With Michael Newton, I plan to work on an aspect of the NIH-funded SUCCEED (Study to Un-
derstand Cervical Cancer Early Endpoints and Determinants) project. Prof. Newton’s biological
collaborators on this project are Paul Ahlquist and Paul Lambert. Below I describe (1) biolog-
ical background for the project, (2) our proposed mathematical model based on this biological
background, and (3) our next steps in the project.

1. Biological background.

The aspect of the project that I plan to work on is as follows. Prof. Newton and his collaborators
have whole genome expression profiles for n = 128 tissue samples, divided into four pathologic
groups: putatively normal samples, early stage lesions (cervical intraepithelial neoplasia [CIN] 1
and 2), later stage lesions (CIN 3) and frank cancer. Roughly an equal number of tissue samples
are in each group. Each tissue sample was measured by an Affymetrix whole genome microarray,
which aims to measure the expression of essentially all genes in the genome (it contains about
54,000 probe sets).

The SUCCEED members have already carried out several analyses of these data, including anal-
yses that aim to identify genes showing various patterns of differential expression among the four
pathological groupings. However, an alternative analysis can potentially be useful in helping us
understand these preliminary findings.

Motivation for the alternative analysis is given by the following biological and technical facts. Each
expression profile is measured from a collection of around 1000 cells - so it represents a mixture of
theoretical profiles. The stages of cancer progression of cervical tissue are characterized in part by
changes in the proportion of cells of particular types. E.g., normal tissue is organized in layers with
more well-differentiated cells at the surface and with less differentiated, but more actively dividing
cells further inside the tissue. Neoplastic lesions shift the balance of types, at least partly by having
relatively more of the less differentiated types and having fewer of the well-differentiated types.
Note that the different types will have different gene-expression profiles.

2. Mathematical model.

The above motivates the following mathematical model. We have gene-expression profiles for
n = 128 tissue samples. Each gene-expression profile X; = (x;1,...,x; ) consists of the (raw)
expression levels for G ~ 54000 genes. We also know the stage s; of the cancer each tissue sample
was taken from. We think of these x; ; and s; as realizations of random variables X; , and S;.

Since each tissue sample is in reality a mixture of 7 (7 > 1 but not too large) different cell types,
we model each expression profile X; as a mixture of type-conditional profiles. In particular, we
represent “the type of a particular cell from tissue sample i being of some type” by a (hidden)
random variable T;, so each 7; takes values in {1,...,T}, and P(T; = t) is the fraction of cells of
type ¢ in the tissue sample i.

The tissue samples’ stages s; are fixed, just based on what tissues the experimenters chose to look
at, and there does not seem to be much to be gained by modeling them. For this reason, we are



interested in the conditional joint distribution of the X; , given that S; = s; fori = 1,...,n. In other
words, we want to specify some parametric form (and ultimately learn the parameters) for
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We specify the parametric form in several steps.

Step 1. First, we assume that the expression levels are independent by genes, i.e., X;, and Xy o
are independent for any g # g’. (But we do not assume that the profiles are independent by tissue
sample, i.e., for a fixed gene g, X; ; and Xy , are not necessarily independent.) Thus:
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Step 2. We decompose the profiles into mixtures based on type. I.e., for fixed g, we stipulate that
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where the sums over (f1,...,t,) are over all combinations of #; in {1,...,T}. (If T is large, there
will be a lot of terms here, but we have already required that 7 is not too large.)

Step 3. We define the mixing proportions. We assume that (i) 7; are conditionally independent
given the S;, and (ii) P(T; = ;| N7, {Si = s;}) = P(T; = 1;|S; = ;). These are reasonable assump-
tions, because biologically we think that the proportion of cells of various types in a tissue depends
(only or at least primarily) on the tissue’s type. So:
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where (pi,,...,pas)]_, are parameters that we want to find.

Step 4. We stipulate that the gene expression levels (for a fixed gene g) for tissue samples i and i’
are conditionally independent given that 7; # T;. (This assumption follows [K], Section 3.) This
assumption is reasonable, since if a cell from tissue i is of a different type than a cell from tissue
i’, we shouldn’t think that their expression levels of gene g are related. (In contrast, if the cells are
of the same type, then their levels would be related.)

In order to express the assumption precisely, we first define some index sets:
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Note that the . are disjoint sets. Also note that the .# depend on (71,...,f,), though we will not
always write this explicitly below, in order to save space.

Using this notation, we express the stipulation stated above:
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Step 5. We plug in the Gamma-Gamma model from [K]. In particular, following [K], we stipulate
that for each fixed tissue type ¢ the measure on Borel (R/-: (1,

1) which is induced by
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has the following density (wrt Lebesgue):
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which is parameterized by 6/ = {0, 0o, Vi }. Here, f,ps is a gamma density and 7 is an inverse-
gamma density, with specific functional forms given in [K], Section 4.

Step 6. Finally, putting all the pieces above together,
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and the measure induced by
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3. Next steps.

Our immediate next step in the project is to develop an algorithm (perhaps based on EM) to find
the parameters 6 that maximize the likelihood based on our given data (x;¢). Note that the log
likelihood is
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After we have an algorithm to find the MLE, we will investigate aspects of the type-specific gene-
expression profiles and also mixing proportions of different types at each stage in the MLE. We
will also investigate sensitivity to the number of types T'.

Depending on the results of this investigation, we will either look for a different model, or we will
link in other relevant data into the above model, in order to get a clearer picture of cervical cancer
progression.
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