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Abstract. A critical disadvantage of primal-dual interior-point methods compared to dual
interior-point methods for large scale semidefinite programs (SDPs) has been that the primal pos-
itive semidefinite matrix variable becomes fully dense in general even when all data matrices are
sparse. Based on some fundamental results about positive semidefinite matrix completion, this arti-
cle proposes a general method of exploiting the aggregate sparsity pattern over all data matrices to
overcome this disadvantage. Our method is used in two ways. One is a conversion of a sparse SDP
having a large scale positive semidefinite matrix variable into an SDP having multiple but smaller
positive semidefinite matrix variables to which we can effectively apply any interior-point method for
SDPs employing a standard block-diagonal matrix data structure. The other way is an incorporation
of our method into primal-dual interior-point methods which we can apply directly to a given SDP.
In Part II of this article, we will investigate an implementation of such a primal-dual interior-point
method based on positive definite matrix completion, and report some numerical results.
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1. Introduction. Let Rn denote the n-dimensional Euclidean space, and Sn

the space of n × n symmetric matrices with the Frobenius inner product X • Y =∑n
i=1

∑n
j=1 XijYij for X, Y ∈ Sn. We will use the notation X ∈ Sn

+ and X ∈ Sn
++

to designate that X ∈ Sn is positive semidefinite and positive definite, respectively.
Given Ap ∈ Sn (p = 0, 1, . . . ,m) and b ∈ Rm, we are concerned with the standard
equality form semidefinite program (SDP)

minimize A0 • X

subject to Ap • X = bp (p = 1, 2, . . . ,m), X ∈ Sn
+

}
,(1.1)

and its dual

maximize

m∑

p=1

bpzp

subject to

m∑

p=1

Apzp + Y = A0, Y ∈ Sn
+





.(1.2)

In recent years, many interior-point methods have been proposed for SDPs.
Among others, primal-dual interior-point methods have been studied intensively and
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extensively [1, 13, 15, 16, 20, 21, 24, 27]. They generate a sequence {(Xk,Y k,zk) ∈
Sn × Sn × Rm} such that Xk ∈ Sn

++ and Y k ∈ Sn
++. At each iteration, they first

compute a search direction (dX, dY , dz) ∈ Sn×Sn×Rm, and then they choose a step
length αk > 0 such that the next iterate defined by

(Xk+1,Y k+1,zk+1) = (Xk,Y k,zk) + αk(dX, dY , dz)(1.3)

still satisfies Xk+1 ∈ Sn
++ and Y k+1 ∈ Sn

++.
The computation of a search direction (dX, dY , dz) is usually reduced to an m×m

square system of linear equations Bdz = s, which is often called the Schur complement
equation. Here the coefficient matrix B (hence the search direction (dX, dY , dz))
varies with the individual method. See [15, 21, 27] for more details on various search
directions used in primal-dual interior-point methods. The size m of the matrix B

coincides with the number of equality constraints in the primal SDP (1.1) so that
m can be as large as n(n + 1)/2 even if the constraint matrices A1,A2, . . . ,Am are
assumed to be linearly independent. For a fixed n, as m becomes larger, more CPU
time is spent in

(a) the computation of the coefficient matrix B, and
(b) the computation of the solution dz of Bdz = s.

See [5, 23]. Fujisawa, Kojima, and Nakata [7] proposed an efficient method for com-
puting the coefficient matrix B when the data matrices Ap ∈ Sn (p = 1, 2, . . . ,m)
are sparse. Also, the computation of B can be carried out efficiently when the data
matrices Ap ∈ Sn (p = 1, 2, . . . ,m) are of rank 1 or 2 [2, 12].

In general, the matrix B is fully dense. Therefore, as m becomes larger, it
becomes more difficult to apply direct methods such as the Cholesky factorization to
the computation of the solution dz of Bdz = s. If m is larger than 10,000, it is even
impossible to store the coefficient matrix in standard workstations. [19, 23] studied
the use of iterative methods such as the conjugate gradient method to overcome the
storage problem for such large and dense systems of linear equations.

Another difficulty in applying primal-dual interior-point methods to large scale
SDPs arises from the fact that

(c) the n × n primal positive semidefinite matrix variable X is fully dense in
general even when all the data matrices Ap ∈ Sn (p = 0, 1, . . . ,m) are sparse.

On the other hand, the dual positive semidefinite matrix variable Y , which is com-
puted by

Y = A0 −
m∑

p=1

Apzp,

inherits the sparsity of the data matrices Ap ∈ Sn (p = 0, 1, . . . ,m). This difference
has been a critical disadvantage of primal-dual interior-point methods compared to
the dual interior-point method [2] which generates a sequence {(Y k,zk)} only in the
dual space.

The purpose of the current paper is to resolve the difficulty (c). Let V denote
the set {1, 2, . . . , n} of row/column indices of the data matrices A0,A1, . . . ,Am. For
every pair of subsets S and T of V , we use the notation XST for the submatrix of
X obtained by deleting all rows i 6∈ S and all columns j 6∈ T . To outline the basic
idea behind our method, we introduce the aggregate sparsity pattern E of the data
matrices given by

E = {(i, j) ∈ V × V : [Ap]ij 6= 0 for some p ∈ {0, 1, 2, . . . ,m}}.(1.4)
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Here [Ap]ij denotes the (i, j)th entry of Ap. Geometrically, it is convenient to identify
the aggregate sparsity pattern E with the aggregate sparsity pattern matrix A having
unspecified nonzero numerical values in E. Since the matrices A0,A1, . . . ,Am are all
symmetric, (i, j) ∈ E if and only if (j, i) ∈ E; hence the corresponding matrix A is
symmetric. (In section 2, we will represent the aggregate sparsity pattern E in terms
of a graph.)

Assume that a collection of nonempty subsets C1, C2, . . . , Cℓ of V satisfies the
following two conditions:

(i) E ⊆ F ≡
⋃ℓ

r=1 Cr × Cr.
(ii) Any partial symmetric matrix X with entries Xij = X̄ij ∈ R ((i, j) ∈ F ) has a

positive (semi)definite matrix completion (i.e., given any X̄ij ∈ R ((i, j) ∈ F ),
there exists a positive (semi)definite X ∈ Sn such that Xij = X̄ij ∈ R

((i, j) ∈ F )) if and only if the submatrices X̄CrCr (r = 1, 2, . . . , ℓ) are all
positive (semi)definite.

From condition (i), we observe that values of the objective and constraint linear
functions Ap•X (p = 0, 1, . . . ,m) involved in the SDP (1.1) are completely determined
by values of entries Xij ((i, j) ∈ F ) and independent of values of entries Xij ((i, j) 6∈
F ). In other words, if two X, X ′ ∈ Sn satisfy Xij = X ′

ij ((i, j) ∈ F ), then

Ap • X = Ap • X ′ (p = 0, 1, . . . ,m).

The remaining entries Xij ((i, j) 6∈ F ) affect only whether X is positive (semi)definite.
Now we know by condition (ii) whether we can assign some appropriate values to those
remaining entries Xij ((i, j) 6∈ F ) so that the resulting whole matrix X becomes
positive (semi)definite. Therefore, the SDP (1.1) is equivalent to

minimize
∑

(i,j)∈F

[A0]ijXij

subject to
∑

(i,j)∈F

[Ap]ijXij = bp (p = 1, 2, . . . ,m),

XCrCr ∈ SCr
+ (r = 1, 2, . . . , ℓ)





.

Here SCr
+ denotes the set of ♯Cr × ♯Cr positive semidefinite symmetric matrices with

entries specified in Cr × Cr, and ♯Cr denotes the number of elements of Cr.
Section 2 is devoted to some fundamental results on the positive (semi)definite

matrix completion problem. In particular, we present a characterization of the positive
(semi)definite matrix completion in terms of chordal graphs based on the paper [11]
by Grone et al. and relate it to the perfect elimination ordering for the Cholesky
factorization with no fill-in. Based on the former characterization, we describe in
section 3 a general method of choosing a collection of subsets C1, C2, . . . , Cℓ satisfying
conditions (i) and (ii) above. The latter perfect elimination ordering leads us to a
sparse factorization formula for the maximum-determinant positive definite matrix
completion in the latter part of section 2. A variation of this formula, which we will
call the sparse clique-factorization formula, plays an essential role in the primal-dual
interior-point method based on positive definite matrix completion which we describe
in section 5.

As an illustrative example, consider the simple case

E = {(i, n), (n, i), (i, i) : i = 1, 2, . . . , n},
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i.e., the case where each Ap has possible nonzero entries only in its nth row, its nth
column, and its diagonal. Let Sr (r = 1, 2, . . . , ℓ) be a partition of {1, 2, . . . , n − 1},

i.e.,
⋃ℓ

r=1 Sr = {1, 2, . . . , n− 1} and Sr ∩ Ss = ∅ (1 ≤ r < s ≤ ℓ). Let Cr = Sr ∪ {n}

(r = 1, 2, . . . , ℓ) and F =
⋃ℓ

r=1 Cr × Cr. Then conditions (i) and (ii) hold. (We will
discuss more general cases in detail in section 3.) In this case, we obtain the problem
below which is equivalent to the SDP (1.1):

minimize
∑

(i,j)∈F

[A0]ijXij

subject to
∑

(i,j)∈F

[Ap]ijXij = bp (p = 1, 2, . . . ,m),

(
XSrSr XSrn

XnSr Xnn

)
∈ SCr

+ (r = 1, 2, . . . , ℓ)





.

Since the entry Xnn is involved commonly in all the ℓ positive semidefinite constraints
above, we need to introduce additional ℓ−1 variables Urr (r = 1, 2, . . . , ℓ−1) to rewrite
the problem above as a standard SDP. Consequently, we obtain an SDP

minimize
∑

(i,j)∈F

[A0]ijXij

subject to
∑

(i,j)∈F

[Ap]ijXij = bp (p = 1, 2, . . . ,m),

(
XSrSr XSrn

XnSr Urr

)
∈ SCr

+ (r = 1, 2, . . . , ℓ− 1),
(

XSℓSℓ
XSℓn

XnSℓ
Xnn

)
∈ SCℓ

+ ,

Urr = Xnn (r = 1, 2, . . . , ℓ− 1)





.

Thus we have converted the SDP (1.1) having an n × n positive semidefinite matrix
variable X into an SDP having ℓ smaller size positive semidefinite matrix variables.
We can use several software packages [4, 6, 28] of primal-dual interior-point methods
incorporating a standard block-diagonal matrix data structure to solve this type of
SDP quite efficiently.

The conversion mentioned above considerably reduces the size of the positive
semidefinite matrix variables when we take a larger ℓ and smaller size Sr (r =
1, 2, . . . , ℓ). Intuitively, it becomes easier to solve the resulting SDP as the size of
each positive semidefinite matrix variable XCrCr gets smaller. However, it is also
necessary to take into account the increase in the number of equality constraints. For
example, if we take ℓ = n− 1 and Sr = {r} (r = 1, 2, . . . , n− 1), then the conversion
yields n−2 additional equality constraints of the form Urr = Xnn (r = 1, 2, . . . , n−2),
which, in turn, causes an increase in the CPU time to solve the system of linear equa-
tions Bdz = s. Therefore, we need to balance two factors: reduction in the sizes
of positive semidefinite matrix variables and increase in the number of equality con-
straints. We will present more details on the conversion method in section 4. Some
numerical examples are presented in section 7 which show how the balance of the two
factors is important.

In section 5, we propose a primal-dual interior-point method based on positive
definite matrix completion which we can directly apply to the primal-dual pair of
SDPs (1.1) and (1.2) without increasing the number of equality constraints. The
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method generates a sequence {(Xk,Y k,zk)} of interior points of the primal-dual
pair of SDPs (1.1) and (1.2), but we perform all matrix computations in Xk, Y k,
and their inverses essentially in partial matrices with entries specified in F by fully
utilizing the sparse clique-factorization formula for the maximum-determinant positive
definite matrix completion given in section 2.2. This method is more promising than
the conversion method given in section 4. A practical implementation of this method
and its numerical experiments will be the main subjects of part II [22] of this article.

Section 6 discusses linear transformations in the primal and the dual spaces which
enhance the aggregate sparsity pattern of data matrices of SDPs. In particular, we
will show that an appropriate congruence transformation in the primal space makes
it possible for us to apply our methods given in sections 4 and 5 to SDP relaxations
of the graph equipartition problem and the maximum clique problem.

Sections 4, 5, and 6 can be read independently.

Finally, section 7 is devoted to some numerical examples on the conversion method
given in section 4.

2. Theoretical background on positive semidefinite matrix completion.

In this section, we review some fundamental results about the positive semidefinite
matrix completion problem.

2.1. Chordal graph. Some graph-theoretic concepts needed in the subsequent
discussion are introduced here. Particular emphasis is laid on chordal graphs.

We denote by G(V,E) an undirected graph with the vertex set V and the edge
set E ⊆ V × V , where (u, v) ∈ V × V is identified with (v, u) ∈ V × V . It is assumed
throughout this paper that a graph has no loops, that is, (v, v) 6∈ E for any v ∈ V .
Two vertices u, v ∈ V are said to be adjacent if (u, v) ∈ E. The set of the vertices
adjacent to v ∈ V is denoted by Adj(v) = {u ∈ V : (u, v) ∈ E}.

A graph is called complete if every pair of vertices is adjacent. For a subset V ′ of
the vertex set V of a graph G(V,E), the induced subgraph on V ′ is a graph G(V ′, E′)
with the vertex set V ′ and the edge set E′ = E ∩ (V ′ × V ′). A clique of a graph is
an induced subgraph which is complete, and a clique is maximal if its vertices do not
constitute a proper subset of another clique. In our succeeding discussions, we often
call C ⊆ V a clique of G(V,E) whenever it induces a clique of G(V,E). A vertex is
called simplicial if its adjacent vertices induce a clique.

A graph G(V,E) is said to be chordal if every cycle of length ≥ 4 has a chord
(an edge joining two nonconsecutive vertices of the cycle). Chordal graphs have been
studied extensively in many different contexts. See [3, 10, 18] for the background
materials as well as the proofs of the statements given below.

The most fundamental property of a chordal graph is that it has a simplicial
vertex, say v1. Then the subgraph induced on V \{v1} is again chordal, and therefore
it has a simplicial vertex, say v2. By repeating this, we can construct an ordering of
the vertices (v1, v2, . . . , vn) (where n = |V |) such that Adj(vi) ∩ {vi+1, vi+2, . . . , vn}
induces a clique for each i = 1, 2, . . . , n − 1. Such an ordering of the vertices is
called a perfect elimination ordering. The existence of a perfect elimination ordering
characterizes chordality as follows.

Theorem 2.1 (Fulkerson and Gross [8]). A graph is chordal if and only if it has
a perfect elimination ordering.

It is known that a perfect elimination ordering of a chordal graph can be found
efficiently in linear time in the number of vertices and edges of the graph [26].
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Maximal cliques of a chordal graph can be enumerated easily with reference to a
perfect elimination ordering (v1, v2, . . . , vn). A maximal clique containing v1 is unique,
which is given by {v1}∪Adj(v1), and a maximal clique not containing v1 is a maximal
clique of the subgraph induced on {v2, v3, . . . , vn}. Then it follows that the family
{Cr ⊆ V : r = 1, 2, . . . , ℓ} of (the vertex sets of) the maximal cliques is given as the
maximal members of {vi} ∪ (Adj(vi) ∩ {vi+1, vi+2, . . . , vn}) for i = 1, 2, . . . , n. More
specifically, we have

Cr = {vi} ∪ (Adj(vi) ∩ {vi+1, vi+2, . . . , vn})

for i = min{j : vj ∈ Cr}. This shows, in particular, that the number ℓ of maximal
cliques is bounded by n.

It is known that the maximal cliques can be indexed in such a way that for each
r = 1, 2, . . . , ℓ− 1 it holds that

∃s ≥ r + 1 : Cr ∩ (Cr+1 ∪ Cr+2 ∪ · · · ∪ Cℓ) ( Cs.(2.1)

The property (2.1) is called the running intersection property. An ordering of the
maximal cliques satisfying the running intersection property (2.1) induces a perfect
elimination ordering of the vertices. Note first that S1 = C1\(C2 ∪ C3 ∪ · · · ∪ Cℓ) is
nonempty and all the vertices in S1 are simplicial. This means that we can start a
perfect elimination ordering by numbering the vertices in S1 with 1, 2, . . . , |S1|. For
each r = 1, 2, . . . , ℓ in general we number the vertices in Sr = Cr\(Cr+1 ∪ · · · ∪ Cℓ)

with
∑r−1

s=1 |Ss|+ 1,
∑r−1

s=1 |Ss|+ 2, . . . ,
∑r−1

s=1 |Ss|+ |Sr|. We can thus obtain a perfect
elimination ordering of the vertices, in which the vertices in Sr are given consecutive
numbers for each r. Throughout this paper, we assume that (v1, v2, . . . , vn) is a
perfect elimination ordering induced in this way from an ordering of the maximal
cliques satisfying the running intersection property (2.1).

The structure of the family of maximal cliques can be represented most conve-
niently in terms of a tree, called a clique tree, of which the vertices are maximal
cliques. In particular, the ordering of the maximal cliques with the running intersec-
tion property (2.1) can be represented by an orientation (of the edges) of the clique
tree to a rooted tree. The use of clique trees will be discussed in part II of this article
where the implementation issues are treated.

In numerical linear algebra, chordal graphs have been studied in relation to the
Gaussian elimination (Cholesky factorization) of sparse positive definite matrices.
Given a positive definite matrix X, we consider a graph G(V,E) that represents the
sparsity pattern of the matrix X. Namely, V is the set of row/column indices and
E = {(i, j) : Xij 6= 0, i 6= j}. Let X = LLT be the Cholesky factorization, where L

is a lower-triangular matrix. The sparsity pattern of L can be represented similarly
by a graph G(V, F ) defined by F = {(i, j) : Lij 6= 0 or Lji 6= 0, i 6= j}. Under the
generic assumption that no numerical cancellations occur in the elimination process,
the sparsity pattern of L is determined by that of the matrix X, and accordingly the
graph G(V, F ) is determined by the graph G(V,E) and the ordering of the vertices.
In particular, we have F ⊇ E, where the added edges (belonging to F \E) correspond
to the fill-in. Moreover, the graph G(V, F ) is a chordal graph by Theorem 2.1. Given
a graph G(V,E) in general (not necessarily chordal), we say that a graph G(V, F ) is
a chordal extension of G(V,E) if G(V, F ) is chordal and F ⊇ E.



EXPLOITING SPARSITY IN SDP VIA MATRIX COMPLETION I 653

3 2

5 6 4
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3 2

5 6 4
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C
C C

C2

4 3

1

(a) graph G(V,E) (b) chordal extension G(V, F )

Fig. 2.1. Graph G(V,E) and its chordal extension G(V, F ); (1, 2, . . . , 7) and (3, 2, 4, 6, 7, 1, 5)
are perfect elimination orderings for G(V, F ), and C1, C2, C3 and C4 are maximal cliques of G(V, F ).

Example 2.2. The chordal extension is illustrated here. Let X be a 7×7 positive
definite symmetric matrix with the nonzero pattern given by

X =




e e e
e e e e
e e e
e e e

e e e
e e e e

e e e




,

where e denotes nonzero entries. The associated graph G(V,E) is depicted in Fig-
ure 2.1(a), where V = {1, 2, . . . , 7}. The Cholesky factorization of X yields fill-in
at (i, j) = (5, 7), (3, 4), (4, 6), (6, 7), and the chordal extension G(V, F ) is shown in
Figure 2.1(b). The matrix pattern for G(V, F ) is

X̃ =




e e e
e e e e
e e f e
e f e f e

e e e f
e e f e e f

e e f f e




,

where f denotes fill-in. The natural ordering (1, 2, . . . , 6, 7) is a perfect elimination
ordering of the chordal graph G(V, F ), whereas (7, 6, . . . , 2, 1) is not. The perfect
elimination ordering is not unique; for instance, (3, 2, 4, 6, 7, 1, 5) is another perfect
elimination ordering. The chordal graph G(V, F ) has four maximal cliques, C1 =
{1, 5, 7}, C2 = {2, 3, 4, 6}, C3 = {4, 6, 7}, C4 = {5, 6, 7}. Note that the running
intersection property (2.1) holds with respect to this ordering of the maximal cliques.

The fill-in in the Cholesky factorization, and hence the resulting chordal extension
G(V, F ), depends on the ordering of the row/column indices. It is a major issue in
sparse matrix computation to find a permutation matrix P (representing an ordering)
such that PXP T yields as little fill-in as possible. Using the graph terminology this
amounts to finding a sparse chordal extension of a given graph, since any minimal
chordal extension G(V, F ) of G(V,E) can be obtained through the Cholesky factor-



654 M. FUKUDA, M. KOJIMA, K. MUROTA, AND K. NAKATA

ization process for some ordering. The problem of finding a permutation matrix P

that results in the minimum number of fill-in, or equivalently, the problem of finding
a chordal extension with the minimum number of edges, is known to be NP-complete.
Several heuristic algorithms such as the minimum-degree ordering and the nested dis-
section have been proposed for this problem [9]. In the most favorable case, where the
given graph G(V,E) is chordal, the perfect elimination ordering yields the Cholesky
factorization with no fill-in.

2.2. Positive semidefinite matrix completion. A partial symmetric matrix
means a symmetric matrix in which only part of the entries are specified. More
precisely, an n×n partial symmetric matrix X̄ is given as a collection of real numbers
(X̄ij = X̄ji : (i, j) ∈ F ) for some F ⊆ V ×V such that (i, j) ∈ F if and only if (j, i) ∈
F , where V = {1, 2, . . . , n}. A completion of a partial symmetric matrix X̄ means
a symmetric matrix X (of the same size) such that Xij = X̄ij for (i, j) ∈ F . The
positive (semi)definite matrix completion problem is to find a positive (semi)definite
matrix which is a completion of a given partial symmetric matrix. See [14, 17] for
surveys on matrix completion problems.

In considering this problem we may assume, without loss of generality, that the
diagonal entries are all specified, i.e.,

F ⊇ {(i, i) : i = 1, 2, . . . , n},(2.2)

since unspecified diagonal entries, if any, may be given sufficiently large values to
realize positive (semi)definiteness. We adopt the convention (2.2) throughout this
section.

We use the following notation:

• Sn(F, ?): the set of n×n partial symmetric matrices with entries specified in
F ;

• Sn
+(F, ?): the set of n×n partial symmetric matrices with specified entries in

F which can be completed to positive semidefinite symmetric matrices; i.e.,
Sn

+(F, ?) = {X̄ ∈ Sn(F, ?) : ∃X ∈ Sn
+, X̄ij = Xij for (i, j) ∈ F};

• Sn
++(F, ?): the set of n× n partial symmetric matrices with specified entries

in F which can be completed to positive definite symmetric matrices; i.e.,
Sn

++(F, ?) = {X̄ ∈ Sn(F, ?) : ∃X ∈ Sn
++, X̄ij = Xij for (i, j) ∈ F};

• Sn(F, 0): the set of n× n symmetric matrices with vanishing entries outside
F ; i.e., Sn(F, 0) = {X ∈ Sn : Xij = 0 if (i, j) 6∈ F};

• Sn
+(F, 0): the set of n × n positive semidefinite symmetric matrices with

vanishing entries outside F ; i.e., Sn
+(F, 0) = Sn

+ ∩ Sn(F, 0) = {X ∈ Sn
+ :

Xij = 0 if (i, j) 6∈ F};
• Sn

++(F, 0): the set of n×n positive definite symmetric matrices with vanishing
entries outside F ; i.e., Sn

++(F, 0) = Sn
++ ∩ Sn(F, 0) = {X ∈ Sn

++ : Xij =
0 if (i, j) 6∈ F};

• SC ,SC
+,S

C
++: the sets of ♯C × ♯C symmetric matrices, positive semidefinite

symmetric matrices, positive definite symmetric matrices, respectively, with
rows and columns indexed by C ⊆ V , where ♯C means the number of elements
of C.

For E,F ⊆ V × V in general, we define

F ◦ = F \ {(i, i) : i = 1, 2, . . . , n},(2.3)

E• = E ∪ {(i, i) : i = 1, 2, . . . , n}.(2.4)
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Then, the structure F of a partial symmetric matrix can be represented by a graph
G(V,E) with E = F ◦. Conversely, a graph G(V,E) is associated with the class of
partial symmetric matrices Sn(E•, ?).

Suppose we are given a partial symmetric matrix X̄ ∈ Sn(F, ?), and let G(V,E)
be the associated graph, where E = F ◦. Denote by {Cr ⊆ V : r = 1, 2, . . . , ℓ} the
family of all maximal cliques of G(V,E). An obvious necessary condition for X̄ to have
a positive semidefinite matrix completion is that each X̄CrCr is positive semidefinite,
i.e.,

X̄CrCr ∈ SCr
+ (r = 1, 2, . . . , ℓ),(2.5)

where it is noted that all the entries of the submatrix X̄CrCr are specified. Similarly,
an obvious necessary condition for X̄ to have a positive definite matrix completion is
that each X̄CrCr is positive definite, i.e.,

X̄CrCr ∈ SCr
++ (r = 1, 2, . . . , ℓ).(2.6)

We refer to (2.5) and (2.6) as the clique-PSD condition and the clique-PD condition,
respectively.

The following two theorems are most fundamental concerning the positive (semi)
definite matrix completion problem.

Theorem 2.3 (Grone et al. [11, Theorem 7]). Let G(V,E) be a graph.
(i) Any partial symmetric matrix X̄ ∈ Sn(E•, ?) satisfying the clique-PSD con-

dition (2.5) can be completed to a positive semidefinite symmetric matrix X

if and only if G(V,E) is chordal.
(ii) Any partial symmetric matrix X̄ ∈ Sn(E•, ?) satisfying the clique-PD condi-

tion (2.6) can be completed to a positive definite symmetric matrix X if and
only if G(V,E) is chordal.

Theorem 2.4 (Grone et al. [11, Theorem 2]). Suppose that a partial symmetric
matrix X̄ ∈ Sn(F, ?) has a positive definite matrix completion. Then there exists a

unique positive definite matrix completion X = X̂ that maximizes the determinant,
i.e., such that

det(X̂) = max{det(X) : X is a positive definite matrix completion of X̄}.

Moreover, such X̂ is characterized by the condition

[X̂
−1

]ij = 0 ((i, j) 6∈ F ), i.e., X̂
−1

∈ Sn(F, 0).

We refer to the completion X̂ in Theorem 2.4 as the maximum-determinant pos-
itive definite matrix completion of X̄.

The sufficiency part in Theorem 2.3 can be restated in the following form conve-
nient for our subsequent use.

Theorem 2.5. Let G(V,E) be a chordal graph.
(i) A partial symmetric matrix X̄ ∈ Sn(E•, ?) can be completed to a positive

semidefinite symmetric matrix X if and only if it satisfies the clique-PSD
condition (2.5).

(ii) A partial symmetric matrix X̄ ∈ Sn(E•, ?) can be completed to a positive
definite symmetric matrix X if and only if it satisfies the clique-PD condition
(2.6).
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In what follows we shall give a concrete expression of the maximum-determinant
positive definite matrix completion in case Theorem 2.5(ii) above. This expression
forms the basis of our computational scheme for sparse semidefinite programs, to be
described in section 5. Also it serves as a constructive proof of the “if” part in (ii),
while the “only if” part is obvious.

We start with a fundamental lemma showing an elementary construction of the
maximum-determinant positive definite matrix completion.

Lemma 2.6. Let S and T be disjoint nonempty subsets of V and X̄ be a partial
symmetric matrix with the entries in (S×T )∪ (T ×S) unspecified, i.e., X̄ ∈ Sn(F, ?)
for F = (V × V ) \ ((S × T ) ∪ (T × S)). Then X̄ admits a positive definite matrix
completion if and only if the two submatrices

(
X̄SS X̄SU

X̄US X̄UU

)
and

(
X̄UU X̄UT

X̄TU X̄TT

)
(2.7)

are both positive definite, where U = V \ (S ∪ T ). If this is the case, the matrix X̂

defined by

X̂ =




X̄SS X̄SU X̄SUX̄
−1
UUX̄UT

X̄US X̄UU X̄UT

X̄TUX̄
−1
UUX̄US X̄TU X̄TT


(2.8)

has the following properties: (i) X̂ is positive definite, (ii) (X̂
−1

)ST = O, (iii) X̂ is the
unique maximizer of the determinant among all positive definite matrix completions

of X̄. Here we adopt the convention X̄SUX̄
−1
UUX̄UT = O and X̄TUX̄

−1
UUX̄US = O

if U = ∅.
Proof. The necessity of the positive definiteness of the two submatrices in (2.7)

is obvious. For the sufficiency, we note




I −X̄SUX̄
−1
UU O

O I O

O O I


 X̂




I O O

−X̄
−1
UUX̄US I O

O O I




=




X̄SS − X̄SUX̄
−1
UUX̄US O O

O X̄UU X̄UT

O X̄TU X̄TT


 ,(2.9)

in which

X̄SS − X̄SUX̄
−1
UUX̄US ∈ SS

++

by the positive definiteness of the first matrix in (2.7). Hence (i) follows. Let D

denote the matrix on the right-hand side of (2.9). Then (ii) can be shown as

(X̂
−1

)ST =
(

I O O
)
D−1




O

O

I


 = O.

Finally, (iii) follows from (ii) by Theorem 2.4.
A recursive application of Lemma 2.6 in accordance with the perfect elimination

ordering yields an explicit construction of the positive definite matrix completion
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in Theorem 2.5(ii). For simplicity of notation, let us assume that (1, 2, . . . , n) is a
perfect elimination ordering of the chordal graph G(V,E). Suppose (recursively) that
the (n− 1)× (n− 1) submatrix corresponding to {2, 3, . . . , n} has been completed to
a positive definite matrix. Then we can apply Lemma 2.6 with S = {1}, T = {i :
i > 1} \Adj(1) and U = Adj(1) to obtain a positive definite matrix completion of the
whole matrix. Note that the first matrix in (2.7) is positive definite by the assumed

clique-PD condition (2.6), and the second by the recursive assumption. Let X̂ be the
completion obtained by the recursive application of this procedure.

We shall show in Lemma 2.7 below that the matrix X̂ constructed above is indeed
the maximum-determinant positive definite matrix completion of X̄, and moreover,
that it admits a factorization

PX̂P T = LT
1 LT

2 · · ·LT
n−1DLn−1 · · ·L2L1(2.10)

with “sparse” triangular matrices Lk (k = 1, 2, . . . , n − 1) and a positive definite
diagonal matrix D, where P = I under our tentative assumption that (1, 2, . . . , n) is
a perfect elimination ordering. We define

Uk = Adj(k) ∩ {i : i > k} (k = 1, 2, . . . , n).(2.11)

It follows from the repeated use of (2.9) that Lk is a lower-triangular matrix

Lk =




Ik−1 0 0 · · · 0

0T 1 0 · · · 0
0T [Lk]k+1,k 1 · · · 0
...

...
...

. . .
...

0T [Lk]nk 0 · · · 1




(2.12)

with unit diagonal entries [Lk]ii = 1 (i = 1, 2, . . . , n) and other possible nonzero
entries at {(i, k) : i ∈ Uk} in the kth column; to be specific,

[Lk]ij =





1 (i = j),

[X̄
−1
UkUk

X̄Ukk]ik (i ∈ Uk, j = k),
0 (otherwise)

(2.13)

for k = 1, 2, . . . , n− 1. Expressions of the diagonal entries of D are also known from
(2.9) as

Dkk =

{
X̄kk − X̄kUk

X̄
−1
UkUk

X̄Ukk (k = 1, 2, . . . , n− 1),
X̄nn (k = n).

(2.14)

We have Dkk > 0 for k = 1, 2, . . . , n by the clique-PD condition (2.6). Henceforth we
refer to (2.10) as the sparse factorization formula.

It is mentioned that the sparse factorization formula (2.10) of X̂ depends on the

perfect elimination ordering, represented by P , used in the construction, whereas X̂

itself is independent of it because of the uniqueness of the maximum-determinant pos-
itive definite matrix completion. Note also that the factorization (2.10) is equivalent
to

PX̂
−1

P T = L−1
1 L−1

2 · · ·L−1
n−1D

−1L−T
n−1 · · ·L

−T
2 L−T

1 ,(2.15)

which is the product form of the (LDLT ) Cholesky factorization of PX̂
−1

P T .
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Lemma 2.7. Let G(V,E) be a chordal graph and X̄ ∈ Sn(E•, ?) be a partial sym-
metric matrix satisfying the clique-PD condition (2.6). Let P be a permutation matrix
representing a perfect elimination ordering of G(V,E) in such a way that (1, 2, . . . , n)
is a perfect elimination ordering for PX̄P T . Then the maximum-determinant positive
definite matrix completion X̂ of X̄ can be expressed in terms of the sparse factoriza-
tion formula (2.10), where Lk is a lower-triangular matrix given by (2.12) and (2.13)
and D is a positive definite diagonal matrix given by (2.14).

Proof. The positive definiteness of X̂ follows from the factorization formula (2.10)
together with the positive definiteness of D. For the maximum-determinant property

it suffices, by Theorem 2.4, to show that [X̂
−1

]ij = 0 for (i, j) 6∈ E•. Referring to
(2.15) we define M = L−1

1 L−1
2 · · ·L−1

n−1, which is a lower-triangular matrix with unit
diagonal entries. The kth column of M coincides, except for the diagonal entry, with
the negative of the kth column of Lk. Therefore, M has nonzero off-diagonal entries

only at (i, j) ∈ E. Suppose that [X̂
−1

]ij 6= 0 and assume P = I in (2.15). Then
Mik 6= 0 and Mjk 6= 0 for some k ≤ min(i, j). Hence (k, i) ∈ E• and (k, j) ∈ E•. This
means (i, j) ∈ E• because (1, 2, . . . , n) is a perfect elimination ordering.

Remark 2.8. Here is a minor remark on the computations of (2.13) and (2.14).
For each k, the subset {k}∪Uk induces a clique in G(V,E), and the maximal members
of such cliques are exactly the maximal cliques of G(V,E), which are denoted as
{Cr ⊆ V : r = 1, 2, . . . , ℓ}. Moreover, for each r, those subsets Uk which are contained
in Cr form a nested family; define Kr = {k : Uk ⊆ Cr}. Hence, the Cholesky
factorizations of X̄UkUk

for all k ∈ Kr needed in the computations in (2.13) and (2.14)
are embedded in the Cholesky factorization of X̄CrCr with an appropriate ordering.

The sparse factorization formula (2.10) can be made conceptually more transpar-
ent and practically more efficient if it is constructed with reference to an ordering
of maximal cliques rather than to a perfect elimination ordering of vertices. Let
(C1, C2, . . . , Cℓ) be an ordering of maximal cliques that enjoys the running intersec-
tion property (2.1). A similar argument based on Lemma 2.6 yields a variant of the
sparse factorization formula of the form

PX̂P T = LT
1 LT

2 · · ·LT
ℓ−1DLℓ−1 · · ·L2L1,(2.16)

where Lr (r = 1, 2, . . . , ℓ − 1) are “sparse” triangular matrices and D is a positive
definite block-diagonal matrix consisting of ℓ diagonal blocks. We will call (2.16) the
sparse clique-factorization formula. The concrete expressions of Lr (r = 1, 2, . . . , ℓ−
1) and D can be obtained as straightforward extensions of (2.12) ∼ (2.14). Namely,
define

Sr = Cr\(Cr+1 ∪ Cr+2 ∪ · · · ∪ Cℓ) (r = 1, 2, . . . , ℓ),
Ur = Cr ∩ (Cr+1 ∪ Cr+2 ∪ · · · ∪ Cℓ) (r = 1, 2, . . . , ℓ).

Then the factors in (2.16) are given by

[Lr]ij =





1 (i = j),

[X̄
−1
UrUr

X̄UrSr ]ij (i ∈ Ur, j ∈ Sr),
0 (otherwise)

(2.17)

for r = 1, 2, . . . , ℓ− 1, and

D =




DS1S1

DS2S2

. . .

DSℓSℓ


(2.18)
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with

DSrSr =

{
X̄SrSr − X̄SrUrX̄

−1
UrUr

X̄UrSr (r = 1, 2, . . . , ℓ− 1),
X̄SℓSℓ

(r = ℓ).
(2.19)

It should be remarked that we can compute all nonzero submatrices X̄
−1
UrUr

X̄UrSr

and DSrSr above in parallel although we need an induction argument to derive the
sparse clique-factorization formula (2.16).

3. Chordal extension of aggregate sparsity pattern. In this section,
we apply the discussions given in the previous section to the standard equality form
SDP (1.1). Let E denote the aggregate sparsity pattern of the data matrices
A0,A1,A2, . . . ,Am given in (1.4). We first choose a chordal extension G(V, F ◦)
of the graph G(V,E◦). Let {Cr ⊆ V : r = 1, 2, . . . , ℓ} be the family of maximal
cliques of the graph G(V, F ◦), where F ⊇ E. Then (i) the values of the objective and
constraint linear functions Ap • X (p = 0, 1, . . . ,m) of the SDP (1.1) are determined
by Xij ((i, j) ∈ F ) regardless of Xij ((i, j) 6∈ F ), and (ii) any X ∈ Sn(F, ?) has a
positive semidefinite (or positive definite, respectively) matrix completion if and only
if the submatrices XCrCr (r = 1, 2, . . . , ℓ) are positive semidefinite (or positive defi-
nite, respectively)—the clique-PSD condition (2.5) (or the clique-PD condition (2.6),
respectively). Therefore we can replace the constraint and the objective function
A0 • X of the SDP (1.1) by the constraint

∑

(i,j)∈F

[Ap]ijXij = bp (p = 1, 2, . . . ,m) and XCrCr ∈ SCr
+ (r = 1, 2, . . . , ℓ)(3.1)

and the objective function
∑

(i,j)∈F [A0]ijXij , respectively. More precisely, if X =

X̄ ∈ Sn satisfies the constraint of (1.1), then the partial symmetric matrix X ′ ∈
Sn(F, ?) with entries X ′

ij = X̄ij ((i, j) ∈ F ) satisfies (3.1) and their objective values
A0 • X and

∑
(i,j)∈F [A0]ijX

′
ij coincide with each other. Conversely, any partial

symmetric matrix X ′ ∈ Sn(F, ?) satisfying (3.1) has a positive semidefinite matrix
completion X ∈ Sn that satisfies the constraint of (1.1) and has the same objective
value as X ′ ∈ Sn

+(F, ?).
We will propose two methods with the use of (3.1) for solving the SDP (1.1). The

first one is a conversion of the SDP (1.1) having a single matrix variable X ∈ Sn
+ into

an SDP having ℓ matrix variables in SCr
+ (r = 1, 2, . . . , ℓ) in section 4. The other is a

primal-dual interior-point method based on positive definite matrix completion in sec-
tion 5. Roughly speaking, matrix operations such as finding the Cholesky factorization
of X, the minimum eigenvalue of X, and matrix-matrix multiplications, are replaced
by the corresponding matrix operations on smaller matrices in SCr (r = 1, 2, . . . , ℓ)
in both methods. There are also overheads depending on the maximal cliques Cr

(r = 1, 2, . . . , ℓ). In particular, the number of additional equality constraints required
in the former method is determined by the intersections of two distinct maximal
cliques Cr and Cs (r < s), while the amount of arithmetic operations to compute the
search direction in the latter method depends not only on the maximal cliques Cr

(r = 1, 2, . . . , ℓ), but also on the number m of equality constraints and the sparsity
pattern of data matrices Ap (p = 0, 1, 2, . . . ,m). The effectiveness of both meth-
ods relies entirely on a suitable choice of a chordal extension G(V, F ◦) of the graph
G(V,E◦). (Through simple numerical examples in section 7, we will see how crucial
a better choice of a chordal extension is to the conversion method.) It seems quite
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difficult, however, to determine (or even define) an “optimal” chordal extension that
would minimize the amount of computational work in each method because various
consequences of the use of (3.1), including those mentioned above, are too compli-
cated to be evaluated accurately. In addition, even if we could set up an appropriate
objective function to be minimized over the chordal extensions of the graph G(V,E◦),
such a minimization problem would be a very difficult combinatorial optimization
problem.

As we have seen in the previous section, the chordal extension is closely related to
the Cholesky factorization. Specifically, the chordal extension that minimizes the total
number of edges in G(V, F ◦) is obtained via the Cholesky factorization of the aggregate
sparsity pattern matrix A with the minimum fill-in. Therefore it seems reasonable (or
at least attractive) in practice to employ various existing heuristic methods, such as
the minimum-degree ordering for less fill-in, the (nested) dissection ordering for less
fill-in, and the reverse Cuthill–McKee ordering for reducing bandwidth, developed for
the Cholesky factorization [9]. We briefly illustrate below how we construct a chordal
extension G(V, F ◦) of the graph G(V,E◦) using some of those existing methods.

Suppose that we have reordered the row/column indices symmetrically by apply-
ing a dissection ordering so that the resulting aggregate sparsity pattern matrix A

has the following bordered block-diagonal form:

A =




AS1S1
O · · · O AS1S0

O AS2S2
· · · O AS2S0

...
...

. . .
...

...
O O · · · ASℓSℓ

ASℓS0

AS0S1
AS0S2

· · · AS0Sℓ
AS0S0




and

E ⊆

(
ℓ⋃

r=1

Sr × Sr

)
⋃
(

ℓ⋃

r=0

Sr × S0

)
⋃
(
S0 ×

ℓ⋃

r=0

Sr

)
.

Let

Cr = S0 ∪ Sr (r = 1, 2, . . . , ℓ) and F =

ℓ⋃

r=1

Cr × Cr.(3.2)

Obviously E ⊆ F . We also see that G(V, F ◦) is a chordal extension of G(V,E◦)
and that {Cr ⊆ V : r = 1, 2, . . . , ℓ} forms the family of maximal cliques of G(V, F ◦).
Furthermore, (1, 2, . . . , n) is a perfect elimination ordering, and the running intersec-
tion property (2.1) holds for any s ≥ r + 1.

Another chordal extension can be obtained through the reordering of row/column
indices by the reverse Cuthill–McKee ordering that yields the aggregate sparsity pat-
tern matrix A having a small bandwidth:

Aij = 0 if |j − i| > β and E = {(i, j) ∈ V × V : |i− j| ≤ β},

where β is a small positive integer. In this case, we can take a collection of subsets
C1, C2, . . . , Cℓ and F ⊇ E such that

Cr = {i ∈ V : (r − 1)κ < i ≤ β + rκ} (r = 1, 2, . . . , ℓ) and F =

ℓ⋃

r=1

Cr × Cr,(3.3)



EXPLOITING SPARSITY IN SDP VIA MATRIX COMPLETION I 661

where κ denotes a positive integer and ℓ the smallest positive integer satisfying β+ℓκ ≥
n. Then G(V, F ◦) is a chordal extension of G(V,E◦) and {Cr ⊆ V : r = 1, 2, . . . , ℓ}
forms the family of maximal cliques of G(V, F ◦). In this case, (1, 2, . . . , n) is a perfect
elimination ordering, and the running intersection property (2.1) holds for s = r + 1.

It is not difficult to extend the discussions above to more sophisticated cases
where the aggregate sparsity pattern matrix A forms a nested bordered block-diagonal
matrix or a bordered band matrix. In our succeeding paper [22], we will discuss in
more detail how we choose a chordal extension of G(V,E◦) in general.

In the remainder of this paper, we assume that

• an appropriate chordal extension G(V, F ◦) of G(V,E◦) and the family {Cr ⊆
V : r = 1, 2, . . . , ℓ} of maximal cliques of G(V, F ◦) are available to us, and

• (v1, v2, . . . , vn) is a perfect elimination ordering induced from an ordering of
the maximal cliques satisfying the running intersection property (2.1).

Hence, in view of the discussions in the previous section, we can factorize the maximum-
determinant positive definite matrix completion X̂ of each X̄ ∈ Sn(F ; ?) as in the
sparse factorization formula (2.10) (and also as in the sparse clique-factorization for-
mula (2.16)), and any Y ∈ Sn

++(F ; 0) is factorized as Y = RRT for some n × n
lower-triangular matrix R without any fill-in. We also know that the number ℓ of
maximal cliques of G(V, F ◦) does not exceed n.

Remark 3.1. We also assume in the remainder of the paper that (i, i) ∈ E
(i = 1, 2, . . . , n). Assume, to the contrary, that some (i, i) 6∈ E, for example,

(i, i) 6∈ E (i = 1, 2, . . . , k) and (j, j) ∈ E (j = k + 1, k + 2, . . . , n).

Then we can rewrite the SDP (1.1) as

minimize A′
0 • X ′ + 2

k∑

i=1

n∑

j=i+1

[A0]ijXij ,

subject to A′
p • X ′ + 2

k∑

i=1

n∑

j=i+1

[Ap]ijXij = bp (p = 1, 2, . . . ,m),

Xij ∈ R (i = 1, 2, . . . , k, i < j ≤ n),

X ′ =




Xk+1,k+1 Xk+1,k+2 · · · Xk+1,n

Xk+2,k+1 Xk+2,k+2 · · · Xk+2,n

...
...

. . .
...

Xn,k+1 Xn,k+2 · · · Xnn


 ∈ SU

+





,

where

A′
p =




[Ap]k+1,k+1 [Ap]k+1,k+2 · · · [Ap]k+1,n

[Ap]k+2,k+1 [Ap]k+2,k+2 · · · [Ap]k+2,n

...
...

. . .
...

[Ap]n,k+1 [Ap]n,k+2 · · · [Ap]nn


 ∈ SU (p = 0, 1, . . . ,m),

and U = {k+1, k+2, . . . , n}. In the transformed problem above, none of Xij ∈ R (i =

1, 2, . . . , k, i < j ≤ n) are involved in the positive semidefinite constraint X ′ ∈ SU
+,

and therefore they are free variables. We can easily adapt the methods described in
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sections 4 and 5 for the SDP (1.1) satisfying the assumption (i, i) ∈ E (i = 1, 2, . . . , n)
to the transformed problem.

4. Conversion to an SDP having multiple but smaller size positive

semidefinite matrix variables. In the previous section, we have shown that
the SDP (1.1) is equivalent to the problem of minimizing the objective function∑

(i,j)∈F [A0]ijXij over the constraint (3.1). This problem involves less variables and

smaller size positive semidefinite constraints than the original SDP (1.1). This fea-
ture certainly makes the conversion attractive in practice because such a problem is
expected to be solved more easily. It should be noted, however, that two distinct pos-
itive semidefinite constraints XCrCr ∈ SCr

+ and XCsCs ∈ SCs
+ in (3.1) share variables

Xij ((i, j) ∈ (Cr ∩Cs)× (Cr ∩Cs)) whenever Cr ∩Cs 6= ∅. Hence, the problem is not
a standard SDP. In this section, we show how to convert the problem to a standard
SDP to which we can apply interior-point methods, and we discuss some advantages
and disadvantages of the resulting SDP.

For every r = 1, 2, . . . , ℓ, let

Er = {(i, j) ∈ Cr × Cr : (i, j) ∈ Cs × Cs for some s < r }.

By definition, E1 = ∅, and if (i, j) ∈ Er then the positive semidefinite constraint
XCrCr ∈ SCr

+ shares variables Xij ((i, j) ∈ Er) with the positive semidefinite con-

straint XCsCs ∈ SCs
+ for some s < r. To make such a pair of dependent positive

semidefinite constraints independent, we introduce auxiliary variables Ur
ij ((i, j) ∈

Er, r = 2, 3, . . . , ℓ), and we rewrite the constraint (3.1) as

∑

(i,j)∈F

[Ap]ijXij = bp (p = 1, 2, . . . ,m),

Ur
ij = Xij ((i, j) ∈ Er, i ≥ j, r = 2, 3, . . . , ℓ),

Xr ∈ SCr
+ (r = 1, 2, . . . , ℓ)





,(4.1)

where

[Xr]ij =

{
Ur
ij if (i, j) ∈ Er,

Xij otherwise.

Then we may regard the minimization of the objective function
∑

(i,j)∈F [A0]ijXij

over the constraint (4.1) as a standard SDP. In fact, if we further introduce a block-
diagonal symmetric matrix variable of the form

X ′ =




X1 O O · · · O

O X2 O · · · O
...

...
...

. . .
...

O O O · · · Xℓ


 ,

and if we appropriately rearrange all the coefficients of the linear equality constraints
in (4.1) and the objective function

∑
(i,j)∈F [A0]ijXij to reconstruct data matrices

with the same block-diagonal structure as X ′, we obtain a standard equality form
SDP.

There are two major advantages of this conversion. First, when the sizes of all
positive semidefinite matrix variables in (4.1) are small, their Cholesky factorizations,
computation of their minimum eigenvalues, and matrix multiplications require less
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CPU time than those of the original positive semidefinite matrix variable X in (1.1).
Second, once we have converted the SDP (1.1) into the SDP with the block-diagonal
positive semidefinite matrix variable X ′, we can apply effectively any interior-point
method incorporating a block-diagonal matrix data structure [4, 6, 28] for SDPs.

We should note, however, that the conversion above from the SDP (1.1) to the
SDP with the block-diagonal symmetric matrix variable X ′ increases the number of
equality constraints from m to the number

m′ = m +

ℓ∑

r=2

♯{(i, j) ∈ Er : i ≥ j}.

When we apply interior-point methods to a standard form SDP having m equality
constraints, we solve a system of linear equations with a fully dense m × m coeffi-
cient matrix B to generate a search direction at each iteration. This requires O(m3)
arithmetic operations. So the increase in the number of equality constraints in the
converted problem may worsen the total computational efficiency. Therefore, the
reduction in the sizes of positive semidefinite matrix variables should be properly
balanced with the increase in the number of equality constraints in (4.1) when we
choose a chordal extension G(V, F ◦) of G(V,E◦). In section 7, we will show by simple
numerical examples how this balance is crucial.

5. Primal-dual interior-point method based on positive definite matrix

completion. One disadvantage of the conversion of the SDP (1.1) to the SDP with
multiple but smaller size positive semidefinite matrix variables (4.1) is an increase
in the number of equality constraints. In this section, we propose a primal-dual
interior-point method based on positive semidefinite matrix completion which exploits
the mechanism of positive definite completion to compute the search directions and
step lengths and which does not add any equality constraints in the original SDP
formulation. Various search directions [1, 13, 15, 16, 20, 21, 24, 27] have been proposed
so far for primal-dual interior-point methods. Among others, we restrict ourselves to
the HRVW/KSH/M search direction [13, 16, 20], although we can adapt some of the
discussions below to some other search directions.

There are two places below where we effectively utilize the equivalence between
the constraint on the symmetric matrix variable X ∈ Sn of the original problem (1.1)
and the constraint (3.1) on the partial symmetric matrix X ∈ Sn(F, ?) with entries
specified in F . One is the computation of a search direction and the other is the
computation of a step length. Recall that E denotes the aggregate sparsity pattern
of the data matrices A0,A1, . . . ,Am, and that G(V, F ◦) denotes a chordal extension
of G(V,E◦).

Let (X̄, Ȳ , z̄) be a point obtained at the kth iteration of a primal-dual interior-
point method using the HRVW/KSH/M search direction (k ≥ 1) or given initially
(k = 0). We assume that X̄ ∈ Sn

++(F, ?) and Ȳ ∈ Sn
++(E, 0). Here the feasibility

of the point (X̄, Ȳ , z̄) is not assumed; X̄ and (Ȳ , z̄) need not satisfy the equality
constraints of the SDPs (1.1) and (1.2), respectively.

In order to compute the HRVW/KSH/M search direction, we use the whole matrix
values for both X̄ ∈ Sn

++(F, ?) and Ȳ ∈ Sn
++(E, 0), so that we need to make a positive

definite matrix completion of X̄ ∈ Sn
++(F, ?). Let X̂ ∈ Sn

++ be the maximum-
determinant positive definite matrix completion of X̄ ∈ Sn

++(F, ?). See section 2.2.
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Then we compute the HRVW/KSH/M search direction (dX, dY , dz) by solving the
system of linear equations

Ap • dX = gp (p = 1, 2, . . . ,m), dX ∈ Sn,
m∑

p=1

Apdzp + dY = H, dY ∈ Sn(E, 0), dz ∈ Rm,

d̃XȲ + X̂dY = K, dX = (d̃X + d̃X
T
)/2





,(5.1)

where gp = bp − Ap • X̂ ∈ R (p = 1, 2, . . . ,m) (the primal residual), H = A0 −∑m
p=1 Apz̄p − Ȳ ∈ Sn(E, 0) (the dual residual), K = µI − X̂Ȳ (an n × n constant

matrix), and d̃X denotes an n × n auxiliary matrix variable. The search direction

parameter µ is usually chosen to be βX̂ • Ȳ /n for some β ∈ [0, 1]. We can reduce the
system of linear equations (5.1) to

Bdz = s, dY = H −
m∑

p=1

Apdzp,

d̃X = (K − X̂dY )Ȳ
−1

, dX = (d̃X + d̃X
T
)/2





,(5.2)

where

Bpq = Trace ApX̂AqȲ
−1

(p = 1, 2, . . . ,m, q = 1, 2, . . . ,m),

sp = gp − Trace Ap(K − X̂H)Ȳ
−1

(p = 1, 2, . . . ,m)

}
.

Note that B is a positive definite symmetric matrix.
Now recall that the maximum-determinant positive definite matrix completion

X̂ of X̄ ∈ Sn
++(F, ?) is expressed in terms of the sparse clique-factorization formula

(2.16). Since we have assumed that (1, 2, . . . , n) is a perfect elimination ordering
of the chordal graph G(V, F ◦) as in section 2.1, we can take the identity I for the
permutation matrix P in (2.16). Hence, the sparse clique-factorization formula (2.16)
turns out to be

X̂ = LT
1 LT

2 . . .LT
ℓ−1DLℓ−1 . . .L2L1,(5.3)

where Lr (r = 1, 2, . . . , ℓ−1) and D are given by (2.17), (2.18), and (2.19). Also Ȳ ∈
Sn

++(E, 0) is factorized as Ȳ = NNT without any fill-in except for entries in F\E,
where N is a lower-triangular matrix. We can effectively utilize these factorizations
of X̂ and Ȳ for the computation of the search direction (dX, dY , dz). In particular,
the coefficients Bpq (p = 1, 2, . . . ,m, q = 1, 2, . . . ,m) in the system (5.2) of linear
equations are computed by

Bpq = Trace Ap(L
T
1 LT

2 . . .LT
ℓ−1DLℓ−1 . . .L2L1)Aq(N

−TN−1)

(p = 1, 2, . . . ,m, q = 1, 2, . . . ,m).

If we utilize those factorizations also for the computation of sp (p = 1, 2, . . . ,m)

and d̃X, we do not need to store the whole dense matrix X̂ in the memory but
only its sparse clique-factorizations in terms of L1, L2, . . . , Lℓ−1 and D. As we
will see below in the computation of a step length and a next iterate, we need the
partial symmetric matrix with entries [dX]ij specified in F , but not the whole search
direction matrix dX ∈ Sn in the primal space (hence the partial symmetric matrix
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with entries [d̃X]ij specified in F but not the whole matrix d̃X). Hence, it is possible
to carry out all the matrix computations above using only partial matrices with entries
specified in F . Therefore, we can expect to save both CPU time and memory in our
computation of the search direction. To clarify the distinction between the whole
primal search direction matrix dX ∈ Sn and the corresponding partial symmetric
matrix with entries specified in F in the discussions below, we use the notation dX̂
for the former whole matrix in Sn and dX̄ for the latter partial symmetric matrix in
Sn(F ; ?). Now, suppose that we have computed the HRVW/KSH/M search direction
(dX̄, dY , dz) ∈ Sn×Sn(E, 0)×Rm. We describe how to compute a step length α > 0
and the next iterate (X ′,Y ′,z′) ∈ Sn × Sn(E, 0) × Rm. Usually we compute the
maximum α̂ of α’s satisfying

X̂ + αdX̂ ∈ Sn
+ and Ȳ + αdY ∈ Sn

+,(5.4)

and let (X ′,Y ′,z′) = (X̂, Ȳ , z̄)+γα̂(dX̂, dY , dz) for some γ ∈ (0, 1). Then X ′ ∈ Sn
++

and Y ′ ∈ Sn
++(E, 0). The computation of α̂ is necessary to know how long we can

take the step length along the search direction (dX̂, dY , dz). The computation of α̂ is
usually carried out by calculating the minimum eigenvalues of the matrices

M̂
−1

dX̂M̂
−T

and N−1dY N−T ,

where X̂ = M̂M̂
T

and Ȳ = NNT denote the factorizations of X̂ and Ȳ , respec-
tively.

Instead of (5.4), we propose to employ

X̄CrCr + αdX̄CrCr ∈ SCr
+ (r = 1, 2, . . . , ℓ) and Ȳ + αdY ∈ Sn

+(E, 0).(5.5)

Recall that {Cr ⊆ V : r = 1, 2, . . . , ℓ} denotes the family of maximal cliques of
G(V, F ◦) and ℓ ≤ n. Let ᾱ be the maximum of α’s satisfying (5.5), and let

(X ′,Y ′,z′) = (X̄, Ȳ , z̄) + γᾱ(dX̄, dY , dz) ∈ Sn(F, ?) × Sn
++(E, 0) × Rm

for some γ ∈ (0, 1). By Theorem 2.3, X ′ ∈ Sn(F, ?) has a positive definite matrix
completion, so that the point (X ′,Y ′,z′) ∈ Sn

++(F, ?) × Sn
++(E, 0) × Rm can be the

next iterate. In this case, the computation of ᾱ is reduced to the computation of the
minimum eigenvalues of the matrices

M̄
−1
r dX̄CrCrM̄

−T
r (r = 1, 2, . . . , ℓ) and N−1dY N−T ,

where X̄CrCr = M̄ rM̄
T
r denotes a factorization of X̄CrCr (r = 1, 2, . . . , ℓ). Thus the

computation of the minimum eigenvalue of M̂
−1

X̂M̂
−T

has been replaced by the

computation of the minimum eigenvalues of ℓ smaller submatrices M̄
−1
r dX̄CrCrM̄

−T
r

(r = 1, 2, . . . , ℓ).
We mention some important effects of the maximum-determinant positive definite

matrix completion X̂ ∈ Sn
++ of X̄ ∈ Sn

++(F, ?) on the theoretical and practical
convergence of the primal-dual interior-point method with the modification above.
We first observe that

X • Ȳ = X̂ • Ȳ and detX ≤ det X̂

for any positive definite matrix completion X ∈ Sn
++ of X̄ ∈ Sn

++(F, ?). This implies

that X̂ ∈ Sn
++ minimizes the value of the primal-dual potential function

ρ log X • Ȳ − log det(XȲ )
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over all positive definite matrix completions X ∈ Sn
++ of X̄ ∈ Sn

++(F, ?), where ρ is a
positive number. If we combine this fact with the primal-dual interior-point potential
reduction method given in the paper [16] for SDPs, it is easy to design a polynomial-
time primal-dual interior-point potential reduction method based on positive definite
matrix completion for SDPs.

We also see that X̂ optimizes (maximizes) a centrality measure (det(XȲ ))1/n

(X • Ȳ )/n

over all positive definite matrix completions X ∈ Sn
++ of X̄ ∈ S++(F, ?). Thus

the maximum-determinant positive definite matrix completion is expected to work
positively in both theoretical and practical convergence. It is not necessarily true,
however, that X̂ ∈ Sn

++ optimizes (minimizes) the standard centrality measure

‖X1/2Ȳ X1/2 − X • Ȳ /n‖ over all positive definite matrix completions X ∈ Sn
++

of X̄ ∈ S++(F, ?). Here ‖ · ‖ denotes the Frobenius norm of a matrix.
Another positive effect of our modification is that the maximum ᾱ of α’s satisfying

(5.5) is larger than or equal to the maximum α̂ of α’s satisfying (5.4). So we are able
to choose a larger step length if we use (5.5) instead of (5.4).

6. Linear transformation in the primal and dual spaces. When we are
given an SDP to be solved, we may be able to transform it into a sparser SDP to which
we more effectively apply the conversion method in section 4 and/or the primal-dual
interior-point method based on positive definite matrix completion in section 5. As
we will see later in this section, certain semidefinite programming relaxations of some
combinatorial optimization problems including the graph equipartition problem and
the maximum clique problem are such cases.

We introduce a general framework for transformation of a given SDP which in-
duces an equivalence class of SDPs. For every A = (A0,A1,A2, . . . ,Am) ∈

∏m
p=0 S

n

and b ∈ Rm, we use the notation P(A, b) for the standard equality form SDP (1.1)
and the notation D(A, b) for its dual (1.2).

Let P be an arbitrary n × n nonsingular matrix. Performing the congruence
transformation X = PX ′P T from X to X ′ in the primal space, we obtain an SDP
P(Ap, b) and its dual D(Ap, b), where

A
p = (P TA0P ,P TA1P ,P TA2P , . . . ,P TAmP ) ∈

m∏

k=0

Sn.

Let D be an m × m arbitrary nonsingular matrix and ζ an arbitrary vector in
Rm. Performing the affine transformation

z = Dz′ − ζ

from z to z′ in the dual space, we obtain an SDP D(Ad, bd) and the corresponding
primal SDP P(Ad, bd), where

bd = DT b ∈ Rm,

Ad
0 = A0 +

m∑

p=1

Apζp ∈ Sn, Ad
k =

m∑

p=1

ApDpk ∈ Sn (k = 1, 2, . . . ,m),

A
d = (Ad

0 ,A
d
1 ,A

d
2 , . . . ,A

d
m) ∈

m∏

k=0

Sn.

If we perform the primal transformation and the dual transformation simulta-
neously, we obtain another primal-dual pair of SDPs P(Apd, bpd) and D(Apd, bpd),
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where

bpd = DT b ∈ Rm, A
pd
0 = P TA0P +

m∑

p=1

P TApP ζp ∈ Sn,

A
pd
k =

m∑

p=1

P TApPDpk ∈ Sn (k = 1, 2, . . . ,m),

A
pd = (Apd

0 ,Apd
1 ,Apd

2 , . . . ,Apd
m ) ∈

m∏

k=0

Sn.

By construction, all the primal-dual pairs, P(A, b) and D(A, b), P(Ap, bp) and
D(Ap, bp), P(Ad, bd) and D(Ad, bd), P(Apd, bpd) and D(Apd, bpd), are equivalent to
each other. The important issue here is how we choose P , D, and ζ to

• improve the aggregate sparsity pattern of the data matrices, and also
• reduce the total number of nonzeros in the data matrices, which affects the

computation of the coefficient matrix B of the linear equation in (5.2) to
determine a search direction. See also [7].

It should be noted that any transformation using an m×m nonsingular matrix D

and an m-dimensional vector ζ in the dual space never changes the aggregate sparsity
pattern of the data matrices, but it may be useful to decrease the total number of
nonzeros in the data matrices, especially when some data matrices are 0-1 or integral
(see also (D) of section 8 for further discussion on this transformation). Below, we will
show two cases in which an appropriate congruence transformation P in the primal
space improves the aggregate sparsity pattern of data matrices.

First consider a structured SDP with data matrices having the following sparsity
pattern:

A0 =




* O O *
O O O *
O O O *
* * * *


 , A1 =




O O O *
O * O *
O O O *
* * * *


 ,

A2 =




O O O *
O O O *
O O * *
* * * *


 , Ap =




O O O *
O O O *
O O O *
* * * *


 (p = 3, 4, . . . ,m).

Here ∗ denotes a (possibly) nonzero matrix. In this case, the aggregate sparsity
pattern matrix turns out to be a bordered block-diagonal matrix




* O O *
O * O *
O O * *
* * * *


 .

Since each of the first three nonzero blocks in the diagonal is due to A0, A1, and A2,
respectively, and no other data matrices Ap (p = 3, 4, . . . ,m) contain any nonzeros in
those diagonal blocks, we can choose a nonsingular matrix P of the form

P =




P 11 O O O

O P 22 O O

O O P 33 O

O O O P 44
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such that the transformed data matrices P TApP (p = 0, 1, . . . ,m) get the aggregate
sparsity pattern




⋄ O O *
O ⋄ O *
O O ⋄ *
* * * *


 .

Here each ⋄ denotes a diagonal matrix. Thus, the aggregate sparsity pattern has been
improved along the diagonal.

Now we consider the SDP relaxation of the graph equipartition problem, which
is formulated as

minimize A0 • X

subject to Ep • X =
1

4
(p = 1, 2, . . . , n),

E • X = 0, X ∈ Sn
+





.

Here A0 = diag(Ce) − C, C denotes an n × n symmetric cost matrix, diag(Ce)
denotes the diagonal matrix whose entries are Ce, Ep denotes the n×n matrix with
all entries 0 except [Ep]pp = 1, and E denotes the n × n matrix with all entries 1.
When the graph under consideration is sparse, the matrix C (hence the matrix A0)
is sparse. But the aggregate sparsity pattern matrix is fully dense due to the only
fully dense matrix E. To improve the sparsity pattern, we perform the congruence
transformation using

P =




1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1
0 0 0 · · · 0 0 1




to the data matrices A0, Ep (p = 1, 2, . . . , n) and E in the primal space to obtain

P TA0P ,P TEpP (p = 1, 2, . . . , n) and P TEP .

Then all entries of P TEP vanish except [P TEP ]11 = 1. We can also verify that

(the total number of nonzeros of the matrices P TA0P , P TEpP (p = 1, 2, . . . , n))

≤ 4 × (the total number of nonzeros of the matrices A0, Ep (p = 1, 2, . . . , n)).

Therefore, if A0 is sparse this transformation reduces the total number of nonzeros
in data matrices and improves the aggregate sparsity pattern.

We can apply the same congruence transformation above to the SDP relaxation
of the maximum clique problem.

7. Numerical examples. In this section, we give three numerical examples
which show the effectiveness, advantages, and disadvantages of the conversion method
described in section 4. This conversion can be interpreted as a preprocessing scheme
to the existing software [4, 6, 28] which can handle standard equality form SDPs (1.1)
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Table 7.1
Sizes of the equivalent SDPs to the 1-bordered diagonal SDP and the tridiagonal SDP.

k # block matrices (2k) Dimension of each block # constraints m′

0 1 513 × 513 79 + 0
1 2 257 × 257 79 + 1
2 4 129 × 129 79 + 3
3 8 65 × 65 79 + 7
4 16 33 × 33 79 + 15
5 32 17 × 17 79 + 31
6 64 9 × 9 79 + 63
7 128 5 × 5 79 + 127
8 256 3 × 3 79 + 255
9 512 2 × 2 79 + 511

and (1.2) with block-diagonal data matrices. In particular, we use SDPA 5.0 [6] to
solve the SDPs of this section on a DEC Alpha machine (300MHz with 256MB of
memory). The first two examples illustrate remarkable effectiveness of the conversion
method, and also the importance of determining an “optimal” chordal extension of
the aggregate sparsity pattern for a given SDP. The third example exhibits a crucial
disadvantage of employing this conversion compared with the primal-dual interior-
point method based on positive definite matrix completion proposed in section 5.

We start by describing the first two examples which are randomly generated
SDPs with high sparsity and special structures. The first problem is the example
given in section 1. Let V denote the set {1, 2, . . . , n} of row/column indices of the
data matrices Ap (p = 0, 1, . . . ,m), and let Eb = {(i, n), (n, i), (i, i) : i ∈ V } be the
aggregate sparsity pattern of the data matrices. We call this example the 1-bordered
diagonal SDP. In the second example, the aggregate sparsity pattern is replaced by
Et = {(i, j) ∈ V ×V : |i− j| ≤ 1} instead. We call this example the tridiagonal SDP.
Notice that the graphs associated with the aggregate sparsity patterns, G(V,E◦

b) and
G(V,E◦

t ), are already chordal. Nevertheless, we can consider other chordal extensions
which include them, namely, the graphs corresponding to the bordered block-diagonal
matrix (3.2), and the graphs corresponding to (3.3), respectively. For both examples,
we fixed the dimensions of the symmetric matrices Ap ∈ Sn (p = 0, 1, . . . ,m) to be
equal to n = 29 + 1 = 513 and the numbers of equality constraints in the primal
SDP formulation to be equal to m = 79. For each of the matrices A1,A2, . . . ,Am of
the 1-bordered diagonal SDP (tridiagonal SDP, respectively), we randomly generated
three nonzero entries at some (i, j) ∈ Eb ((i, j) ∈ Et, respectively), and, for A0, we
generated nonzero elements for all (i, j)th entries in Eb (Et, respectively).

Since a similar discussion for the 1-bordered diagonal SDP will be also valid for
the tridiagonal SDP, we focus on the former example for the moment. According to
the notation in sections 1, 3, and 4, for each k ∈ {0, 1, . . . , 9}, let us define S0 = {n},
and Sr = {1 + (r − 1)29−k, 2 + (r − 1)29−k, . . . , r29−k} (r = 1, 2, . . . , 2k). Defining

now Cr = S0 ∪ Sr (r = 1, 2, . . . , 2k) and Fb =
⋃2k

r=1 Cr × Cr, G(V, F ◦
b ) will be a

chordal extension of G(V,E◦
b). Using the formula (4.1), we can convert the 1-bordered

diagonal SDP to equivalent SDPs whose sizes are specified in Table 7.1. Observe that
k = 0 gives the original SDP.

Figure 7.1(a) shows in log scale the total time (solid line) to solve the equivalent
SDPs listed in Table 7.1 using SDPA. Most of the total time is spent in the following
two major subroutines in SDPA:
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(a) 1-bordered diagonal SDP (b) tridiagonal SDP

Fig. 7.1. Computational time for the 1-bordered diagonal SDP and the tridiagonal SDP (total
time; (i) time to compute search directions; (ii) time to compute step lengths).

(i) Time to compute the search direction (dX, dY , dz)—by calculating the coef-

ficient matrix B ∈ Sm′

++ and solving the Schur complement equation Bdz =
s—dashed line in Figure 7.1;

(ii) time to compute the step length for the search direction—by computing the
Cholesky factorization and the eigenvalues, and performing matrix operations
for each small block matrix (O((#Cr)

3))—dotted line in Figure 7.1.

Figure 7.1(a) shows that we have to select a “good” chordal extension G(V, F ◦
b )

in order to balance the time spent in (i), which mainly depends on the number of
equality constraints m′, and the time spent in (ii), which mainly depends on the
dimensions of the small block matrices. This balance is crucial to reduce the total
computational time to solve the SDP. For the 1-bordered diagonal SDP, a partition
of the original problem into 32 small block matrices of 17×17 dimension each (k = 5)
gives the “optimal” conversion, and it reduces the total computational time by a
factor of approximately 150.

A similar discussion can be made for the tridiagonal SDP. In this case, given
k ∈ {0, 1, . . . , 9}, a chordal extension of the graph associated with the aggregate
sparsity pattern G(V,E◦

t ) is chosen such that the maximal cliques for it are given by
(3.3) with β = 1 and κ = 29−k. The sizes of each equivalent SDP to the tridiagonal
SDP are given in Table 7.1. The computational time is shown in Figure 7.1(b). Notice
the similarity between the computational time for these two examples with extremely
sparse data matrices A0,A1, . . . ,Am.

We observe the following two points from these numerical examples:

(a) The problem of detecting an “optimal” chordal extension of the aggregate
sparsity pattern for an SDP is extremely important in order to balance the
time spent in (i) and (ii) and therefore reduce the total computational time;

(b) the conversion to multiple block matrices of smaller size (section 4) is ex-
tremely efficient when very sparse data matrices A0,A1, . . . ,Am have spe-
cial sparsity patterns and the number of added constraints (m′ −m) in the
equivalent SDP is relatively small.

The last example comes from the topology optimization problem of truss struc-
tures [25], and we call it the topology optimization SDP here. The aggregate sparsity
pattern for the data matrices Ap (p = 0, 1, . . . , 392) after diminishing the bandwidth
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Fig. 7.2. Aggregate sparsity pattern for the data matrices of the topology optimization SDP.

Table 7.2
Sizes of the equivalent SDPs to the topology optimization SDP and the computational time to

solve them.

# block matrices Dimension of each block # constraints m′ Total time (i) (ii)
1(+1) 327 × 327 (+392 × 392) 392 237 s 69 s 164 s
2(+1) 186 × 186 (+392 × 392) 392 + 1035 715 s 657 s 56 s
3(+1) 137 × 137 (+392 × 392) 392 + 2070 3190 s 2550 s 36 s
4(+1) 115 × 115 (+392 × 392) 392 + 3105 9032 s 8995 s 49 s

( ) indicates the block corresponding to the diagonal matrix.

by the reverse Cuthill–McKee ordering is shown in Figure 7.2. This matrix consists of
two diagonal blocks: a 327×327 block matrix with a small bandwidth, and a 392×392
diagonal matrix. Since SDPA can handle the latter diagonal matrix quite efficiently,
we will consider only the block matrix with the small bandwidth. We define the
chordal extension of the graph associated with the sparsity pattern of this block ma-
trix as G(V, F ◦

top), where Ftop = {(i, j) ∈ V ×V : |i−j| ≤ 45} and V = {1, 2, . . . , 327}.
The maximal cliques corresponding to this chordal extension are given in (3.3).

The sizes of the SDPs resulting from the topology optimization SDP by the con-
version method and the computational time to solve them are shown in Table 7.2.
The time to compute the search directions (i) grows drastically compared to the de-
crease in the time to compute the step lengths (ii) in this case, because we have to
add 45 · (45+1)/2 new variables and equality constraints if we increase the number of
block matrices by one. See (4.1). In this case, it is much better to solve the original
SDP instead of converting it.

The last example shows the following fundamental drawback of the conversion
method:

(c) A large number of additional equality constraints are often required in the
converted SDP.

Although we might be able to utilize more sophisticated ordering such as the nested
dissection ordering to decrease the number of additional equality constraints, this
drawback exhibits a certain limitation of the conversion method for practical use.
In section 5, we have proposed a method to compute the search directions and the
step length in the primal-dual interior-point method based on positive definite matrix
completion. That method does not add any equality constraints as the conversion
method of section 4 does and therefore avoids the above drawback (c). In part II [22]
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of this article, we will continue discussing the technical details and implementation of
this method, and we present its numerical results applied to larger classes of SDPs.

8. Concluding discussion. We have proposed two kinds of methods for a large-
scale sparse SDP exploiting the aggregate sparsity pattern E over its data matri-
ces. One is a conversion of such an SDP into an SDP having multiple but smaller
size positive semidefinite matrix variables. The other is a primal-dual interior-point
method based on maximum-determinant positive definite matrix completion. Con-
cerning practical implementation of these two methods, however, there remain many
significant and interesting issues which we need to investigate further. Among others,
we mention the following:

(A) How do we find an effective chordal extension G(V, F ◦) of G(V,E◦)? This
issue is common to both methods. In part II [22] of this article, we will study
more extensively how we can utilize some of the existing ordering methods,
such as the minimum-degree ordering, the (nested) dissection ordering and
the reverse Cuthill–McKee ordering, developed for the Cholesky factorization.

(B) The computation of the search direction, which we discussed in section 5, for
the latter method is also a very important issue. In part II [22], we will explore
in more detail (i) how we efficiently construct the product form representation

(5.3) of the maximum-determinant positive definite matrix completion X̂ of
a partial symmetric matrix X̄ ∈ Sn

++(F, ?), and (ii) how we compute the
coefficients Bpq (p = 1, 2, . . . ,m, q = 1, 2, . . . ,m) of the key linear equation
Bdz = s in (5.2) by utilizing the representation (5.3) effectively.

(C) Our methods still need to solve the Schur complement equation Bdz = s.
As we have mentioned in the introduction, the coefficient matrix B is fully
dense, in general, so that it becomes more difficult to apply direct methods
to the equation as its size (= the number of equality constraints in the primal
SDP (1.1)) becomes larger. To solve a large-scale SDP having not only a
large size matrix variable but also a large number of equality constraints,
we can incorporate iterative methods [19, 23] to solve the Schur complement
equation into our methods.

(D) The linear transformation in the primal and the dual spaces described in
section 6 may be regarded as a preprocessing or preconditioning technique
for SDPs. Since the transformation in the dual space does not affect the
aggregate sparsity pattern of data matrices of a given SDP to be solved,
without damaging the computational efficiency much, we may be able to use
the transformation for numerical stability, which is another major purpose of
preprocessing besides computational efficiency. In particular, if we apply the
dual transformation using an m × m nonsingular matrix D and a ζ ∈ Rm

to an SDP with data matrices A0,A1,A2, . . . ,Am, the coefficients Bpq (p =
1, 2, . . . ,m, q = 1, 2, . . . ,m) of the key linear equation Bdz = s in (5.2) turn
out to be

Bpq = Trace

(
m∑

k=1

AkDkp

)
X̂

(
m∑

k=1

AkDkq

)
Ȳ

−1

(p = 1, 2, . . . ,m, q = 1, 2, . . . ,m).

Thus the transformation may work as a preconditioning for iterative methods
such as the conjugate gradient method and the conjugate residual method (see
[19, 23]). It should be noted that the matrix D has enough parameters to
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control the eigenvalues of the matrix B, although we need to investigate an
effective choice of the matrix D.

Theoretically, it is an interesting issue to see whether we can design a polynomial-
time and/or locally superlinearly convergent primal-dual path-following interior-point
method based on the maximum-determinant positive definite matrix completion.
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