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Abstract Quasi-Newton methods are powerful techniques for solving unconstrained
minimization problems. Variable metric methods, which include the BFGS and DFP
methods, generate dense positive definite approximations and, therefore, are not appli-
cable to large-scale problems. To overcome this difficulty, a sparse quasi-Newton
update with positive definite matrix completion that exploits the sparsity pattern E :=
{(i, j) | (∇2 f (x))i j �= 0 for some x ∈ Rn} of the Hessian is proposed. The proposed

method first calculates a partial approximate Hessian H QN
i j , (i, j) ∈ F , where F ⊇ E ,

using an existing quasi-Newton update formula such as the BFGS or DFP methods.
Next, a full matrix Hk+1, which is a maximum-determinant positive definite matrix
completion of H QN

i j , (i, j) ∈ F , is obtained. If the sparsity pattern E (or its extension
F) has a property related to a chordal graph, then the matrix Hk+1 can be expressed as
products of some sparse matrices. The time and space requirements of the proposed
method are lower than those of the BFGS or the DFP methods. In particular, when the
Hessian matrix is tridiagonal, the complexities become O(n). The proposed method
is shown to have superlinear convergence under the usual assumptions.

Keywords Quasi-Newton method · Large-scale problems · Sparsity · Positive
definite matrix completion

Mathematics Subject Classification (2000) 90C53 · 90C06

N. Yamashita (B)
Department of Applied Mathematics of Physics, Graduate School of Informatics,
Kyoto University, Kyoto 606-8501, Japan
e-mail: nobuo@i.kyoto-u.ac.jp

123



2 N. Yamashita

1 Introduction

In the present paper, we consider the following unconstrained minimization problem:

min f (x)
subject to x ∈ Rn .

(1)

Throughout the present paper, it is assumed that f is twice continuously differen-
tiable, n is huge, and ∇2 f (x) is sparse. For solving the unconstrained minimization
problem, there exist several useful methods, including steepest descent, Newton and
quasi-Newton methods, and the conjugate gradient method [17]. The quasi-Newton
method is easy to implement and has good convergence properties.

The quasi-Newton method generates a sequence {xk} by xk+1 = xk − Hk∇ f (xk)

with an approximate inverse Hessian Hk . The approximate inverse Hessian usually
satisfies the secant condition:

Hk+1 yk = sk, (2)

where

sk = xk+1 − xk

yk = ∇ f (xk+1)− ∇ f (xk).

In the present paper, the primary focus is on updates that preserve the positive defi-
niteness of Hk . When Hk is positive definite, dk = −Hk∇ f (xk) becomes the descent
direction of f at xk , and so it is possible to construct a globally convergent algo-
rithm combined with some line search techniques. Variable metric methods are quasi-
Newton methods that satisfy the secant condition and positive definiteness. They
include the well-known BFGS and DFP methods. The BFGS and DFP update formulae
are given by

HBFGS
k+1 = Hk − Hk yksT

k + sk(Hk yk)
T

sT
k yk

+
(

1 + yT
k Hk yk

sT
k yk

)
sksT

k

sT
k yk

(3)

and

H DF P
k+1 = Hk − Hk yk(Hk yk)

T

yT
k Hk yk

+ sksT
k

sT
k yk

, (4)

respectively. It is known that both HBFGS
k+1 and H DF P

k+1 are positive definite when
sT

k yk > 0 and Hk is positive definite. Moreover, the update can be calculated within
O(n2) arithmetic operations, whereas the Newton method requires O(n3) arithme-
tic operations to solve Newton equations. The method has superlinear convergence
under appropriate conditions [5,17]. Therefore, the method is very efficient for small-
and medium-scale problems. For large-scale problems, the Hessian ∇2 f (xk) usually
becomes sparse. By exploiting the sparsity, the Newton method with the trust region
technique can be implemented with little memory. Thus, the method is applicable for
such problems. However, since sksT

k in (3) or (4) is dense, the updated matrix Hk+1
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Sparse quasi-Newton updates with positive definite matrix completion 3

(or its inverse Bk+1) is also dense, even if the Hessian is sparse. Storing the full matrix
Hk+1 requires O(n2)memory, and thus the BFGS and DFP methods are not applicable
for large-scale problems.

In order to overcome this difficulty, several methods have been proposed [7,16,22].
The limited-memory BFGS (L-BFGS) method [16] is widely used in practice. The
L-BFGS method stores a few vector pairs (si , yi ), i = k − m + 1, . . . , k − 1, k, and
constructs an approximate Hessian by the BFGS method with the vector pairs. The
approximate Hessian satisfies the secant condition and becomes positive definite. The
time and space complexities per iteration of the L-BFGS method are O(mn), and it is
shown that the L-BFGS method converges linearly [15]. However, since the L-BFGS
method does not use much information of the Hessian, it converges very slowly for
ill-conditioned problems.

Although the present paper focuses on updates preserving the positive definite-
ness of Hk , there exist several efficient and practical quasi-Newton methods that do
not always preserve the positive definiteness [2,11,12,18–20]. These methods have
a global convergence property when using the trust region techniques. Among these
techniques, the partially separable BFGS method [11] is practically useful and has
already been implemented in LANCELOT [3]. The partially separable BFGS method
is applied to problems in which the objective functions f are partially separable, i.e.,
f (x) = ∑l

i=1 fi (xCi ), where Ci ⊆ {1, 2, . . . , n}, i = 1, . . . , l and xCi denotes the
|Ci |-dimensional vector with components xi , i ∈ Ci . A function with a sparse Hessian
is partially separable [11]. Moreover, most objective functions of practical problems
in the real world are partially separable. The partially separable BFGS method gen-
erates the approximate Hessian Bi

k for each function fi by the BFGS method, and
composes full matrix Bk of Bi

k, i = 1, . . . , l. Since |Ci | is much smaller than n for
large-scale problems, Bi

k becomes a small matrix, and so the partially separable BFGS
method can be implemented with little memory. Moreover, since Bk is composed of
the approximate Hessians of the functions fi , Bk is closer to the true Hessian than that
of the pure BFGS. However, since yT

Ci
sCi is not necessarily positive, even if yT s > 0,

Bi
k (and hence Bk) is not always positive definite. The sufficient condition for Bk of

the partially separable BFGS method to be positive definite is that all functions fi are
convex. Griewank and Toint [13] proposed a technique whereby Bk is positive definite
when f is convex and {Cr |r = 1, . . . , l} is a maximum clique family of a chordal
graph (for details regarding the chordal graph, see Sect. 2).

In the present paper, quasi-Newton updates that exploit the sparsity of the Hes-
sian and guarantee positive definiteness, even if f is nonconvex, are proposed. Al-
though Toint [22] and Fletcher [7] previously proposed updates that exploit spar-
sity, these methods involve the solution of a convex programming problem at each
iteration in order to obtain approximate Hessians. Moreover, since these methods
require the sparsity and secant conditions simultaneously, the approximate Hessian
can be ill-posed when (sk)i = 0 for some i [21]. The method proposed herein is
based on positive definite matrix completion. For a given set F ⊆ {1, 2, . . . , n} ×
{1, 2, . . . , n} and a partial matrix X̄i j , (i, j) ∈ F , X is said to be a positive definite
matrix completion of X̄i j , (i, j) ∈ F , or X̄i j , (i, j) ∈ F is said to have a positive
definite matrix completion X , if X is an n × n positive definite matrix and Xi j = X̄i j ,

123



4 N. Yamashita

∀(i, j) ∈ F . The positive definite matrix completion has been investigated exten-
sively [8,9,14]. Recently, the positive definite matrix completion has been used for
the interior point method for solving the sparse semidefinite programming problem
[8]. The results reported in [8,14] are as follows: (1) if F and X̄i j , (i, j) ∈ F satisfy
some properties related to a chordal graph (for the definition of “chordal”, see Sect. 2),
then X̄i j , (i, j) ∈ F has a positive definite matrix completion. (2) If X is the maxi-
mum-determinant positive definite matrix completion, then (X̄)−1

i j = 0, (i, j) ∈ F .
(3) The maximum-determinant positive definite matrix completion is expressed as
the products of sparse matrices. Based on these results, new sparse quasi-Newton
updates are proposed. The proposed methods first calculate a partial approximate
inverse Hessian H QN

i j , (i, j) ∈ F , where F is an extension of the sparsity pattern

E = {(i, j) | (∇2 f (x))i j �= 0 for some x ∈ Rn} of the Hessian, by using the existing
quasi-Newton updates, such as the BFGS method (3) and the DFP method (4). A full
matrix Hk+1, which is the maximum-determinant positive definite matrix completion
of H QN

i j , (i, j) ∈ F , is then obtained. When the Hessian is sparse, the time and space
complexities of the proposed method become much lower than those of the BFGS
and DFP methods. Since the updates do not require the sparsity and secant conditions
simultaneously, they do not suffer from Sorensen’s example [21], i.e., the approxi-
mate Hessian does not become ill-posed, even if (sk)i = 0 for some i . Moreover, the
proposed update is shown herein to have local and superlinear convergence under the
usual assumptions.

The present paper is organized as follows. In Sect. 2, results regarding positive defi-
nite matrix completion are introduced. These results are based primarily on [8,14],
and are adapted slightly for the present purpose. In Sect. 3, the sparse quasi-Newton
updates with positive definite matrix completion are proposed, and their time and space
complexities per iteration are discussed. In Sect. 4, the behavior of the proposed update
for Sorensen’s example, which indicates that the proposed update is better than existing
sparse quasi-Newton updates, is examined. The proposed update with the DFP method,
which is a special case of the proposed update, is then shown to have local and super-
linear convergence under appropriate conditions in Sect. 5. A number of numerical
experiments are presented in Sect. 6, and concluding remarks are presented in Sect. 7.

The following notation is used throughout the present paper. In the present paper,
V is denoted by {1, 2, . . . , n}. For a given set F ⊂ V × V , Fi = { j ∈ V | (i, j) ∈ F}
and |F | denotes the number of elements of F . For an n × n matrix H , ‖H‖ denotes
the Frobenius norm of H , and H 	 0 indicates that H is positive definite. For a vector
z ∈ Rn and a set S ⊆ V , zS denotes an |S|-dimensional vector with components
zi , i ∈ S. For an n × n matrix A and sets S,U ⊆ V , ASU denotes an |S| × |U | matrix
with components Ai j , (i, j) ∈ S × U .

2 Positive definite matrix completion

In this section, a number of results regarding positive definite matrix completion,
which will be used in subsequent sections, will be introduced. Most of these results
are found in [8,14].
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Sparse quasi-Newton updates with positive definite matrix completion 5

Fig. 1 F = {(i, j) ∈ V × V | Mi j �= 0} and its related graph

Let F ⊆ V ×V . Throughout this section, it is assumed that (i, i) ∈ F for i ∈ V , and
(i, j) ∈ F if ( j, i) ∈ F . For a given X̄i j , (i, j) ∈ F , X ∈ Rn×n is said to be a positive
matrix completion of X̄i j , (i, j) ∈ F if X is positive definite and Xi j = X̄i j , (i, j) ∈
F . The problem of finding a positive definite matrix completion of X̄i j , (i, j) ∈ F is
usually formulated as a semidefinite programming problem, and thus positive definite
matrix completion is not easily calculated. However, if F and X̄i j , (i, j) ∈ F have cer-
tain properties, then the positive definite matrix completion can be calculated directly.
Such properties are related to a graph G(V, F̄) induced from F , where G(V, F̄) is a
graph having a vertex set V and an edge set F̄ := F\{(i, i) | i = 1, . . . , n} (Fig. 1).

Recall the following concepts of graph theory, which are related to positive definite
matrix completion.

Definition 1 • Two vertices u, v ∈ V are adjacent if (u, v) ∈ F̄ . The set of vertices
adjacent to v ∈ V is denoted by Adj(v).

• A graph is complete if every pair of vertices is adjacent.
• For a subset V ′ of V , the induced subgraph on V ′ is a graph G(V ′, F̄ ′) with the

edge set F̄ ′ = F̄ ∩ (V ′ × V ′).
• A clique of a graph is an induced subgraph that is complete.
• A clique is maximal if its vertices do not constitute a proper subset of another

clique.
• A vertex is simplicial if its adjacent vertices induce a clique.
• For a cycle, an edge is a cord of the cycle if it joins two nonconsecutive vertices

of the cycle.
• A graph is chordal if every cycle of length greater than 3 has a chord (Fig. 2).

Example 1 Let A be given by

A =

⎛
⎜⎜⎝

2 1 1 1
1 1 0 0
1 0 2 0
1 0 0 1

⎞
⎟⎟⎠

The graph related to A is described in Fig. 3. Since the graph has no cycle, it is
chordal, and its simplicial vertices are 2, 3, and 4.

When G(V, F̄) is a chordal graph, there exists a family {Cr | r = 1, . . . , l} of
maximal cliques of G(V, F̄) such that F = ∪l

i=1Cl × Cl [1]. (The family of maximal
cliques of the chordal graph can be computed within O(n + m) by the maximum
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Non-chordal graph Chordal graph

Fig. 2 Chordal graph

2

3

4

1

Fig. 3 Graph related to A

cardinality search [1], where m is the number of edges.) One of the necessary condi-
tions for X̄i j , (i, j) ∈ F to have a positive matrix completion is that X̄Cr Cr is positive
definite for all r = 1, . . . , l. This condition is referred to as the clique positive definite
condition. When G(V, F̄) is chordal, it becomes a sufficient condition [14]. Moreover,
[14] reported the following properties.

Theorem 1 (a) G(V, F̄) is a chordal graph if and only if X̄i j , (i, j) ∈ F satisfying
the clique positive definite condition has a positive definite matrix completion.

(b) Suppose that G(V, F̄) is a chordal graph, and X̄i j , (i, j) ∈ F satisfies the clique
positive definite condition. A maximum-determinant positive definite matrix com-
pletion of X̄i j , (i, j) ∈ F, i.e., a solution of

max det(X)
subject to Xi j = X̄i j , ∀(i, j) ∈ F

X = X T

X 	 0

is then unique, and X−1
i j = 0 for all (i, j) �∈ F.

Example 2 The graph related to the matrix A in Example 1 has the following family
{C1,C2,C3} of maximal cliques.

C1 = {1, 2}, C2 = {1, 3}, C3 = {1, 4}

Since

AC1C1 =
(

2 1
1 1

)
, AC2C2 =

(
2 1
1 2

)
, AC3C3 =

(
2 1
1 1

)
,
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Sparse quasi-Newton updates with positive definite matrix completion 7

Ai j ∈ F satisfies the clique positive definite condition, where F ={(i, j)∈{1, 2, 3, 4}×
{1, 2, 3, 4} | Ai j �= 0}. The maximum-determinant positive definite matrix completion
Â of Ai j , (i, j) ∈ F and its inverse are

Â =

⎛
⎜⎜⎝

2 1 1 1
1 1 1/2 1/2
1 1/2 2 1/2
1 1/2 1/2 1

⎞
⎟⎟⎠ , Â−1 =

⎛
⎜⎜⎝

5/3 −1 −1/3 −1
−1 2 0 0

−1/3 0 2/3 0
−1 0 0 2

⎞
⎟⎟⎠ .

Note that A is not positive definite.

Next, the method by which to compute the maximum-determinant positive definite
matrix completion of X̄i j , (i, j) ∈ F is considered.

The family {Cr | r = 1, . . . , l} of maximal cliques of the chordal graph G(V, F̄)
can be indexed in such a way that for each r = 1, 2, . . . , l − 1, the following holds:

∃s > r such that Cr ∩ (Cr+1 ∪ Cr+2 · · · ∪ Cl) � Cs .

This is called the running intersection property and is easily obtained using the clique
tree [1].

Next, it is assumed that {Cr | r = 1, . . . , l} are indexed as satisfying the running
intersection property. Then, the following families of subsets of {Cr } can be defined:

Sr = Cr\(Cr+1 ∪ Cr+2 ∪ · · · ∪ Cl), r = 1, . . . , l (5)

Ur = Cr ∩ (Cr+1 ∪ Cr+2 ∪ · · · ∪ Cl), r = 1, . . . , l (6)

Example 3 The family of maximum cliques in Example 2 satisfies the running inter-
section property. The corresponding sets {Sr } and {Ur } are given by S1 = {2}, S2 =
{3}, S3 = {1, 4},U1 = {1},U2 = {1} and U3 = ∅.

Using {Sr } and {Ur } defined by (5) and (6), the maximum-determinant positive
definite matrix completion X of X̄i j , (i, j) ∈ F is given as follows [8, Sparse clique-
factorization formula (2.16)]:

X = PT
1 PT

2 · · · PT
l Q Pl Pl−1 · · · P2 P1, (7)

where the factors {Pr } and Q are given by

[Pr ]i j =
⎧⎨
⎩

1 i = j
(X̄−1

Ur Ur
X̄Ur Sr )i j (i, j) ∈ Ur × Sr

0 otherwise

for r = 1, . . . , l − 1, and

Qi j =
{
(Qr )i, j (i, j) ∈ Sr × Sr , r = 1, . . . , l
0 otherwise
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8 N. Yamashita

with

Qr =
{

X̄ Sr Sr − X̄ Sr Ur X̄−1
Ur Ur

X̄Ur Sr r ≤ l − 1
X̄ Sr Sr r = l.

Remark 1 The vertices can be indexed as vi > v j for vi ∈ Sr , v j ∈ Sr ′ with r > r ′.
For the index {v1, v2, . . . , vn} Pr , r = 1, . . . , l are lower triangle matrices and Q is a
block diagonal matrix.

Example 4 Let A, F , {Cr }, {Sr } and {Ur } be given in Examples 1–3. Then, we have

P1 =

⎛
⎜⎜⎝

1 1/2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , P2 =

⎛
⎜⎜⎝

1 0 1/2 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , P3 = I, Q =

⎛
⎜⎜⎝

2 0 0 1
0 1/2 0 0
0 0 3/2 0
1 0 0 1

⎞
⎟⎟⎠

and

PT
1 PT

2 PT
3 Q P3 P2 P1 =

⎛
⎜⎜⎝

2 1 1 1
1 1 1/2 1/2
1 1/2 2 1/2
1 1/2 1/2 1

⎞
⎟⎟⎠ .

3 Sparse quasi-Newton updates with positive definite matrix completion

In this section, new sparse quasi-Newton updates are proposed.
Fletcher [6] showed that H DF P

k+1 is a unique solution of the following problem:

minH ψ(H
− 1

2
k H H

− 1
2

k )

subject to H yk = sk, H = H T

H 	 0,

(8)

where ψ : Rn×n → R is a strictly convex function defined by

ψ(A) = trace(A)− ln det(A). (9)

When A is symmetric positive definite and its eigenvalues are λi , i = 1, . . . , n, we
have ψ(A) = ∑n

i=1(λi − ln λi ). Therefore, the minimum of ψ on A 	 0 occurs at

λi = 1, i = 1, . . . , n. This implies that ψ(H
− 1

2
k H H

− 1
2

k ) denotes a kind of distance
from Hk to H , and thus the solution Hk+1 of (8) is the “nearest” positive semidefinite
matrix satisfying the secant condition from Hk . On the other hand, BBFGS

k+1 , the inverse

123



Sparse quasi-Newton updates with positive definite matrix completion 9

of HBFGS
k+1 , is a solution of the following problem [6]:

minB ψ(H
1
2

k B H
1
2

k )

subject to Bsk = yk, B = BT

B 	 0.

(10)

The above problems (8) and (10) do not include the information of the sparsity of
the Hessian. Taking advantage of this information, a new approximate Hessian may
be constructed using less memory. Therefore, rather than (8), the following problem
is considered:

minH ψ(H
− 1

2
k H H

− 1
2

k )

subject to H yk = sk, H = H T

(H−1)i j = 0, (i, j) �∈ F
H 	 0,

(11)

where F ⊇ E = {(i, j) | ∇2 f (x)i, j �= 0 for some x ∈ Rn}. Here, E is referred to
as the sparsity pattern of the Hessian and F is referred to as an extension of E . (Of
course, it is desirable to choose F = E , but certain properties of F are required, as
will be discussed later). Throughout the present paper, it is assumed that (i, i) ∈ F for
all i ∈ V and that (i, j) ∈ F if ( j, i) ∈ F . Fletcher [7] considered the problem (10)
with the sparsity conditions Bi j = 0, (i, j) �∈ F , and proposed the use of its exact
solution as Bk+1. Since the problem is a nonlinear convex programming problem, a
great deal of time is required in order to obtain the exact solution. Moreover, as shown
in Sect. 4, Bk+1 sometimes becomes unstable due to the simultaneous requirement of
the sparsity and secant conditions [21]. In the present paper, the use of an approximate
solution of (11) as Hk+1 is considered rather than the exact solution. More precisely,
the following new updates are proposed:

Step 1: Obtain a partial matrix H QN
i j , (i, j) ∈ F using existing quasi-Newton up-

dates, such as the BFGS and DFP methods.
Step 2: Obtain a solution Hk+1 of the following problem with H QN

i j , (i, j) ∈ F as
given constants.

min ψ(H
− 1

2
k H H

− 1
2

k )

subject to Hi j = H QN
i, j , (i, j) ∈ F

H = H T

(H−1)i j = 0, (i, j) �∈ F
H 	 0

(12)

Remark 2 If the DFP method is used in Step 1, then H QN is a solution of problem
(11) without the sparsity constraints, i.e., problem (8).

Remark 3 The secant condition H yk = sk in problem (11) is replaced with the con-
straints Hi j = H QN

i, j , (i, j) ∈ F in problem (12). Therefore, as shown in Sect. 4, Hk+1
is stable even if (sk)i = 0 for some i .
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10 N. Yamashita

Fig. 4 Proposed method

Remark 4 When F = V × V , the proposed updates are reduced to the existing quasi-
Newton updates used in Step 1.

The proposed update is illustrated in Fig. 4.
From the above remarks and Fig. 4, the updated matrix Hk+1 is regarded as a kind of

approximate solution of (11). However, problem (12) still appears to be difficult. Fortu-
nately, as shown below, if G(V, F̄) is chordal, then problem (12) is equivalent to finding
a maximum-determinant positive definite matrix completion of H QN

i j , (i, j) ∈ F , i.e.,

max det(H)
subject to Hi j = H QN

i, j , (i, j) ∈ F
H = H T

H 	 0.

(13)

Theorem 2 Suppose that sT
k yk > 0, Hk is symmetric positive definite, and (H−1

k )i j =
0,∀(i, j) �∈ F. If G(V, F̄) is a chordal graph, then problem (12) is equivalent to prob-
lem (13).

Proof First, problem (12) is shown to be equivalent to

max det(H)
subject to Hi j = H QN

i, j , (i, j) ∈ F
H = H T

(H−1)i j = 0, (i, j) �∈ F
H 	 0.

(14)

Since (H−1
k )i j = 0,∀(i, j) �∈ F and Hi j = H QN

i, j , (i, j) ∈ F in the constraint of (12),
we have

trace(H
− 1

2
k H H

− 1
2

k ) = trace(H H−1
k ) =

n∑
i=1

n∑
j=1

Hi j (H
−1
k ) j i

=
n∑

i=1

∑
j∈Fi

Hi j (H
−1
k )i j =

n∑
i=1

∑
j∈Fi

H QN
i j (H−1

k )i j ,
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Sparse quasi-Newton updates with positive definite matrix completion 11

which shows that trace(H
− 1

2
k H H

− 1
2

k ) is constant on the feasible set of (12). Moreover,
we have

ln det(H
− 1

2
k H H

− 1
2

k ) = 2 ln det(H
− 1

2
k )+ ln det(H).

Therefore, problem (12) is equivalent to problem (14).
Next, problem (14) is shown to be equivalent to problem (13). Suppose that

{Cr | r = 1, . . . , r} is a family of maximal cliques of G(V, F̄). Since sT
k yk > 0

and Hk is positive definite, H QN is also positive definite. Therefore, the submatrices
H QN

Cr Cr
, r = 1, . . . , l are positive definite, i.e., H QN

i j , (i, j) ∈ F satisfies the clique
positive definite condition. It then follows from Theorem 1(b) that a unique solution
of (13) satisfies (H−1)i j = 0, (i, j) �∈ F , i.e., it is also a solution of (14). ��

From this theorem, if G(V, F̄) is a chordal graph, then the solution Hk+1 of the
problem (12) is given by the sparse clique-factorization formula (7).

Remark 5 Fletcher [7] showed that the problem (10) with the sparsity conditions
Bi j = 0, (i, j) �∈ F can be efficiently solved by the Newton method if a factorization
of Bk has no fill-in, which implies that G(V, F̄) is chordal.

Next, the proposed update is described.
Matrix completion quasi-Newton (MCQN) update

Step 0 Obtain an extension F of E such that G(V, F̄) is chordal. Calculate a family
{Cr | r = 1, . . . , l} of maximum cliques of G(V, F̄), {Sr | r = 1, . . . , l} and
{Ur | r = 1, . . . , l} by (5) and (6). Choose x0 ∈ Rn and a positive definite
matrix H0 with (H−1

0 )i j = 0,∀(i, j) �∈ F . Set k = 0.
Step 1 If xk satisfies the termination criterion, then stop.
Step 2 xk+1 = xk − Hk∇ f (xk).
Step 3 Obtain H QN

i j , (i, j) ∈ F by the existing quasi-Newton updates.

Step 4 Obtain the sparse clique-factorization formula (7) of Hk+1 with X̄i j = H QN
i j ,

(i, j) ∈ F .
Step 5 Set k := k + 1 and go to Step 1.

Remark 6 The proposed update is related to the partially separable BFGS method
[11]. Consider the case in which f (x) = ∑l

r=1 fr (xCr ) and Ci ∪ C j = ∅ for all
i, j ∈ {1, . . . , l} and i �= j . Then, the Hessian ∇2 f (x) forms a block diagonal. The
partially separable BFGS method updates each block Bi

k of the approximate Hessian
Bk as

Bi
k+1 = Bi

k − Bi
ksCr sT

Cr
Bi

k

sT
Cr

yCr

+ yCr yT
Cr

sT
Cr

yCr

,

whereas the MCQN update with the BFGS method updates

Bi
k+1 = Bi

k − Bi
ksCr sT

Cr
Bi

k

sT y
+ yCr yT

Cr

sT y
.
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12 N. Yamashita

The differences between these methods are the denominators of the second and the third
terms. When fr , r = 1, . . . , l are convex, then sT

Cr
yCr is positive for all r = 1, . . . , l

and sT y ≥ sT
Cr

yCr . Therefore, Bi
k+1 updated by the partially separable BFGS method

appears to be closer to the true Hessian than that of the MCQN update, and the
MCQN update is regarded as a damped partially separable BFGS method. When fr is
not convex for some r , sT

Cr
yCr is not necessarily positive, and hence Bk of the partially

separable BFGS method is not always positive definite.1 On the other hand, the MCQN
update always guarantees the positive definiteness of Bk , even if f is nonconvex.

Remark 7 The MCQN update is not scale invariant in general because a linear trans-
formation x = Sz with a general nonsingular matrix S destroys the sparsity pattern
E . When S is positive definite and diagonal, the MCQN update with DFP (or BFGS)
method is scale invariant for x = Sz. Let S be a positive definite diagonal matrix
and f̂ (z) = f (Sz). Moreover, let Ĥ QN and Ĥk , respectively, be updated in Steps 3
and 4 of the MCQN update for f̂ and z. Since the DFP and BFGS methods are scale
invariant, Ĥ QN = SH QN S. The problem (13) for f̂ is given by

max det(Ĥ)
s.t. Ĥi j = Sii S j j H QN

i j , (i, j) ∈ F

Ĥ = Ĥ T

Ĥ 	 0.

Let H̄ be a matrix such that SH̄ S = Ĥ . Then, the above problem is rewritten as

max det(H̄)
s.t. H̄i j = H QN

i j , (i, j) ∈ F
H̄ = H̄ T

H̄ 	 0.

Thus, the solution of the problem is the solution of the original problem (13), and
hence Ĥk+1 = SHk+1S.

Next, the time and space complexities per iteration of the MCQN update are esti-
mated. In order to obtain H QN

i j in Step 3, the BFGS or DFP update formula may be
employed. Let us assume the use of the BFGS method. Step 3 is then calculated as
follows:

H QN
i, j = (Hk)i, j + ρsi s j − (Hk yk)i (sk) j + (sk) j (Hk yk) j

sT
k yk

∀(i, j) ∈ F, (15)

where

ρ = 1

sT
k yk

+ (yk)
T Hk yk

(sT
k yk)2

.

1 Griewank and Toint [13] presented a technique for Bk to be positive definite when f is convex and
{Cr |r = 1, . . . , l} is a family of maximum cliques of a chordal graph.
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Sparse quasi-Newton updates with positive definite matrix completion 13

First, the time complexity per iteration is estimated. To compute (H QN
Ur Ur

)−1 for each

r , O(|Cr |3) arithmetic operations are required. Therefore, the calculation of Hkv for
given v ∈ Rn requires O(

∑l
i=1 |Cr |3) arithmetic operations, and thus the time com-

plexity of Step 2 is O(
∑l

i=1 |Cr |3). In Step 3, first Hk yk is calculated, followed by the

computation of H QN
i j , (i, j) ∈ F . The calculation of Hk yk is O(

∑l
i=1 |Cr |3). More-

over, since |F | ≤ ∑l
r=1 |Cr |2, O(

∑l
r=1 |Cr |2) arithmetic operations are required

for (15). Consequently, the time complexity of Step 3 is O(
∑l

r=1 |Cr |3). Step 4 is
a dummy step because the factorization (7) of Hk+1 is computed whenever Hkv is
computed for given v. Consequently, when ∇ f (xk) is given, the time complexity
per iteration of the MCQN update is O(

∑l
r=1 |Cr |3). If ((Hk)Ur Ur )

−1 is stored for all
r = 1, . . . , l, the time complexity can be reduced to O(

∑l
r=1 |Cr |2). For clarification,

note that

(Hk+1)Ur Ur = H QN
Ur Ur

= (Hk)Ur Ur + ρsUr sT
Ur

− (Hk yk)Ur sT
Ur

+ sUr (Hk y)TUr

sT
k yk

.

Thus, using the Sherman–Morrison formula, ((Hk+1)Ur Ur )
−1 can be computed from

((Hk)Ur Ur)
−1 within O(|Cr |2) arithmetic operations. By using the stored ((Hk)Ur Ur )

−1,
the time complexity of the computations of Hkv becomes O(

∑l
r=1 |Cr |2).

Next, the space complexity is estimated. When ((Hk+1)Ur Ur )
−1 is not stored for

all r , only (Hk)i j , (i j) ∈ F need be stored. Therefore, the space complexity is
O(|F |). When ((Hk+1)Ur Ur )

−1 is stored for each r , the space complexity becomes
O(

∑l
i=1 |Cr |2).

When the Hessian is sparse, in general, Cr becomes much less than n. Since l ≤ n,∑l
r=1 |Cr |2 is much smaller than n2. For example, as shown below, when the Hessian

is tridiagonal, l = n and |Cr | = 2 for all r = 1, . . . , n. Then, the time and space
complexities become O(n).

In Step 0 of the proposed update, the chordal extension G(V, F̄) of G(V, Ē) must
be obtained. The problem of finding a minimum chordal extension of a general graph
is NP complete. The minimum chordal extension is obtained via the minimum fill-in
Cholesky factorization of a positive definite matrix with sparsity pattern E . Therefore,
various existing heuristic methods, such as minimum degree ordering and nested dis-
section ordering, may be employed for the minimum fill-in Cholesky factorization.
On the other hand, when the sparsity pattern E has a special structure, the minimum
chordal extension G(V, F̄) can easily be obtained. The following are practical exam-
ples in which F becomes E [8].

Band matrix Suppose that a sparsity pattern E is given by E = {(i, j) ∈ V ×
V | |i − j | ≤ β} with a positive integer β. Let

Cr = {i ∈ V | (r − 1)κ < i ≤ β + rκ}, r = 1, . . . , l

with a positive integer κ and the smallest positive integer l satisfying β + lκ ≥ n and
F = ∪l

r=1Cr × Cr . Then, G(V, F̄) is chordal and {Cr | r = 1, . . . , l} is a family of
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14 N. Yamashita

Fig. 5 Special cases of G(V, F̄)

its maximum cliques. Figure 5a shows the case for n = 6 and β = 2, and the graph is
verified to be chordal.

Note that the integer κ corresponds to |Cr |. Moreover, as κ becomes large, l becomes
small and |F | becomes large. If κ = 1, then l = n − β, |Cr | = β and F = E .

Now let us consider (7) the case in which the Hessian is tridiagonal, i.e., β = 1
and κ = 1. In this case, we have Sr = {r}, r = 1, . . . , l − 1, Sl = {n − 1, n},
Ur = {r +1}, r = 1, . . . , l−1 and Ul = ∅. Therefore, Pl = I and Pr , r = 1, . . . , l−1
are given by

[Pr ]i j =
⎧⎨
⎩

1 i = j
H QN

r+1,r/H QN
(r+1),(r+1) (i, j) = (r + 1, r)

0 otherwise

and Qr are given by

Qr =
{

H QN
r,r − (H QN

r,r+1)
2/H QN

r+1,r+1 r ≤ l − 1

H QN
Sr Sr

r = l.

Therefore, Pr and Qr can be computed with O(1) arithmetic operations, and the
space complexity is O(1). For given v, Hv can be computed with O(n) arithmetic
operations.

Bordered block-diagonal Consider the case in which the Hessian has the following
form:

⎛
⎜⎜⎜⎜⎜⎝

BS1 S1 0 · · · 0 BS1 S0

0 BS2 S2 · · · 0 BS2 S0
...

...
. . .

...
...

0 0 · · · BSl Sl BSl S0

BS0 S1 BS0 S2 · · · BS0 Sl BS0 S0 ,

⎞
⎟⎟⎟⎟⎟⎠ .
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Sparse quasi-Newton updates with positive definite matrix completion 15

Let Cr = S0 ∪ Sr . Then, E = F = ∪l
r=1Cr × Cr and G(F̄, V ) is a chordal graph.

Next, suppose that n is even and |Sr | = 2, r = 0, . . . , l. Then, we have l = n/2 − 1,
S0 = {n−1, n}, Sr = {2r −1, 2r} and Ur = S0, r = 1, . . . , l (the case in which n = 6
is illustrated in Fig. 5b). Therefore, H QN

Ur Ur
becomes a 2 × 2 matrix for each r , and

thus Pr and Qr can be calculated within O(1) arithmetic operations. Consequently,
the time complexity per iteration becomes O(n).

4 Behavior of the MCQN update on Sorensen’s example

In this section, the behavior of the proposed update on the following Sorensen’s exam-
ple [21] is shown.

f (x) = 1

8
(x1 − 1)2(x1 + 1)2x2

3 + x2
2 + (x2 − x3)

2 (16)

with x0 = (0, 0,
√

432/55 − ε)T , x1 = (−5/6, 1,
√

432/55)T , ε = 10−6. As shown
in [21, p. 149], if the secant condition B1s0 = y0 is imposed, then

(B1)13 = 1 + 5(B1)11/6

ε
,

which leads to numerical difficulty. This observation applies to most existing sparse
quasi-Newton updates.

The Hessian of f has the following form:

⎛
⎝∗ 0 ∗

0 ∗ ∗
∗ ∗ ∗

⎞
⎠

Therefore, its sparsity pattern E is bordered diagonal, and thus G(V, Ē) is chordal and
its maximum cliques are C1 = {1, 3} and C2 = {2, 3}. When B0 is the identity matrix,
the new matrix B1 updated by the MCQN update with the BFGS method becomes

B1 =
⎛
⎝ 0.3421 0 0.2373

0 2.0629 −1.7167
0.2373 −1.7167 2.5931

⎞
⎠

This shows that the proposed method does not suffer from Sorensen’s problem.
Next, the behavior of the MCQN update with the BFGS method on the problem is

shown in Table 1.
After nine iterations, the method obtain an approximate stationary point of f . More-

over, even if the true Hessians are singular (see k = 7, 8, 9), the approximate Hessians
Bk are still positive definite and stable.
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16 N. Yamashita

Table 1 Behavior of MCQN for Sorensen’s example

Iteration Bk ∇2 f (xk ) ‖∇ f (xk )‖

k = 1

⎛
⎜⎝

0.3421 0 0.2373

0 2.0629 −1.7167

0.2373 −1.7167 2.5931

⎞
⎟⎠

⎛
⎜⎝

8.5091 0 0.7136

0 4 −2

0.7136 −2 2.0233

⎞
⎟⎠ 4.13

k = 2

⎛
⎜⎝

3.6201 0 −3.4288

0 1.5396 −0.8149

−3.4288 −0.8149 3.5658

⎞
⎟⎠

⎛
⎜⎝

26.3805 0 −17.7974

0 4 −2

−17.7974 −2 10.5672

⎞
⎟⎠ 8.41

k = 3

⎛
⎜⎝

4.2031 0 −1.3889

0 2.3174 0.6037

−1.3889 0.6037 10.4431

⎞
⎟⎠

⎛
⎜⎝

9.9069 0 −16.6557

0 4 −2

−16.6557 −2 22.3021

⎞
⎟⎠ 6.07

k = 4

⎛
⎜⎝

2.0461 0 0.6472

0 2.3485 0.1128

0.6472 0.1128 10.4969

⎞
⎟⎠

⎛
⎜⎝

3.3856 0 −2.4441

0 4 −2

−2.4441 −2 3.1845

⎞
⎟⎠ 4.21

k = 5

⎛
⎜⎝

2.0584 0 1.3355

0 2.3740 0.3049

1.3355 0.3049 9.4283

⎞
⎟⎠

⎛
⎜⎝

−0.0516 0 0.0531

0 4 −2

0.0532 −2 2.2249

⎞
⎟⎠ 1.51

k = 6

⎛
⎜⎝

2.1656 0 1.1738

0 2.1526 1.0876

1.1738 1.0876 8.2456

⎞
⎟⎠

⎛
⎜⎝

−0.003 0 0.0001

0 4 −2

0.0001 −2 2.25

⎞
⎟⎠ 3.70E−1

k = 7

⎛
⎜⎝

2.1462 0 1.0924

0 2.0614 1.1157

1.0924 1.1157 8.2908

⎞
⎟⎠

⎛
⎜⎝

0 0 0

0 4 −2

0 −2 2.25

⎞
⎟⎠ 1.58E−2

k = 8

⎛
⎜⎝

2.0837 0 1.0747

0 1.5396 1.0563

1.0747 1.0563 8.2706

⎞
⎟⎠

⎛
⎜⎝

0 0 0

0 4 −2

0 −2 2.25

⎞
⎟⎠ 7.23E−4

k = 9

⎛
⎜⎝

2.0231 0 1.0629

0 2.0294 1.0483

1.0629 1.0483 8.2687

⎞
⎟⎠

⎛
⎜⎝

0 0 0

0 4 −2

0 −2 2.25

⎞
⎟⎠ 2.34E−5

5 Local and superlinear convergence of the MCQN update with the DFP
method

In this section, the MCQN update with the DFP method in Step 3 is shown to have
local and superlinear convergence.

This is proven in a manner similar to [17, 8.4 Convergence Analysis], where the
superlinear convergence of the BFGS method is demonstrated using the following
property of the function ψ defined by (9):

0 < ψ(BBFGS
k+1 ) ≤ ψ(Bk)+ yT

k yk

yT
k sk

− ‖Bksk‖2

sT
k Bksk

− ln
yT

k sk

‖sk‖2 + ln
sk Bksk

‖sk‖2 . (17)

Here, Bk = H−1
k and BBFGS

k+1 = (HBFGS
k+1 )−1. Since the MCQN update generates Hk

and (17) is the inequality for Bk , the proof technique cannot be applied directly to
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Sparse quasi-Newton updates with positive definite matrix completion 17

show the superlinear convergence of the MCQN update. Moreover, since Hk+1 is the
maximum-determinant positive definite matrix completion of H QN

i j , (i, j) ∈ F , we

have det(Hk+1) ≥ det(H QN ), and thus det(Bk+1) ≤ det(B QN ), where B QN =
(H QN )−1. Therefore, when the MCQN update with the BFGS method is considered
in Step 3, i.e., B QN = BBFGS

k+1 , it is difficult to derive inequalities like (17) due to
the definition of ψ . Taking these difficulties into account, the MCQN update with the
DFP method is considered because the update formula (4) of the DFP method has a
form similar to that of BBFGS

k+1 . An inequality similar to (17) will be derived for Hk+1
updated by the MCQN update with the DFP method.

For the present purposes, the following assumptions are necessary:

Assumption 1 Let x∗ be a solution of (1), and let C = {x ∈ Rn | ‖x − x∗‖ ≤ b} with
a positive constant b.

(i) The objective function f is twice continuously differentiable on C.
(ii) There exist positive constants m and M such that

m‖z‖2 ≤ zT (∇2 f (x))−1z ≤ M‖z‖2 ∀z ∈ Rn

for all x ∈ C.

If the second-order sufficient optimality condition holds at the solution x∗ and b is
sufficiently small, then Assumption 1(ii) holds. From Assumption 1(i), ∇2 f (x) is
Lipschitz continuous on C. Then, from Lemmas 4.1.12 and 4.1.15 in [5], there exist
L1 and L2 such that for all xk, xk+1 ∈ C

‖yk − ∇2 f (x∗)sk‖ ≤ L1‖sk‖2 (18)

and
‖yk − ∇2 f (x∗)sk‖ ≤ L2εk‖sk‖, (19)

where εk is defined by

εk = max{‖xk+1 − x∗‖, ‖xk − x∗‖}. (20)

Moreover, there exists a positive constant L3 such that for all z1, z2 ∈ C

‖∇ f (z1)− ∇ f (z2)‖ ≤ L3‖z1 − z2‖. (21)

Therefore, we have

‖yk‖ = ‖∇ f (xk+1)− ∇ f (xk)‖ ≤ L3‖sk‖ for all xk, xk+1 ∈ C. (22)

From Eq. (8.12) of [17] we have
yk = Ḡksk, (23)

where Ḡk is the average Hessian defined by Ḡk = ∫ 1
0 ∇2 f (xk + tsk)dt .
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18 N. Yamashita

For convenience in the present analysis, the following notations are used. Similar
notations are used in [17]:

G∗ = ∇2 f (x∗), H∗ = ∇2 f (x∗)−1,

s̃k = H−1/2∗ sk, ỹk = H1/2∗ yk, H̃k = H−1/2∗ Hk H−1/2∗ , H̃ QN = H−1/2∗ H QN H−1/2∗ ,

cos θ̃k = ỹT
k H̃k ỹk

‖ỹk‖‖H̃k ỹk‖
, q̃k = ỹT

k H̃k ỹk

‖ỹk‖2 ,

M̃k = ‖s̃k‖2

ỹT
k s̃k

, m̃k = ỹT
k s̃k

ỹT
k ỹk

.

Here, θ̃k is the angle between ỹk and H̃k ỹk .
Frequent use will be made of the following inequality in the present analysis:

h(t) := t − ln t − 1 ≥ 0 ∀t > 0. (24)

The inequality can be shown by the fact that h is strictly convex on t > 0, and its
minimum is attained at t = 1.

First, the following two basic lemmas are given:

Lemma 1 Suppose that Assumption 1 holds. Then, there exists c ∈ (0,∞) and γ ∈
(0, b) such that

ln m̃k ≥ −2cεk

M̃k ≤ 1 + cεk

whenever εk < γ .

Proof Note that xk, xk+1 ∈ C when εk < γ . Since

yk − G∗sk = (Ḡk − G∗)sk

from (23), we have

ỹk − s̃k = G−1/2∗ (yk − G∗sk)

= G−1/2∗ (Ḡk − G∗)sk

= G−1/2∗ (Ḡk − G∗)G−1/2∗ s̃k .
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Sparse quasi-Newton updates with positive definite matrix completion 19

Thus, there exists a positive constant c̄ such that

‖ỹk − s̃k‖ ≤ ‖G−1/2∗ ‖2‖s̃k‖‖Ḡk − G∗‖ ≤ c̄‖s̃k‖εk, (25)

where the first inequality follows from the Cauchy–Schwartz inequality and the second
inequality follows from the Lipschitz continuity of ∇2 f . It follows from the triangle
inequality that

‖ỹk‖ − ‖s̃k‖ ≤ ‖ỹk − s̃k‖ ≤ c‖s̃k‖εk

and

−‖ỹk‖ + ‖s̃k‖ ≤ ‖ỹk − s̃k‖ ≤ c‖s̃k‖εk,

which can be rewritten as

(1 − c̄εk)‖s̃k‖ ≤ ‖ỹk‖ ≤ (1 + c̄εk)‖s̃k‖. (26)

Suppose that γ is sufficiently small. Then, it may be assumed that 1 − c̄εk > 0.
Moreover, squaring both sides of (25), we have

2 ỹT
k s̃k ≥ ‖ỹk‖2 + (1 − c̄2ε2

k )‖sk‖2

≥ (1 − c̄2ε2
k )‖sk‖2 + (1 − c̄εk)

2‖sk‖2

= 2(1 − c̄εk)‖sk‖2, (27)

where the second inequality follows from the first inequality of (26). It then follows
from the second inequality of (26) that

m̃k = ỹT
k s̃k

‖ỹk‖2 ≥ (1 − c̄εk)‖sk‖2

(1 + c̄εk)2‖sk‖2 = (1 + c̄εk)
2 − 3c̄εk − c̄2ε2

k

(1 + c̄εk)2
= 1 − 3c̄εk + c̄2ε2

k

(1 + c̄εk)2
.

Since εk ≤ γ , there exists a positive constant c1 such that

m̃k ≥ 1 − c1εk . (28)

From (24), we have

−c1εk

1 − c1εk
− ln(1 − c1εk) = 1 − 1

1 − c1εk
+ ln

(
1

1 − c1εk

)
= −h

(
1

1 − c1εk

)
≤ 0,

and thus −c1εk

1 − c1εk
≤ ln(1 − c1εk). (29)

123



20 N. Yamashita

Since γ is chosen to be sufficiently small, it may be assumed that c1εk <
1
2 . Thus,

from (29), we have

ln(1 − c1εk) ≥ −c1εk

1 − c1εk
≥ −2c1εk .

It then follows from (28) that

ln m̃k ≥ ln(1 − c1εk) ≥ −2c1εk . (30)

From (27), we have

M̃k = ‖s̃k‖2

ỹT
k s̃k

≤ 1

1 − c̄εk
= 1 − c̄εk + c̄εk

1 − c̄εk
= 1 + c̄εk

1 − c̄εk
.

Since εk ≤ γ , there exists a positive constant c2 such that

M̃k ≤ 1 + c2εk . (31)

Letting c = max{c1, c2}, we have the desired inequalities from (30) and (31). ��
Lemma 2 Assuming that Assumption 1 holds and H QN = H DF P

k+1 . Then we have

ψ(H̃k+1) ≤ ψ(H̃ QN ),

where ψ is defined by (9).

Proof The determinant term and the trace term ofψ are investigated separately. Since
H QN is feasible for problem (13) and Hk+1 is the unique maximizer of (13), we have
det(H QN ) ≤ det(Hk+1). Moreover, since H−1/2∗ is positive definite by Assumption 1,
we have

det(H̃ QN ) = det(H−1/2∗ )det(H QN )det(H−1/2∗ )

≤ det(H−1/2∗ )det(Hk+1)det(H−1/2∗ )

= det(H̃k+1). (32)

Next, trace(H̃ QN ) = trace(H̃k+1) is shown. Since H QN
i j = (Hk+1)i j ,∀(i, j) ∈ F

and (G∗)i j = 0,∀(i, j) �∈ F , we have

trace(H̃ QN ) = trace(H−1/2∗ H QN H−1/2∗ ) = trace(H QN G∗)

=
n∑

i=1

n∑
j=1

H QN
i j (G∗) j i =

n∑
i=1

n∑
j=1

H QN
i j (G∗)i j

=
n∑

i=1

∑
j∈Fi

H QN
i j (G∗)i j =

n∑
i=1

∑
j∈Fi

(Hk+1)i j (G∗)i j

= trace(Hk+1G∗) = trace(H̃k+1). (33)
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Sparse quasi-Newton updates with positive definite matrix completion 21

Combining (32) and (33), we have the desired inequality. ��

By using the above lemmas, the following key inequality, which corresponds to
(17), is shown.

Lemma 3 Suppose that Assumption 1 holds and H QN = H DF P
k+1 . Suppose also that

γ is the constant specified in Lemma 1. If εk ≤ γ , then we have

ψ(H̃k+1)+ ln
1

cos2 θ̃k
−

[
1 − q̃k

cos2 θ̃k
+ ln

(
q̃k

cos2 θ̃k

)]
≤ ψ(H̃k)+ 3cεk . (34)

Proof By Assumption 1(ii) and (23), we have

yT
k sk

yT
k yk

= yT
k H̄k yk

yT
k yk

≥ m

and

yT
k yk

yT
k sk

= zT
k H̄k zk

zT
k zk

≤ M,

where zk = H̄1/2
k yk and H̄k = Ḡ−1

k .
Since H QN is obtained from Hk by the DFP formula (4), we have

H̃ QN = H−1/2∗ H QN H−1/2∗

= H−1/2∗ Hk H−1/2∗ + H−1/2∗

(
− Hk yk yT

k Hk

yT
k Hk yk

+ sksT
k

yT
k sk

)
H−1/2∗

= H̃k − H̃k H1/2∗ yk yT
k H1/2∗ H̃k

yT
k H1/2∗ H−1/2∗ Hk H−1/2∗ H1/2∗ yk

+ H−1/2∗ sksT
k H−1/2∗

yT
k H1/2∗ H−1/2∗ sk

= H̃k − H̃k ỹk ỹT
k H̃k

ỹT
k H̃k ỹk

+ s̃k s̃T
k

ỹT
k s̃k

. (35)

Since trace(zzT ) = ‖z|2 for z ∈ Rn , it then follows from (35) that

trace(H̃ QN ) = trace(H̃k)− ‖H̃k yk‖2

ỹk H̃k ỹk
+ ‖s̃k‖2

ỹT
k s̃k

. (36)

In a manner similar to Exercise 8.9 in [17], from (35), we have

det(H̃ QN ) = det(H̃k)
ỹT

k s̃k

ỹk H̃k ỹk
. (37)
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22 N. Yamashita

Moreover, by simple calculations, we have

ỹT
k s̃k

ỹk H̃k ỹk
= ỹT

k s̃k

‖ỹk‖2

‖ỹk‖2

ỹk H̃k ỹk
= m̃k

q̃k
(38)

and

‖H̃k yk‖2

ỹk H̃k ỹk
= ỹk H̃k ỹk

‖ỹk‖2

‖H̃k yk‖2‖ỹk‖2

(ỹk H̃k ỹk)2
= q̃k

cos2 θ̃k
. (39)

It then follows from (36) to (39) that

ψ(H̃ QN ) = trace(H̃ QN )− ln det(H̃ QN )

= trace(H̃k)+ M̃k − q̃k

cos2 θ̃k
− ln det(H̃k)− ln m̃k + ln q̃k

= ψ(H̃k)+ M̃k − ln(m̃k)− 1 + 1 − q̃k

cos2 θ̃k
+ ln

(
q̃k

cos2 θ̃k

)
+ ln cos2 θ̃k .

Then, from Lemmas 1 and 2, we have

ψ(H̃k+1) ≤ ψ(H̃ QN ) ≤ ψ(H̃k)+ 3cεk + ln cos2 θ̃k + 1 − q̃k

cos2 θ̃k
+ ln

(
q̃k

cos2 θ̃k

)
,

and thus

ψ(H̃k+1)+ ln
1

cos2 θ̃k
−

[
1 − q̃k

cos2 θ̃k
+ ln

(
q̃k

cos2 θ̃k

)]
≤ ψ(H̃k)+ 3cεk,

which is the desired inequality. ��
Using the inequality (34), the local and superlinear convergence will be shown.

First, the local convergence is shown. To this end, the following relationship between
ψ(H̃k) and the distance ‖Hk − H∗‖ is needed.

Lemma 4 Suppose that Assumption 1 holds. Suppose also that H ∈ Rn×n is

symmetric positive definite and H̃ = H
− 1

2∗ H H
− 1

2∗ .

(a) Let µi , i = 1, . . . , n be the eigenvalues of H. Then, ψ(H) = ∑n
i=1(µi − lnµi )

and ψ(H)− n ≥ 0.
(b) For any ρ > 0, there exists δ such that ψ(H̃)− n < δ implies ‖H − H∗‖ < ρ.
(c) For any δ > 0, there exists ρ such that ‖H − H∗‖ < ρ implies ψ(H̃)− n < δ.

Proof To show (a), note that det(H) = 
n
i=1µi and trace(H) = ∑n

i=1 µi . Thus,
we have ψ(H) = ∑n

i=1(µi − lnµi ). It then follows from (24) that ψ(H) − n =∑n
i=1(µi − lnµi − 1) ≥ 0.
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Next, (b) and (c) are shown. Let λi , i = 1, . . . , n be the eigenvalues of H̃ . We then
have

‖H̃ − I‖ =
√√√√ n∑

i=1

(λi − 1)2. (40)

Moreover, since ‖H − H∗‖ = ‖H
1
2∗ (H̃ − I )H

1
2∗ ‖ and H∗ is positive definite, there

exist positive constants a1 and a2 such that

a1‖H̃ − I‖ ≤ ‖H − H∗‖ ≤ a2‖H̃ − I‖.

It then follows from (40) that

a1

√√√√ n∑
i=1

(λi − 1)2 ≤ ‖H − H∗‖ ≤ a2

√√√√ n∑
i=1

(λi − 1)2. (41)

On the other hand, from (a), we have

0 ≤ ψ(H̃)− n =
n∑

i=1

(λi − ln λi − 1) =
n∑

i=1

h(λi ). (42)

Since h is continuous and strictly convex on (0,∞) and its minimum attains at 1,
we have (c). In order to show (b), let L(α) = {(λ1, λ2, . . . , λn) | ∑n

i=1 h(λi ) ≤
α, λi > 0, i = 1, . . . , n}. Then, it follows that L(α) is compact, L is continuous for
all α > 0 and L(0) = {(1, 1, . . . , 1)}. Therefore, for any ρ there exist δ such that∑n

i=1(λi − 1)2 ≤ ρ for all (λ1, λ2 . . . , λn) ∈ L(δ). From (41), (42) and the definition
of L, we then have (b). ��
Theorem 3 Suppose that Assumption 1 holds and H QN = H DF P

k+1 . Then, for any α ∈
(0, 1), there exists τx and τH such that ‖x0 − x∗‖ ≤ τx and ‖H0 −∇2 f (x∗)−1‖ ≤ τH

imply

‖xk+1 − x∗‖ ≤ α‖xk − x∗‖

for all k.

Proof Suppose that α ∈ (0, 1). The following inequalities will be shown to hold for
all k.

‖xk+1 − x∗‖ ≤ α‖xk − x∗‖ (43)

‖Hk − ∇2 f (x∗)−1‖ ≤ α

2L3
, (44)

where L3 is the Lipschitz constant of ∇ f in (22).
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24 N. Yamashita

First, note that by choosing τx to be sufficiently small, we have

L1 Mτx <
α

2
, τx ≤ γ (45)

where L1, M and γ are the constants specified in (18), Assumption 1(ii) and Lemma 1,
respectively. Moreover, by choosing τx and τH to be sufficiently small, if necessary,
from Lemma 4(b) and (c), there exists δ such that

ψ(H̃0)− n <
δ

2
, (46)

ψ(H̃)− n < δ �⇒ ‖H − ∇2 f (x∗)−1‖ ≤ α

2L3
. (47)

and
3cτx

1 − α
≤ δ

2
, (48)

where H is a symmetric positive definite matrix, H̃ = H
− 1

2∗ H H
− 1

2∗ , and c is the
constant specified in Lemma 3.

The inequalities (43) and (44) are shown by induction. When k = 0, the inequality
(44) holds from (46) and (47). Moreover, we have

‖x1 − x∗‖ = ‖x0 − H0∇ f (x0)− x∗‖
≤ ‖x0 − x∗ − ∇2 f (x∗)−1∇ f (x0)‖

+‖(H0 − ∇2 f (x∗)−1)(∇ f (x0)− ∇ f (x∗))‖
≤ ‖∇2 f (x∗)−1(∇ f (x∗)− ∇ f (x0)+ ∇2 f (x∗)(x0 − x∗))‖

+L3‖H0 − ∇2 f (x∗)−1‖‖x0 − x∗‖
≤ L1‖∇2 f (x∗)−1‖‖x0 − x∗‖2 + α

2
‖x0 − x∗‖

≤
(
L1 Mτx + α

2

)
‖x0 − x∗‖

≤ α‖x0 − x∗‖,

where the second inequality follows from (21), the third inequality follows from (18)
and (47), the forth inequality follows from Assumption 1(ii) and ‖x0 − x∗‖ ≤ τx , and
the final inequality follows from (45).

Next, (43) and (44) are assumed to hold for k = 0, 1, . . . , l, and the inequalities
for k = l + 1 are given. Similar to the case in which k = 0, we have
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Sparse quasi-Newton updates with positive definite matrix completion 25

‖xl+1 − x∗‖ = ‖xl − Hl∇ f (xl)− x∗‖
≤ ‖xl − x∗ − ∇2 f (x∗)−1∇ f (xl)‖

+‖(Hl − ∇2 f (x∗)−1)(∇ f (xl)− ∇ f (x∗))‖
≤ ‖∇2 f (x∗)−1(∇ f (x∗)− ∇ f (xl)+ ∇2 f (x∗)(xl − x∗))‖

+L3‖Hl − ∇2 f (x∗)−1‖‖xl − x∗‖
≤ L1‖∇2 f (x∗)−1‖‖xl − x∗‖2 + α

2
‖xl − x∗‖

≤
(

L1 M‖xl − x∗‖ + α

2

)
‖xl − x∗‖

≤
(

L1 M(α)lτx + α

2

)
‖xl − x∗‖

≤ α‖xl − x∗‖,

where the fifth inequality follows from the fact that ‖xl − x∗‖ ≤ (α)l‖x0 − x∗‖. This
shows (43) for k = l + 1. Next, (44) is shown using (34) in Lemma 3. Summing up
the inequalities (34) with k = 0, 1, . . . , l, we have

ψ(H̃l+1)+
l∑

k=0

(
ln

1

cos2 θ̃k
−

[
1 − q̃k

cos2 θ̃k
+ ln

(
q̃k

cos2 θ̃k

)])
≤ψ(H̃0)+ 3c

l∑
k=0

εk .

Since 0 < cos θ̃k ≤ 1 and the term in the square brackets is nonpositive by (24), we
have

ψ(H̃l+1)− n ≤ ψ(H̃0)− n + 3c
l∑

k=0

εk . (49)

From (43), we have

εk = ‖xk+1 − x∗‖ ≤ (α)k+1τx

for k = 0, . . . , l, and thus

l∑
k=0

εk ≤ 1 − (α)l+1

1 − α
τx ≤ τx

1 − α
.

It then follows from (49), (46) and (48) that

ψ(H̃l+1)− n ≤ ψ(H̃0)− n + 3cτx

1 − α

≤ δ

2
+ δ

2
= δ.

From (47), we have ‖Hl+1 − ∇2 f (x∗)−1‖ ≤ α
2L3

, which is (44) for k = l + 1. ��
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Next, the superlinear convergence is shown. The following are the sufficient
conditions for the superlinear convergence of quasi-Newton methods [4].

lim
k→∞

‖(Bk − G∗)sk‖
‖sk‖ = 0. (50)

Using (34) and Theorem 3, we will show that

lim
k→∞

‖(Hk − H∗)yk‖
‖yk‖ = 0. (51)

In order to show the superlinear convergence, the following relation between (51) and
the superlinear convergence condition (50) is necessary.

Lemma 5 Suppose that Assumption 1 holds and that H QN = HDFP
k+1 . Suppose also

that ‖x0−x∗‖ ≤ τx and ‖H0−∇2 f (x∗)‖ ≤ τH with the constants τx and τH specified
in Theorem 3 for sufficiently small α ∈ (0, 1). Then, (51) implies that (50) holds.

Proof Let λk
i , i = 1, . . . , n be the eigenvalues of Hk . Since the inequality (44) holds

for sufficiently small α, it may be assumed that there exists λmin > 0 such that
λk

i ≥ λmin for all i and k. Moreover, since yk = G∗sk + (Ḡk − G∗)sk from (23), we
have

‖(Hk − H∗)yk‖ = ‖(Hk − H∗)G∗sk + (Hk − H∗)(Ḡk − G∗)sk‖
≥ ‖Hk(G∗ − Bk)sk‖ − ‖Hk − H∗‖‖Ḡk − G∗‖‖sk‖
≥ λmin‖(Bk − G∗)sk‖ − ‖Hk − H∗‖‖Ḡk − G∗‖‖sk‖.

It then follows from (22) that

‖(Hk − H∗)yk‖
‖yk‖ ≥ λmin‖(Bk − G∗)sk‖

L3‖sk‖ − ‖Hk − H∗‖‖Ḡk − G∗‖
L3

.

Since Ḡk = ∫ 1
0 ∇2 f (xk + tsk)dt and xk → x∗ by Theorem 3, the second term of the

right-hand side of the inequality converges to 0 as k → ∞. Then, it follows from (51)
that

lim
k→∞

‖(Bk − G∗)sk‖
‖sk‖ = 0,

which is the desired inequality. ��
The main result of this section can now be shown.

Theorem 4 Suppose that Assumption 1 holds. Suppose also that ‖x0 − x∗‖ ≤ τx and
‖H0 − ∇2 f (x∗)−1‖ ≤ τH hold for sufficiently small τx , τH > 0. The sequence {xk}
generated by the MCQN update with the DFP method then converges to x∗ superlin-
early.
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Sparse quasi-Newton updates with positive definite matrix completion 27

Proof From Lemma 5 it is sufficient to show (51). Summing the inequalities (34) in
Lemma 3, we have

∞∑
k=0

(
ln

1

cos2 θ̃k
−

[
1 − q̃k

cos2 θ̃k
+ ln

(
q̃k

cos2 θ̃k

)])
≤ ψ(H̃0)+ 3c

∞∑
k=0

εk < ∞,

where the first inequality follows from the fact that ψ(H̃k) > 0 for all k, and the
last inequality follows from the local linear convergence of {xk} (Theorem 3). Since
0 < cos θ̃k ≤ 1, ln(1/ cos2 θ̃k) must be nonnegative. Moreover, the term in square
brackets is nonpositive from (24). Therefore, we have

lim
k→∞ cos θ̃k = 1, lim

k→∞ q̃k = 1. (52)

Furthermore, we have

‖H−1/2∗ (Hk − H∗)yk‖2

‖H1/2∗ yk‖2
= ‖(H̃k − I )ỹk‖2

‖ỹk‖2

= ‖H̃k ỹk‖2 − 2 ỹT
k H̃k ỹk + ‖ỹk‖2

‖ỹk‖2

= q̃2
k

cos2 θ̃k
− 2q̃k + 1,

where the final equality follows from the fact that

q̃2
k

cos2 θ̃k
=

(
ỹT

k H̃k ỹk

)2

‖ỹk‖4

‖ỹk‖2‖H̃k ỹk‖2(
ỹT

k H̃k ỹk

)2 = ‖H̃k ỹk‖2

‖ỹk‖2 .

It then follows from (52) and the positive definiteness of H∗ that we have the desired
inequality (51). ��

As in the proofs, the superlinear convergence under Assumption 1 and the assump-
tions that (a) {Hk} is uniformly positive definite and (b)

∑∞
k=0 εk < ∞ can be shown.

The assumptions on the initial data, i.e., the assumptions that ‖x0 − x∗‖ ≤ τx and
‖H0 − ∇2 f (x∗)−1‖ ≤ τH hold for sufficiently small τx and τH , are sufficient condi-
tions for (a) and (b).

6 Numerical experiments

In this section, numerical results are reported for the proposed MCQN update, as well
as for the BFGS and the L-BFGS methods.

The following problems were solved with the initial points indicated in [7,10]:
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28 N. Yamashita

Problem 1 (TRIDIA [10]) f (x) = (x1 − 1)2 + ∑n
i=2 i(xi−1 − 2xi )

2, x0 =
(1, . . . , 1)T

Problem 2 (the chained Rosenbrock problem [7]) f (x) = ∑n−1
i=1 100(xi+1 −

x2
i )

2 + (1 − xi )
2, x0 = (−1.2, 1,−1.2, 1, . . . ,−1.2, 1)T

Problem 3 (the boundary value problem [7]) f (x) = 1
2 xT T x − eT

n x − 1
(n+1)2∑n

i=1(cos xi + 2xi ), where en = (1, 1, . . . , 1)T and

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

−1 2
. . .

. . .
. . . −1
−1 2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

x0 = (1/(n + 1), 2/(n + 1), . . . , n/(n + 1))T .

Problem 1 is a convex quadratic minimization problem, and Problems 2 and 3 are non-
convex and nonlinear. The sparsity patterns of all problems are tridiagonal. Therefore,
the chordal extensions of their sparsity pattern can easily be obtained.

The following termination criterion is employed:

‖∇ f (xk)‖ ≤ n10−5 or k ≥ 50000.

The second criterion implies that the method fails to obtain a solution. In order to
obtain the step size tk and set xk+1 = xk − tk Hk∇ f (xk), Wolfe’s rule was employed:

f (xk + tkdk)− f (xk) ≤ 10−4tk∇ f (xk)
T dk,

|∇ f (xk + tkdk)
T dk | ≤ −0.9∇ f (xk)

T dk

For the L-BFGS method, m = 5, which is the number of stored vectors of L-BFGS,
was set, and the scaling factor sT

k−1 yk−1/‖yk−1‖2 was employed. All of the algorithms
were implemented in Matlab 6.1.

Problems of various dimensions, i.e., n = 10,100, and 1,000, were solved by the
MCQN update with the DFP method and the MCQN update with the BFGS method,
the BFGS method, and the L-BFGS method, and a problem with n = 10,000 was
solved by these MCQN updates and the L-BFGS method. (The BFGS method could
not be implemented for n = 10,000.) The results are listed in Table 2. The table lists the
total number of iterations, and the symbol “F” denotes that the number is over 50,000.

Table 2 shows that the number of iterations of the MCQN update with the BFGS
method is less than those of the other methods. In particular, the MCQN update was
superior to the BFGS and the L-BFGS methods for Problem 3. (It should, however,
be noted that the partially separable BFGS method converges in a few iterations for
Problem 1 for any large n.) On the other hand, for Problems 1 and 2, the L-BFGS
method was competitive with the other methods, even if the problem is ill-conditioned.
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Table 2 Number of iterations by MCQN, BFGS, and L-BFGS

Problem n BFGS L-BFGS@ MCQN with DFP MCQN with BFGS

Problem 1 10 15 31 20 29

100 108 126 167 72

1000 662 415 1498 192

10000 – 1191 11626 528

Problem 2 10 78 68 76 60

100 487 527 665 341

1000 4525 4979 6574 3207

10000 – 49580 F 31737

Problem 3 10 15 24 15 15

100 107 299 49 50

1000 571 3117 86 54

10000 – F 2600 402

Note that although the MCQN update with the DFP method has a nice theoretical
convergence property, its numerical performance is not very good.

7 Concluding remarks

In the present paper, a sparse quasi-Newton update was proposed using a positive
definite matrix completion. Using the DFP method, the proposed update was shown
to have local and superlinear convergence under the usual assumptions. The proposed
update requires lower space and time complexities than those for existing variable
metric methods that have superlinear convergence. In particular, when the Hessian
has a special structure, such as band matrix or bordered block-diagonal, as discussed
in Sect. 4, the complexities are drastically decreased. The simple numerical results
suggest that the proposed method is very promising.

Only three test problems were solved in the numerical experiments of Sect. 6.
Thus, the behaviors of the MCQN update must be investigated for many more prob-
lems arisen in practical situation. Moreover, the MCQN update should be compared
with not only the L-BFGS and the BFGS methods but also other practical efficient
algorithms, such as the partially separable BFGS method.
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