
CS726, Project, 2008-12-15, Nathanael Fillmore (nathanae)

1 Problem formulation

Yamashita [6] aims to solve the following problem:

minx f(x)
s.t. x ∈ R

n

where f is twice continuously differentiable

n is large, and

∇2f(x) is sparse.

(1)

Since n is large, basic quasi-Newton methods will not work; existing limited-memory quasi-Newton meth-

ods, on the other hand, have slow convergence properties or other disadvantages (see §5 below). Yamashita

seeks a quasi-Newton method that achieves fast convergence with limited memory.

2 Method

Yamashita’s novel method for solving problem (1) is the matrix completion quasi-Newton (MCQN) algo-

rithm. In this section, we detail the algorithm; in the next section we derive and motivate it.

• Initially:

– Choose a starting point x0.

– Let E ⊆ V × V = {1, . . . , n} × {1, . . . , n} be the sparsity pattern of the true Hessian ∇2f .

– Choose F to be a superset ofE such that the graphG = (V, F̄) is chordal, where F̄ is F without

self-edges, i.e. F̄ = F\{(i, i) | i = 1, . . . , n}. We also require, by analogy with the true sparsity

pattern, that (i, i) ∈ F for all i ∈ V and (i, j) ∈ F ⇐⇒ (j, i) ∈ F .

– Choose {Cr | r = 1, . . . , l} to be a family of maximum cliques of G.

– Choose an initial approximate inverse Hessian H0 ∈ R
n×n so that H0 is positive definite and

(H−1
0)ij = 0 for all (i, j) 6∈ F .

• Repeat for k = 0, 1, 2, . . . until convergence:

– Let xk+1 = xk −Hk∇f(xk).

– Obtain H̄ij for (i, j) ∈ F by a standard quasi-Newton update, e.g. DFP or BFGS.

– Obtain Hk+1 by applying the “sparse clique-factorization formula” to H̄ , as follows.

First:

∗ Let Sr = Cr\(Cr+1 ∪ Cr+2 ∪ · · · ∪ Cl), for r = 1, . . . , l.

∗ Let Ur = Cr ∩ (Cr+1 ∪ Cr+2 ∪ · · · ∪ Cl), for r = 1, . . . , l.

∗ For r = 1, . . . , l − 1, let

(Pr)ij =

1 i = j

(H̄−1
UrUr

H̄UrSr
)ij (i, j) ∈ Ur × Sr

0 otherwise

(2)

1

∗ For r = 1, . . . , l, let

Qr =

{

H̄SrSr
− H̄SrUr

H̄−1
UrUr

H̄UrSr
r ≤ l − 1

H̄SrSr
r = 1

(3)

∗ Let

Qij =

{

(Qr)ij (i, j) ∈ Sr × Sr, r = 1, . . . , l

0 otherwise
(4)

Now we can compute Hk+1. Let1

Hk+1 = P T
1 P

T
2 . . . P T

l−1QPl−1 . . . P2P1 (5)

3 Derivation

In this section, we derive and motivate Yamashita’s MCQN update. For concreteness, we start from the

standard DFP update, although another quasi-Newton update such as BFGS could be used instead.

The DFP method’s inverse Hessian approximation HDFP
k+1 = Hk −

(Hkyk)(Hkyk)T

yT

k
Hkyk

+
sksT

k

sT

k
yk

was shown by

[1] to be unique minimizer of the following strictly convex problem:

minH ψ(H
−1/2
k HH

−1/2
k)

s.t. Hyk = sk, H = HT , H ≻ 0
(6)

where

ψ(A) = trace(A) − ln det(A) (7)

sk = xk+1 − xk (8)

yk = ∇f(xk+1) −∇f(xk) (9)

H ≻ 0 ≡ H is positive definite (10)

Unfortunately, the solution HDFP is intractable, since it is dense and n is large.

But we know that the true Hessian is sparse, so Yamashita adds a sparsity constraint to the subproblem:

minH ψ(H
−1/2
k HH

−1/2
k)

s.t. Hyk = sk, H = HT , H ≻ 0
(H−1)ij = 0 for (i, j) 6∈ F

(11)

Here, F is defined as in §2 above to be a superset of the true Hessian’s sparsity pattern such that the cor-

responding graph is chordal. Ideally, F will be close to the true sparsity pattern, so that H−1
k+1 will be

approximately as sparse—and therefore tractable—as the true Hessian is.

Unfortunately, problem (11) does not lead to an efficient closed-form update formula for Hk+1. To find

an efficient update, we first replace the secant constraint Hyk = sk with the constraint that Hij = HDFP
ij

for (i, j) ∈ F . Since HDFP satisfies the secant constraint, this change can be viewed as a relaxation, not

a wholesale abandonment, of the secant constraint. Alternatively, the new constraint can be thought of as

1Note that comparison with [2], p. 258, reveals a typo in Yamashita’s Eq. (7), p. 7.

2

finding the best H in the region defined by Hyk = sk, and then “projecting” into the region defined by

(H−1)ij = 0 for (i, j) 6∈ F ; see Yamashita’s Figure 4. The new problem is as follows:

minH ψ(H
−1/2
k HH

−1/2
k)

s.t. H = HT , H ≻ 0
Hij = HDFP

ij for (i, j) ∈ F

(H−1)ij = 0 for (i, j) 6∈ F

(12)

This problem is still difficult to solve directly, but Yamashita shows (pp. 10–11) that it is equivalent to

finding a “maximum-determinant positive definite matrix completion” of HDFP
ij , (i, j) ∈ F , that is, to the

following problem:

maxH det(H)
s.t. H = HT , H ≻ 0

Hij = HDFP
ij for (i, j) ∈ F

(13)

As shown in [2], this type of problem has the unique closed-form solution Hk+1 given by Eq. (5) above, and

this solution is sparse.

4 Convergence

Yamashita proves (his §5) that the MCQN algorithm has superlinear convergence, as follows:

Theorem 4.1. Let x∗ be a solution of problem (1), and let N be a neighborhood of x∗, i.e. N = {x ∈ R
n |

||x− x∗|| ≤ b} for some b > 0. Assume:

1. The objective f is twice continuously differentiable in N .

2. The inverse Hessian is positive definite and bounded; that is, for some constants m > 0, M > 0,

m||z||2 ≤ zT (∇2f(x))−1z ≤M ||z||2 ∀z ∈ R
n (14)

for all x ∈ N .

3. The starting point x0 is “close enough” to the solution x∗; that is, ||x0 − x∗|| ≤ τx and ||H0 −
∇2f(x∗)−1|| ≤ τH hold for sufficiently small τx, τH > 0.

Then the sequence {xk} generated by the MCQN update with the DFP method converges to x∗ superlinearly.

5 Evaluation

The MCQN algorithm can be evaluated by comparison to its competitors. We discuss limited-memory

BFGS (L-BFGS) ([4] and [5] §7.2) and partially separable BFGS (PS-BFGS) ([3] and [5] §7.4). Both are

well-known quasi-Newton methods that require only a limited amount of storage.

Compared to L-BFGS, MCQN’s main—and significant—theoretical advantage is that MCQN has super-

linear convergence under the right conditions, while L-BFGS has only linear convergence. This is because

L-BFGS throws away information about the Hessian; MCQN maintains a much better approximation to the

Hessian.

3

PS-BFGS, like MCQN, aims to approximate the Hessian accurately; this allows PS-BFGS to converge

quickly. However, to achieve its parsimonious and accurate approximation, PS-BFGS requires the objective

function to be partially separable into smaller components. Hence PS-BFGS does not apply as generally as

MCQN. Additionally, unless each component is convex, PS-BFGS’s approximation to the Hessian some-

times fails to be positive definite away from the solution; avoiding or recovering from this problem can

affect performance.

On the other hand, MCQN is not perfect, even theoretically. First, MCQN’s approximate Hessian mim-

ics the sparsity pattern not of the true Hessian, but rather of the chordal graph G = (V, F̄). In some cases,

for example if the true Hessian’s sparsity pattern has large cycles, this approximation could be much denser

than the true Hessian and require excessive memory. Neither L-BFGS nor PS-BFGS suffer from this par-

ticular problem. Indeed, L-BFGS requires only an arbitrary amount of storage, regardless of the particular

problem (unless the initial approximation H0 is chosen to mimic the true Hessian’s sparsity).

Second, the chordal graph leads to another difficulty with MCQN: how should we compute it? The

problem of obtaining a minimal chordal graph from another graph is NP complete in general. In specific

cases, for example if the Hessian is tridiagonal, the problem is tractable—though of course taking advantage

of specific structure requires specific intervention by the user. In general, we may have to settle for an

approximation to the the minimal chordal graph. This leads to a tradeoff: we can spend more time to obtain

a good approximation of the minimal chordal graph and a sparser approximate Hessian, or we can settle

for a rougher approximation to the minimal chordal graph and hope that the approximate Hessian is not too

dense.

We can also evaluate the MCQN algorithm empirically. Yamashita presents results of three problems,

evaluated using BFGS, L-BFGS, MCQN with DFP, and MCQN with BFGS. (Unfortunately PS-BFGS is not

tested.) The problems are (a) TRIDIA (convex quadratic), (b) the “chained Rosenbrock problem” (noncon-

vex, nonlinear), and (c) the “boundary value problem” (nonconvex, nonlinear), all with n = 10, 100, 1000,
and 10000; see p. 28 for formulas. On these handpicked examples, MCQN with BFGS requires fewer it-

erations than L-BFGS for all n, and in some cases the difference is quite large; for example, on problem

(c) with n = 1000, L-BFGS requires 3117 iterations while MCQN with BFGS requires only 54 iterations.

MCQN with BFGS even beats standard BFGS in all cases except problems (a) and (c) with n = 10, and

again, sometimes the difference is substantial; for example, on problem (c) with n = 10000, BFGS requires

571 iterations (vs. 54). The reason for both these results seems to be that MCQN has a better approximation

to the Hessian even than BFGS does; in particular, MCQN’s approximation reflects the true sparsity pattern

more closely than BFGS’s approximation does, a fact that becomes more significant as n (and the sparsity)

increases.

On the other hand, the empirical results show that MCQN with DFP sometimes performs quite poorly.

For example, on problem (a), n = 10000, MCQN with DFP requires 11626 iterations vs. 1191 for L-BFGS

and 528 for MCQN with BFGS. This result is consistent with the consensus about quasi-Newton updates

that BFGS generally has better numerical properties than DFP. As mentioned above, Yamashita does not

present results using PS-BFGS. He does note that PS-BFGS solves problem (a) quickly even for large n. In

the future, further tests that pit PS-BFGS against MCQN would be interesting, as would tests on problems

that may be less well-suited to the MCQN algorithms’s strengths.

References

[1] R. Fletcher. A new variational result for quasi-newton formulae. SIAM Journal on Optimization, 1(1):18–21,

1991.

4

[2] Mituhiro Fukuda, Masakazu Kojima, Kazuo Murota, and Kazuhide Nakata. Exploiting sparsity in semidefinite

programming via matrix completion I: General framework. SIAM Journal on Optimization, 11:647–674, 2000.

[3] A. Griewank and Ph.L. Toint. Updating quasi-newton matrices with limited storage. In: Powell, M.J.D. (ed.)

Nonlinear Optimization 1981, 301–312. Academic, London, 1982.

[4] Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of Computation, 35(151):773–

782, 1980.

[5] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, second edition, 2006.

[6] Nobuo Yamashita. Sparse quasi-newton updates with positive definite matrix completion. Math. Program.,

115(1):1–30, 2008.

5

