ridge_regression_util.h
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032 #ifndef RIDGE_REGRESSION_UTIL_H
00033 #define RIDGE_REGRESSION_UTIL_H
00034
00035 #include "ridge_regression.h"
00036
00037 class RidgeRegressionUtil {
00038
00039 public:
00040
00041 template<typename T>
00042 static void CopyVectorExceptOneIndex_(const GenVector<T> &source,
00043 index_t exclude_index,
00044 GenVector<T> *destination) {
00045 destination->Init(source.length() - 1);
00046 index_t current_index = 0;
00047
00048 for(index_t j = 0; j < source.length(); j++) {
00049 if(source[j] != exclude_index) {
00050 (*destination)[current_index] = source[j];
00051 current_index++;
00052 }
00053 }
00054 }
00055
00056 static double SquaredCorrelationCoefficient(const Vector &observations,
00057 const Vector &predictions) {
00058
00059
00060 double avg_observed_value = 0;
00061
00062 for(index_t i = 0; i < observations.length(); i++) {
00063 avg_observed_value += observations[i];
00064 }
00065 avg_observed_value /= ((double) observations.length());
00066
00067
00068
00069
00070 double variance = 0;
00071 double residual = 0;
00072 for(index_t i = 0; i < observations.length(); i++) {
00073 variance += math::Sqr(observations[i] - avg_observed_value);
00074 residual += math::Sqr(observations[i] - predictions[i]);
00075 }
00076 return (variance - residual) / variance;
00077 }
00078
00079 static double VarianceInflationFactor(const Vector &observations,
00080 const Vector &predictions) {
00081
00082 return 1.0 /
00083 (1.0 - SquaredCorrelationCoefficient(observations, predictions));
00084 }
00085
00086 };
00087
00088 #endif