

Progression and Gene Expression in Cervical Cancer N. Fillmore¹, P.F. Lambert², P. Ahlquist³, and M.A. Newton⁴ ¹Computer Sciences, ²McArdle Lab. for Cancer Research, ³Inst. for Molecular Virology and Howard Hughes Medical Inst., ⁴Statistics and BMI

Goal

Develop a statistical model of changes in gene expression through four stages in the development of cervical cancer, and use this model to understand aspects of cervical cancer progression.

Model - Overview

Tissue at each stage of the progression leading to cervical cancer is composed of cells of several different types, mixed together; different stages are associated with different relative proportions of each type:^{*a*}

Model - Details

Fixed quantities:

- \triangleright n = 128 tissue samples, indexed by i.
- σ_i the stage of each tissue sample.
- $G \approx 54,000$ genes, indexed by g.
- T types, indexed by t.
- ► J patterns of differential expression, indexed by j; J is a function of T.

Parameters of interest:

- $\mathbf{r}_1, \ldots, \pi_J$ coefficients of mixture over patterns of differential expression.
- > $p_{\sigma,t}$ proportion of cells of type t in tissue at stage σ .

► Each type of cell in a tissue sample has a separate "pure" gene-expression profile:

Since the cells in each tissue sample are all mixed together, the observed gene-expression profile is a weighted average of the pure type-specific profiles; the weights are the proportions of cells of each type at each stage of the progression:

- ► *a* shape parameter for distribution around each subgroup's mean.
- \triangleright a_0 shape parameter for distribution of subgroup means around the grand mean.
- \blacktriangleright ν scale parameter for distribution of subgroup means around the grand mean.

Random variables:

- ▶ Z_g gene g's expression pattern; follows Categorical($\boldsymbol{\pi}$).
- $\land \Lambda_{j,\mathcal{T}} a/\Lambda_{j,\mathcal{T}}$ is the mean expression level within subgroup \mathcal{T} of expression pattern j; $\Lambda_{i,\mathcal{T}}$ follows Gamma (a_0,ν) .
- ▶ $X_{i,g,t}$ expression level of gene g within cells of type t in tissue sample i; follows Gamma $(a, \lambda_{z_a, \mathcal{T}})$, where \mathcal{T} is the subgroup of expression pattern z_g that contains type t.
- ▶ $S_{i,g}$ overall expression level of gene g in tissue sample i; $S_{i,g} = \sum_{t=1}^{T} p_{\sigma_i,t} X_{i,g,t}$.

 $S_{i,q}$ is observed; all other variables are latent.

• Each gene follows a particular pattern of differential expression across the cell types:

Each subgroup of types within each differential expression pattern is associated with a common mean expression level shared across patients, genes following the pattern, and types contained in the subgroup; each specific expression measurement is assumed to follow a gamma distribution around the mean, with a shape parameter shared by all genes, patients, and types.

Data

- Each of 128 cervical tissue samples (24) normal, 36 CIN 1/2, 40 CIN 3, 28 cancerous) was measured by an Affymetrix whole genome microarray, which contains about 54,000 probe sets.
- Data is from the Study to Understand Cervical Cancer Early Endpoints and Determinants.
- ► A previous analysis (M.A. Newton) identified genes showing various patterns of differential expression among the four stages.

Estimation - In Progress

- Markov chain Monte Carlo simulation of the parameters and the latent variables, given the observed expression levels.
- Posterior mean estimate of each parameter.

Same across two types, different in the third

The mean expression levels are also assumed to follow a gamma distribution, with a single grand mean and shape.^b

^a Figure from http://staffwww.dcs.shef.ac.uk/people/D.Walker/research/probe_cin.jpg. ^b Gamma-gamma model from Kendziorski et al. (2003).

Other Work

With Colin Dewey and Bo Li, I am working on principled evaluation of de novo transcriptome assemblies from RNA-seq data.

N. Fillmore is supported by an NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM 5T15LM007359).

Large Data Sets in Medical Informatics

November 15, 2011

nathanae@cs.wisc.edu