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A RELATIONSHIP BETWEEN THE BFGS AND CONJUGATE GRADIENT
ALGORITHMS AND ITS IMPLICATIONS FOR NEW ALGORITHMS*

LARRY NAZARETHfY

Abstract. Based upon analysis and numerical experience, the BFGS (Broyden-Fletcher~Goldfarb-
Shanno) algorithm is currently considered to be one of the most effective algorithms for finding a minimum of
an unconstrained function, f(x), x € R". However, when computer storage is at a premium, the usual
alternative is to use a conjugate gradient (CG) method. In this paper we show that the two algorithms are
related to one another in a particularly close way. Based upon these observations a new family of algorithms is
proposed.

1. Introduction. We are concerned here with the problem

minimize f(x)
xeR"

where f(x) is a nonlinear function. We first give a concise statement of the algorithms
under consideration and summarize briefly some of their well known properties. We
then show, in § 2, an exact correspondence between the search vectors developed by the
BFGS and CG algorithms, when applied to quadratic functions. For arbitrary differen-
tiable functions we give an interpretation of the BFGS algorithm as a CG algorithm with
variable metric, chosen at each step from the Broyden B-class. These observations then
lead us to a family of algorithms termed variable storage generalized conjugate gradient
methods, introduced in § 4. A particular implementation and numerical results are
given in § 5. We conclude with some remarks on the implications and future directions
of this research.

The conjugate gradient method was originally proposed by Hestenes and Stiefel [1]
for solving linear systems and extended to nonlinear optimization by Fletcher and
Reeves [2]. Various formulations of the algorithm (see [2], [3], [7]) are equivalent when
applied to quadratic functions, but differ for arbitrary functions. We shall consider here
the CG method in a fixed metric defined by the positive definite symmetric matrix H
and started from a given point x;, which develops successive search directions d,CG,
iterates x; and gradients g; = Vf(x;) as follows:

dE:G = *Hgl’

1) dSC = — Ho. + YiT—ngi 4SS ~1
i = 8i y~T 1dcci‘ -1 7=1,
1= 1=

Xj+1=x;+Ad5C, where A; =argmin f(x; +Ad{°) and y;_1 £ (g — gj—1).
A

In the basic form of the CG algorithm, H is set to the identity matrix, and it is well
known that using an arbitrary positive definite symmetric matrix H corresponds to
applying the change of variables y = H ~12x to the basic algorithm.

Variable metric methods were originally introduced by Davidon [4], and
subsequently clarified by Fletcher and Powell [11]. Broyden [5] developed a 1-
parameter family of variable metric updates which has become known as Broyden’s
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B-class. Given a positive definite symmetric matrix H and initial point x;, these develop
successive positive definite and symmetric approximations H? to the inverse Hessian,
successive search direction d¥, and iterates x; as follows:
HY =H,

B8 T T

_H iy i | simasia
T B T
yi-tHj—1yi-1 sj-1yj-
B B T ,

+Bi1(H1yj—1— 0718 ) (H P 1yi-1— 07-15;-1) 7, i>1,

(2 H}=H},

where
Bi-1=0,
9; 1—)’1 1H; 1Yj- 1/(51 1Yj-1)s
si-12 (% = xj-1),
df = -Hfg;
and
Xjv1 =X+ Adf
with

A; = arg min f(x; +Ad?).
A

Particular cases are given by B;_; =0 (Davidon-Fletcher-Powell (DFP)), and B;-1 =
1/(y/1H% 1y;-1) (BFGS). In the latter case (2) simplifies to

1 HBFGS
E[BFCS :HBFIGS - [1 y/ 1 Yi- I]S,'—lszq

i -1+
Sji-1Yj-1 S; 1Yj-1
1 BFGS BFGS T
(3) — (s Y H o + Hpor yiasi-1),
51 1Yi-1
BFGS __ BFGS
dj =-—H; g

Analysis and numerical experience indicate that this is the most effective of the variable
metric updates. The following properties of the conjugate gradient and variable metric
algorithms are well known. See, e.g., [7].

When applied to the minimization of a quadratic function ¢ (x)=a + b x +3x "Ax,
with A positive definite and symmetric (A > 0), and using the same initial metric defined
by H we have (i) termination in at most n steps, (ii) search vectors are conjugate, (iii)
g,THg, =0, i #J, (iv) the jth direction lies in the subspace spanned by Hg;, - - -, Hg, (v)
since there is no flexibility in choice of directions glven the above condltlons, d; ©C and
d? must be linearly dependent, (vi) HPA(d%, ,d¥ )= @ds,---,d%y), (vu) pro-
vided premature termination does not occur H R+l = A!

Furthermore, Dixon’s theorem [12] demonstrates that for general continuously
differentiable objective functions, the jth search directions developed by any two
members of Broyden’s B-class, say d?' and df", are linearly dependent and successive
iterates are identical. This result requires that the same starting point x; and initial
approximation H are used and that line searches are exact and unambiguously defined.
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2. A result for quadratics. We now strengthen property (v) of § 1 to show that for
one member of the B-class (the BFGS update), the search vectors d;° and d;F°° are
the same in norm as well as direction. This correspondence is, we feel, indicative of
underlying structure, and is developed further in § 3, for arbitrary functions.

LEMMA. When the CG and BFGS algorithms are applied to a quadratic function
y(x)=a+b"x+3xTAx, A>0, using the same starting point x, and positive definite
symmetric H, then

dy® =dires,  j=1,2,---,n
Proof. Fact 1. g,ils,- =0. See, e.g., [7]. Further a well known result is that
g]ij = 0, k >j.
Fact 2. H?Fc'sgk =Hg,j<k=n+1,1=j=n.
Proof of Fact 2. This may be shown by induction on j. Assume true for H ?ff’ S,ie.,
H g =Hg, j-1<k=n.

Now combining (3), Fact 1 above, property (iii) of § 1, and the induction hypothesis we
have

H % =HY ¢, =Hg,, j<k=n.

Since Hi1gx = Hgi for 1 =k = n, the result follows by induction. 0
Returning to the proof of Lemma 1, we have

BFGS __ BFGS
d,' = —H,‘ 8-

Using (3) and the fact that line searches are exact, we have

T pyBFGS

dBFCS — _ [JBFGS, 4 Yi-1dj-1 & 4BFGs

) - -1 il T dBFGS j=1 -
Yi-1@j-1

Now from Fact 2 above, this gives

T
- Hg;
dPFoS = - Hyg+ | Y urs At a2
Yi-14j-1

¥/ Hg
T CG
yj-1di=1

= d,~CG using (1),

and this is the desired result.

= —Hg;+ d{S  using property (v) of § 1.

3. Interpretation of the BFGS algorithm for arbitrary differentiable
functions. We employ the following theorem due to Powell. This is paraphrased
below, and for the proof we refer the reader to [6].

THEOREM. Let the variable metric method of § 1 be applied to a differentiable
function f(x), and assume that all line searches are exact and that the A; are chosen
unambiguously. Let x1, - - -, x; be the sequence of iterates and H 8 ... H f_l the sequence
of matrices developed prior to the j-th iteration, and assume that no search vector a?
vanishes. Then, if the choice of B corresponding to the BFGS update is used at iteration j,
the matrix H?F°° obtained is independent of the parameter values B used during previous
iterations.
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Invoking this theorem, setting B;_1=1/(y;—1H1y;-1) in (2), and using the fact
that line searches are exact, we can state the BFGS algorithm as follows:

dllaFGs = —ngl,
4) T 18
T H? o
afros — -t g+ | U] apros
Yi-14j-1
and
Xj+1=X;+ AiijFGS

where A; = arg min, f(x; +Ad} ©°). H? is developed from HY., using (2) and x; and H,
are specified.

By comparing (4) and (1) we see that the BFGS algorithm may be interpreted as a
CG algorithm for which the metric, instead of being fixed as in (1), is updated at each
step to be any member of the Broyden B-class. This interpretation is of value because it
motivates techniques for using limited storage to improve the conjugate gradient
method, discussed in the next section.

4. Variable storage generalized conjugate gradient algorithms. Conjugate
gradient algorithms require the storage of only a few vectors, typically four. Variable
metric methods on the other hand require O(n”) storage. As Fletcher states [7, p. 82]
“practical experience with the Fletcher-Reeves conjugate gradient method is that more
iterations have usually been required for convergence as against variable metric
algorithms—a factor of two is typical. This has been ascribed to the fact that less
information is stored in the Fletcher-Reeves method about the behavior of the
function.” Therefore, by using more information about the function one might hope to
accelerate the convergence of the conjugate gradient method. For example, in a
problem with 10> variables, a user may not be able to provide 10°/2 words of working
storage, thus ruling out variable metric codes implemented in the standard way.
However, it may be quite feasible for him to provide 2 * 10° words, well above the
4 % 10° words required by conjugate gradient methods.

The observations made in earlier sections lead us to suggest the following family of
algorithms which can exploit additional storage and form a continuum between the
BFGS and CG methods.

The following algorithm describes the family in general terms. We also explain the
possible options and discuss them. Numerical results for a particular implementation
are given in § 5.

On Input.

n  dimension of problem.

X1 starting point.

&  vector giving diagonal elements of initial diagonal approximation to inverse

Hessian H,. Note in particular that the symbol H; represents the n X n
Hessian inverse approximation at step j. This is not stored. Instead it is
defined implicitly by storing vectors and scalars defining the rank-1 or
rank-2 updates at Step 5B below.

Step 1. Initialize.

fief(x1), g1<g(x1), yo< 0, do<0, Hy and H, are diagonal matrices
defined by §, j < 0.
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Step 2.

Step 3.

Step 4.

Step S.

Step 6.

LARRY NAZARETH
Develop search direction.

TH .o

di+1 < - Higi+1 + [XL;;%;;I'] di'

Comment. Relation (4) of § 3 is used to define search directions. When
J = 0 the multiplier for the second term above is indefinite and
is taken to be zero.

Search.

j<j+1if g/d;>0 then restart;

Xjr1 < X+ Ad;,

where A; = min,, f(x; +ud;).

Comment. For purposes of analysis, line searches are taken to be exact. In
practice they will not be. In the usual CG method, a fairly
accurate line search is required, but with VSGCG algorithms
we can expect this requirement to be somewhat relaxed.

Test for convergence.

Stop if convergence criterion is met.

If available storage is exceeded.

Step SA then employ a Reset Option

Comment. Possible reset options are H; reset to the diagonal matrix
defined by & and go to Step SB or H;.; fixed at value of
approximation when storage ran out and go to Step 6.

Step 5B. else update H; to H;.; using a member of the B-class.

Comment. There are a number of options here—what member of the
B-class to use, whether to employ projected vectors (see [9]),
and how frequently to perform the update, i.e. whether to
update whenever possible or every k iterations where k is
some fraction of n determined by the amount of storage
available. See Remarks below. Note also that as discussed
above, only the vectors and scalars defining the update are
stored.

If restart criterion not satisfied then go to Step 2
else employ suitable restart option

Comment. Possible restart criteria are to restart as suggested by Fletcher
and Reeves [2] every n or n + 1 iterations or to use techniques
suggested by Powell [10]. The restart option is also linked to
the choice for the reset option.

Remarks. The number of vectors of storage provided is a variable. When minimal
storage is provided, so Step 5B is never executed, then the method is the standard
conjugate gradient method. If n”> words of storage are provided (assuming the sym-
metric rank-1 update is used as in § 6) or 2n? (when a rank-2 update is used) and
updating is performed at every iteration then it is the BFGS algorithm with resetting.
Also, one can easily show, provided the algorithm does not break down due to
instabilities associated with the update, that it has quadratic termination. This is in
contrast to a variable metric algorithm, which holds the approximation Hy fixed at some
stage k, when k <n.

Suppose vy, * - -, v, are the vectors defining the metric. A particularly interesting
question is how to replace v, by a new vector, say v +; and retain quadratic termination
and properties of the metric, circumventing the need to reset H;.
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5. Numerical results. A particular choice of options were implemented as follows:
(a) Updating option (Step 5B). The symmetric rank-1 update, which is a member
of the Broyden family, was used. This is defined by

HRK! = pyRK1 _(H}Yil)’hl_sj—l)(Hﬁlil)’i—l_si—l)T
RK1 _ [RK
! ! (H Y= -1y

This has the advantage of requiring just one additional vector (H ffflyj—l —sj-1) and the
scalar (H 5 'y;_y—s;_1)Ty;_1 to define it. It has the disadvantage that the update can be
unstable, though we partially control the latter by not updating H REVif(H ,Rff 1y,~_1 -
si—1)Ty;—1 is too small. For purposes of experimentation this was adequate. These
disadvantages can be successfully overcome by using rank-2 updates, but one then
incurs the penalty of requiring 2 vectors/update to be saved.

(b) Resertting option (Step 5A). When the available storage is exhausted, the metric
is held fixed for the rest of the cycle.

(c) Restarting option (Step 6). The cycle is restarted every (n + 1) iterations, as in
the Fletcher—-Reeves implementation.

(d) Line search (Step 3). The initial step and line search procedure follow the
techniques of Fletcher [13], and are the same as those used in Nazareth [14].

(e) Test functions. The implementation was run on the trigonometric functions,
see, e.g., Powell [15]. They are defined as follows:

min F(x)= ¥ [0

where fi(x) =Y_, (A sin x; + B;; cos x;) — E,.

TABLE 1
nv No. of function/gradient evaluations Final function value
0 521 0.10694E-15
1 600 0.63001E-16
2 375 0.17567E-16
3 417 0.37234E-16
4 318 0.84301E-16
5 308 0.87112E-16
TABLE 2
nv No. of function/gradient calls Final function value
0* 521 0.10694E-15
5* 308 0.87112E-16
10 246 0.60415E-16
15 213 0.62477E-15
20 162 0.23233E-16

* These duplicate results in Table 1.

A;; and B;; are uncorrelated pseudo-random numbers between —100 and + 100
and the numbers E; are calculated to accord with a particular solution, taken to
be x}" =2.0Vj, so that F(x)=0 at the solution x*. The starting point was also
selected using the random number generator. (On different runs, the random number
generator uses, of course, reseeded so as to duplicate the test function.)
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n was set to 20 and nv below denotes the number of vectors stored, in defining the
metric. nv =0 gives the usual conjugate gradient method and nv = 20 gives the BFGS
with a restart every n +1 iterations.

For further details of the implementation, see Nazareth [8].

6. Concluding remarks. The results discussed above are derived from one of
many possible implementations. The central idea that underlies the new family of
algorithms introduced here is that variable metric information is used within the
framework of conjugate gradient methods. In particular, this enables us to develop a
continuum of algorithms between the standard conjugate gradient method and the
BFGS method. Many important and interesting questions remain to be answered, both
within the context of quadratics (e.g. see Remarks of § 4) and when VSGCG algorithms
are applied to more general functions (e.g. demonstrating n-step quadratic con-
vergence). These are currently under investigation.
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