically because we are using different priors.

8. (a) \(n = 200, x = 109 \). Our point estimate and confidence interval for the proportion of shoppers who have injured themselves are:

```r
> (function() {
+     p <- (109 + 2)/(200 + 4)
+     ci <- 1.96 * sqrt(p * (1 - p)/(200 + 4))
+     print(xtable(data.frame(`point estimate` = p, `ci lower` = p -
+                       ci, `ci upper` = p + ci))
+ })(
+ )
```

<table>
<thead>
<tr>
<th>point.estimate</th>
<th>ci.lower</th>
<th>ci.upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.54</td>
<td>0.48</td>
</tr>
</tbody>
</table>

(b) It’s not exactly a simple random sample of all UK consumers. For example, people who do not cook frequently are less likely to be included.