ridge_regression.h
00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 #ifndef RIDGE_REGRESSION_H_
00033 #define RIDGE_REGRESSION_H_
00034 
00035 #include "fastlib/fastlib.h"
00036 #include "mlpack/quicsvd/quicsvd.h"
00037 #include "ridge_regression_util.h"
00038 
00039 class RidgeRegression {
00040  public:
00041 
00042   RidgeRegression() {
00043   }
00044 
00045   void Init(fx_module *module, const Matrix &predictors, 
00046             const Matrix &predictions, 
00047             bool use_normal_equation_method = true);
00048 
00049   void Init(fx_module *module, const Matrix &input_data, index_t selector,
00050             bool use_normal_equation_method = true);
00051 
00069   void Init(fx_module *module, 
00070             const Matrix &input_data, 
00071             const GenVector<index_t> &predictor_indices,
00072             index_t &prediction_index, bool use_normal_equation_method = true);
00073 
00074   void Init(fx_module *module, 
00075             const Matrix &input_data, 
00076             const GenVector<index_t> &predictor_indices,
00077             const Matrix &prediction, bool use_normal_equation_method = true);
00078 
00079   void ReInitTargetValues(const Matrix &input_data, 
00080                           index_t target_value_index);
00081 
00082   void ReInitTargetValues(const Matrix &target_values_in);
00083 
00084   void Destruct();
00085 
00086   void SVDRegress(double lambda,
00087                   const GenVector<index_t> *predictor_indices = NULL);
00088 
00089   void CrossValidatedRegression(double lambda_min, double lambda_max,
00090                                 index_t num);
00091 
00092   void FeatureSelectedRegression
00093   (const GenVector<index_t> &predictor_indices, 
00094    const GenVector<index_t> &prune_predictor_indices, 
00095    const Matrix &original_target_training_values,
00096    GenVector<index_t> *output_predictor_indices);
00097 
00098   double ComputeSquareError();
00099 
00103   void Predict(const Matrix &dataset, Vector *new_predictions);
00104 
00105   void Predict(const Matrix &dataset, 
00106                const GenVector<index_t> &predictor_indices,
00107                Vector *new_predictions);
00108 
00109   void factors(Matrix *factors);
00110 
00111  private:
00112 
00113   fx_module *module_;
00114 
00117   Matrix predictors_;
00118 
00122   Matrix predictions_;
00123 
00128   Matrix covariance_;
00129 
00132   Matrix factors_;
00133 
00134   void ComputeLinearModel_(double lambda_sq, const Vector &singular_values, 
00135                            const Matrix &u, const Matrix &v_t,
00136                            int num_features);
00137   
00138   void BuildDesignMatrixFromIndexSet_
00139   (const Matrix &input_data, const double *predictions,
00140    const GenVector<index_t> *predictor_indices);
00141   
00142   void BuildCovariance_(const Matrix &input_data, 
00143                         const GenVector<index_t> *predictor_indices,
00144                         const double *predictions_in);
00145 
00146   void ExtractCovarianceSubset_
00147   (const Matrix &precomputed_covariance,
00148    const GenVector<index_t> *loo_current_predictor_indices,
00149    Matrix *precomputed_covariance_subset);
00150 
00151   void ExtractSubspace_(Matrix *u, Vector *singular_values, Matrix *v_t,
00152                         const GenVector<index_t> *predictor_indices);
00153 };
00154 
00155 #include "ridge_regression_impl.h"
00156 #endif