
1 Overview and motivation

This document aims to improve upon our current RSEM_eval model – which is already quite good – in two ways.
First, we explicitly model both transcripts and contigs. In the current model, we model only the contigs explicitly, not
the transcripts, and this seems to me to have led to some difficulties in specifying the model distribution. Second, we
find (under minimal assumptions) the exact distribution of the contigs, given the transcripts and reads. In the current
model, only an approximate distribution is used. In fact, as far as I can tell, this document is the first place where the
exact distribution of the contigs from a transcript (or a chromosome, for that matter) has been given, at least under
such realistic assumptions.

In Section 2, we define random variables and fix notation. In Section 3, we find/stipulate the joint distribution of the
random variables under certain assumptions. In Section 4, we describe a simple heuristic approach to find the mode of
the joint distribution. Finally, in Section ??, we describe how to approximately integrate over latent variables in order
to get our score.

2 Notation

First, we define a contig. A contig is defined to be a maximal contiguous subsequence of a transcript such that every
base is covered by at least one read. This corresponds to the definition used by collectContigs with window size
0.

We define the following constants.

1. numReads is the total number of reads.

2. readLen is the length of each read. We assume that all reads have the same length.

We define the following random quantities:

1. NumTrans is the number of distinct transcripts (in the underlying sequenced sample).

2. TranLeni is the length of transcript i.

3. TranSeqi is the sequence of transcript i.

4. Expri is number of reads that (truly) came from transcript i.

5. Readn is the sequence of read n.

6. NumContigs is the number of distinct contigs.

7. ContigLen j is the length of contig j.

8. ContigSeq j is the sequence of transcript j.

9. Coverage j is the number of reads that (truly) came from contig j.

10. NumContigsFromTrani is number of contigs which originated from transcript i.

11. ContigsFromTrani is the set of indices of the contigs which originated from transcript i.

For our convenience, we group the above as follows:

1. Trani = (TranLeni,TranSeqi).

2. Tran = (Trani : i = 1, . . . ,NumTrans).

3. Expr = (Expri : i = 1, . . . ,NumTrans).

4. Trans = (NumTrans,Tran).
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5. Contig j = (ContigLen j,ContigSeq j).

6. Contig = (Contig j : j = 1, . . . ,NumContigs).

7. Coverage = (Coverage j : j = 1, . . . ,NumContigs).

8. Contigs = (NumContigs,Contig).

9. Contig(i) = (Contig j : j ∈ ContigsFromTrani).

10. ContigsFromTrans = (NumContigsFromTrani,ContigsFromTrani : i = 1, . . . ,NumTrans).

11. Reads = (Readn : n = 1, . . . ,numReads).

Sequence indices start at 0. Other indices start at 1.

Unless there is ambiguity, for random variables X and Y , we will write P(x) instead of P(X = x), and P(x|y) instead
of P(X = x|Y = y). We write X =D Y if X equals Y in distribution. All indices within sequences start at 0.

Our score is score(reads,contigs) = P(reads,contigs). Of course, we are really interested in the normalized version
P(contigs|reads), but it is not necessary to normalize when we are comparing assmeblies based on a fixed set of reads.
The score is related to the joint distribution of all random variables listed above by marginalization:

score(reads,contigs) = P(reads,contigs)

=
∫

P(reads,contigs,coverage, trans,expr,contigsFromTrans)dcoveragedtransdexprdcontigsFromTrans

We want to evaluate the score, and we will do this by a Laplace-like approximation, as follows: (i) specify the joint
distribution, (ii) find a mode or near-mode of of this distribution, (iii) perform a mode-based approximation of the
integral over hidden variables.

3 The joint distribution

We decompose the joint distribution as follows, using the chain rule:

P(reads, trans,expr,contigs,coverage,contigsFromTrans) = P(trans,expr)
·P(reads|trans,expr)
·P(contigs,coverage,contigsFromTrans|reads, trans,expr)

In the rest of this section, we will stipulate functional forms for each of these distributions.

3.1 Distribution of Trans,Expr

For the prior distribution P(trans,expr), we stipulate, similarly to the current RSEM_eval model, that:

1. NumTrans∼ Poisson(µ0).

2. TranLeni|{NumTrans = numTrans} ∼ NegativeBinomial(r0, p0), for i = 1, . . . ,numTrans.

3. TranSeqi|{NumTrans = numTrans,TranLeni = tranLeni} ∼ Uniform({A,T,G,C}tranLeni).

4. Expri|{NumTrans = numTrans,TranLeni = tranLeni,TranSeqi = trani} ∼ Uniform({1,2, . . . ,numReads}). (A
non-uniform distribution for Expri might be more reasonable.)
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So

P(trans,expr)

= P(numTrans)
numTrans

∏
i=1

P(tranLeni|numTrans) ·P(tranSeqi|numTrans, tranLeni) ·P(expri|numTrans, tranLeni, tranSeqi)

= Poisson(numTrans|µ0)
numTrans

∏
i=1

NegativeBinomial(tranLeni|r0, p0) ·4−tranLeni ·numReads−1

=
µnumTrans

0
numTrans!

e−µ0
numTrans

∏
i=1

(
tranLeni + r0−1

tranLeni

)
(1− p0)

r0 ptranLeni
0 ·4−tranLeni ·numReads−1

=
(µ0(1− p0)

r0/numReads)numTrans

numTrans!
e−µ0

numTrans

∏
i=1

(
tranLeni + r0−1

tranLeni

)
(p0/4)tranLeni

where (µ0,r0, p0) are the prior parameters.

3.2 Distribution of Reads|{Trans,Expr}

For the read likelihood, we use RSEM:

P(reads|trans,expr) = PRSEM(reads|trans,expr)

No correction is needed because we are conditioning on the actual transcripts, not contigs.

3.3 Distribution of (Contigs,Coverage,ContigsFromTrans)|{Reads,Trans,Expr}

3.3.1 Assumptions

We make the following assumptions/stipulations.

Assumption 1. First, just as in the current RSEM_eval approach, we assume that the contigs and their coverage are
conditionally independent of the particular read sequences, given the transcripts and their expression. In symbols:

P(contigs,coverage,contigsFromTrans|reads, trans,expr)
= P(contigs,coverage,contigsFromTrans|trans,expr)

Recall that the numReads and readLen are not random variables; indeed, the contig and coverage distribution depends
crucially on numReads and readLen.

The practical consequence of this first stipulation is that we will (a) determine (exactly) the probability that (i) a certain
number of contigs, with (ii) certain lengths and (iii) certain coverages, come from a transcript with a particular length
and expression, and (b) we will apply this general distribution to our particular case.

Assumption 2. Second, we stipulate that different assignments of contigs as coming from particular transcripts are
equivalent, provided that each transcript has equal numbers of contigs with particular lengths and coverages under
all the different such assignments. In symbols, let ContigCountsi = (ContigCountsi,l,c) and ContigCountsi,l,c = |{ j ∈
ContigsFromTrani : ContigLen j = l,Coverage j = c}|. Define the following equivalence relation:

ContigsFromTrans∼ ContigsFromTrans′ ⇐⇒ (ContigCountsi,l,c = ContigCounts′i,l,c for all i = 1, . . . ,NumTrans)
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Our stipulation is that if ContigsFromTrans ∼ ContigsFromTrans′ holds, then the following events are identical (for
any set A):

{ω : ContigsFromTrans(ω) ∈ A}= {ω : ContigsFromTrans′(ω) ∈ A}

The practical consequence of this second stipulation is that we will not need to normalize by the total number of ways
to assign contig indices to transcripts. It would be technically easy to do so, but it does not seem like a good idea,
because the labelling of the contigs is not meaningful.

Assumption 3. Third, we stipulate that the start positions of the reads coming from each transcript are (i) independent
and (ii) uniformly distributed among the possible start positions. The practical consequence of this third assumption
is that the probability question will reduce to a combinatorial question.

Assumption 4. Fourth, we stipulate that the contigs (and their coverage) from a particular transcript are conditionally
independent (given that transcript and its expression) of other transcripts, their expression, their contigs, and their
contigs’ coverages. In symbols:

P(contigs,coverage,contigsFromTrans|trans,expr)

=
numTrans

∏
i=1

P(contigs(i),coverage(i),contigsFromTrani|trani,expri)

This assumption seems to be more or less true.

3.3.2 Distribution

Theorem 1. Under Assumptions 1–3,

P(contigi,coveragei,contigsFromTrani|trani,expri)

=

(numContigsFromTrani
contigCountsi

)(tranLeni+1−∑ j∈contigsFromTrani contigLen j
numContigsFromTrani

)
∏ j∈contigsFromTrani

( coverage j−1
contigLen j−readLen

)
readLen+1(expri+tranLeni−readLen

expri

)
where

(n
k
)

denotes a multinomial coefficient,
(n

k

)
denotes a binomial coefficient, and

(n
k

)
N denotes a polynomial coeffi-

cient, defined below.

Corollary. Due to Assumption 4,

P(contigs,coverage,contigsFromTrani|trans,expr)

=
numTrans

∏
i=1

P(contigi,coveragei,contigsFromTrani|trani,expri)

=
numTrans

∏
i=1

(numContigsFromTrani
contigCountsi

)(tranLeni+1−∑ j∈contigsFromTrani contigLen j
numContigsFromTrani

)
∏ j∈contigsFromTrani

( coverage j−1
contigLen j−readLen

)
readLen+1(expri+tranLeni−readLen

expri

)
3.3.3 Polynomial coefficients

Before proving Theorem 1, we will define polynomial coefficients, look at their combinatorial interpretation, and list
some of their properties. Most of this information is from Fahssi (2012) and Balasubramanian et al. (1995).
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The polynomial coefficient
(n

k

)
N may be defined as follows:

(
n
k

)
N
=


0 if n < 0 or k < 0 or k > (N−1) ·n
1 if n = 0 and k = 0

∑
N−1
j=0

(n−1
k− j

)
N

otherwise

For computation, the following equivalent formula is more useful (Balasubramanian et al. (1995), Eq. (7), citing other
work):

(
n
k

)
N
=


0 if n < 0 or k < 0 or k > (N−1) ·n
1 if n = 0 and k = 0

∑
min(n,bk/Nc)
a=0 (−1)a

(n
a

)(k+n−a·N−1
n−1

)
otherwise

The name “polynomial coefficient” comes from the fact that
(n

k

)
N is the coefficient of tk in the polynomial (1+ t +

t2 + · · ·+ tN−1)n. Thus the polynomial coefficient is a generalization of the binomial coefficient, in the sense that(n
k

)
2 =

(n
k

)
.

The combinatorial interpretation of the polynomial coefficients is as follows. The number of distinct ways in which
k (unlabelled) balls can be placed in n (labelled) urns, allowing at most N− 1 balls to fall in each urn, is

(n
k

)
N . For

example, the number of ways to place k = 4 balls in n = 3 urns, allowing at most N− 1 = 3− 1 = 2 balls to fall in
each urn, is 6, namely:

1. Urn 1: 2 balls, Urn 2: 2 balls, Urn 3: 0 balls.

2. Urn 1: 2 balls, Urn 2: 0 balls, Urn 3: 2 balls.

3. Urn 1: 0 balls, Urn 2: 2 balls, Urn 3: 2 balls.

4. Urn 1: 2 balls, Urn 2: 1 ball, Urn 3, 1 ball.

5. Urn 1: 1 ball, Urn 2: 2 balls, Urn 3, 1 ball.

6. Urn 1: 1 ball, Urn 2: 1 ball, Urn 3, 2 balls.

Indeed, ∑
min(3,b4/3c)
a=0 (−1)a

(3
a

)(4+3−a·3−1
3−1

)
= (−1)0

(3
0

)(6−3·0
2

)
+(−1)1

(3
1

)(6−3·1
2

)
= 6.

3.3.4 Read placements

Our proof of Theorem 1 is based on counting “read placements”. To define a read placement of expri reads of
length readLen within a transcript of length tranLeni, fix an arbitrary enumeration 1,2, . . . ,expri, of the reads. A
read placement is a choice of start positions s = (s1,s2, . . . ,sexpri), one for each read, which is required to satisfy: (i)
s1 ≥ 0, (ii) sk−1 ≤ sk ≤ sk+1, and (iii) sexpri ≤ tranLeni− readLen.

By fixing an arbitrary enumeration in advance, we are stipulating that the ordering of reads within the placement
does not matter. Since all reads have the same length, there are tranLeni− readLen+1 possibile read start positions.
Thus each read placement is equivalent to a choice of expri unordered read start positions, with replacement, from
tranLeni− readLen+1 possibilities. This gives the following lemma:

Lemma 2. The total number of read placements, as defined above, is
(expri+tranLeni−readLen

expri

)
.

Proof. In general, the number of ways to choose k unordered elements, with replacement, from a collection of size n,
is
(n+k−1

k−1

)
=
(n+k−1

n

)
. The lemma follows from our previous remarks. �
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We are most interested in read placements that result in contigs of particular sizes. To start, it is useful to know how
many read placements fully cover the transcript, i.e., how many read placements result in exactly one contig that equals
the transcript.

Lemma 3. The number of read placements of expri reads of read length readLen, such that there is exactly one contig
of length tranLeni, is

( expri−1
tranLeni−readLen

)
readLen+1

.

Proof. Recall that our definition of a read placement involves a fixed enumeration of the reads, from left to right.
When we enumerate the reads in this way, each read can be thought to “newly cover” a certain number of bases, in the
following sense: (i) read 1 newly covers all readLen of its bases, and (ii) for r ≥ 2, read r newly covers all bases not
covered by read r−1. For an example, see Figure 6. Let cr be the number of bases newly covered by read r, and let
c = (c1,c2, . . . ,cexpri) be the “new-coverage pattern” for this read placement.

In the current lemma, we are only considering read placements that fully cover the transcript. There is a 1–1 corre-
spondence between such read placements and new-coverage patterns. The reason for this is that the only way two read
placements (based on the same fixed enumeration) can have the same new-coverage pattern is if there are gaps in the
coverage of bases, and the lemma prohibits this. Thus the number of read placements which fully cover the transcript
equals the number of distinct new-coverage patterns.

How many such new-coverage patterns are there? The first read always newly covers readLen bases, so we can ignore
it. Each new-coverage pattern tells us how many of the remaining tranLeni− readLen bases are newly covered by the
remaning expri− 1 reads. Between 0 and readLen bases, inclusive, can be newly covered by each read. The bases
are unlabelled, in the sense that the new-coverage pattern only (explicitly) says how many bases are covered by each
read, not which particular bases are covered. (We can indirectly figure out which particular bases are covered, using
the enumeration of reads, but since we fixed the enumeration in advance, there is only one possibility.) The reads are
labelled, in the sense that the new-coverage pattern tells us how many bases each read newly contributes.

In other words, each new-coverage pattern tells us how to allocate tranLeni− readLen (unlabelled) balls among expri−
1 (labelled) urns, allowing at most readLen balls to fall in each urn. As discussed in 3.3.3, the number of ways of doing
this is

( expri−1
tranLeni−readLen

)
readLen+1

. �

3.3.5 Contig placements

In addition to read placements, it is helpful also to think about “contig placements”. A contig placement of numContigsFromTrani
contigs, each of length contigLen j ( j ∈ contigsFromTrani), within a transcript of length tranLeni, is defined to be a
choice of start positions s j, one for each contig j ∈ contigsFromTrani. The start positions are constrained by the
definition of a contig: in any valid contig placement, there needs to be at least one uncovered base between each
contig.

A basic question about contig placements is how many distinct contig placements exist. We will answer this question
in two steps. First, suppose that we fix a particular ordering of the contigs, say, an ordering in which contig j starts
(and hence ends) before contig j′ whenever j < j′. How many contig placements satisfy this constraint?

Lemma 4. The number of contig placements such that contig j starts before contig j′ if and only if j < j′ is(tranLeni+1−∑ j∈contigsFromTrani contigLen j
numContigsFromTrani

)
.

Proof. Each contig has a (possibly) distinct length contigLen j. However, since contigs need to be disjoint (and,
moreover, separated by an uncovered base), the contig lengths are only important insofar as they collectively reduce
the effective length of the transcript. In other words, the number of contig placements is unchanged if (i) contig j
is shortened by a certain number of bases δ j, and (ii) the transcript is also shortened by δ j bases. By using this fact
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repeatedly, the number of contig placements is unchanged if (i) for all j, contig j is shortened by contigLen j bases, so
that it now has length 0, and (ii) the transcript is shortened by ∑ j∈contigsFromTrani

contigLen j.

we can simplify the situation by ignoring

imagining, equivalently to before, that (i) each contig has length 1, and (ii) each contig’s original length contigLen j
is subtracted from the transcript’s length. Due to (i), we only need to choose where to place each empty space. The
empty spaces are unlabelled, since

(so that we only count the empty spaces in between them)

In general, the number of ways to choose k unordered elements, with replacement, from a collection of size n, is(n+k−1
k−1

)
=
(n+k−1

n

)
. The lemma follows from our previous remarks.

�

Lemma 5. The number of ways to order numContigsi contigs

The number of “Only include placements that have the shortest contig first, then the next longest contig, etc. I.e.,
exclude different permutations of the contig relative orderings.” is

(n
n
)
.

Proof. �

3.3.6 Proof of the theorem

Lemma 6. Under Stipulations 3 and 4 given above, the number of read placements such that there are (i) n contigs
and (ii) nc,l contigs with length l and coverage c is:

numPlacements(n; readLen, tranLen) =
(

n
n

)(
tranLeni +1−∑ j∈J contigLen j

n

)
∏
j∈J

(
coverage j−1

contigLen j− readLen

)
readLen+1

Lemma 7. Under Stipulations 3 and 4 given above, the total number of possible read placements is

numPlacements(readLen, tranLen) =
(

expri + tranLeni− readLen
expri

)

If, for example, there are two balls in urn 1, the identity of the two balls doesn’t matter - the situation is identical if
“the first” two balls fell in urn 1 or if some other two balls fell in urn 1. On the other hand, the situation is distinct if
there are two balls in urn 1 versus two balls in urn 2.

of distinct ways in which k := contigLen′j− readLen balls (i.e., bases) can be allocated to n := coverage j−1 urns (i.e.,
reads), allowing at most N−1 := readLen balls (i.e., bases) to fall in each urn (i.e., read). It is known that the number
of ways to do this is

(n
k

)
N : see comments by N-E. Fahssi from OEIS entries http://oeis.org/A008287 and

http://oeis.org/A035343, and cf. also Fahssi (2012).
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Claim: numArrangements(coverage j,contigLen′j, readLen) =
( coverage j−1

contigLen′j−readLen

)
readLen+1

, where

(
n
k

)
N
=


0 if n < 0 or k < 0 or k > (N−1) ·n
1 if n = 0 and k = 0

∑
N−1
j=0

(n−1
k− j

)
N

otherwise

Proof: Fix an enumeration of the coverage j reads involved in contig j from left to right, as described in item (b)
above. Each read can be thought to “newly contribute” a certain number of bases, in the sense that no previous (in
the enumeration) read covers these bases, but the read in question does cover them. See Figure 6 for an example. The
first (and leftmost) read always contributes readLen bases. Each remaining read can contribute between 0 bases (if it
completely overlaps the previous read) and readLen bases (if it starts just after the previous read), assuming that we
require window size of 0.

For each arrangement a of the reads, let x = x(a) be the corresponding “new-contribution” vector, i.e., xr is the
number of bases newly contributed by read r in the arrangement. Note that there is a 1-1 correspondence between
arrangements a and new-contribution vectors x. Thus the number of arrangements of the reads into a contig of length
contigLen′j is equal to the number of valid new-contribution vectors, i.e., the number of vectors x ∈ {readLen}×
{0, . . . , readLen}coverage j−1 such that ∑

coverage j−1
r=1 xr = contigLen′j.

How many such new-contribution vectors are there? The first read always newly covers readLen bases. Each new-
contribution vector says how to allocate the remaining contigLen′j− readLen bases among the remaining coverage j−1
reads, allowing at most readLen positions to be allocated to each read. We can think of the bases as being unlabelled,
in the sense that the new-contribution vectors do not keep track of which specific (identified) bases are newly covered
by each read, but rather just how many bases are newly covered by each read. We can think of the reads as being
labelled, in the sense that each new-contribution vector says how many bases are newly contributed by each read
which is labelled by its position within the (fixed) enumeration. Thus, the number of new-contribution vectors is the
number of distinct ways in which k := contigLen′j− readLen balls (i.e., bases) can be allocated to n := coverage j−1
urns (i.e., reads), allowing at most N−1 := readLen balls (i.e., bases) to fall in each urn (i.e., read). It is known that the
number of ways to do this is

(n
k

)
N : see comments by N-E. Fahssi from OEIS entries http://oeis.org/A008287

and http://oeis.org/A035343, and cf. also Fahssi (2012).

For empirical evidence of the claim, see howManyWaysToCoverAContig.py. �

Claim: ∑
readLen·coverage j
l=readLen numArrangements(coverage j, l, readLen) = (readLen+1)coverage j−1.

Proof: Note that

readLen·coverage j

∑
l=readLen

numArrangements(coverage j, l, readLen)

=

readLen·coverage j

∑
l=readLen

(
coverage j−1
l− readLen

)
readLen+1

=

readLen·(coverage j−1)

∑
l=0

(
coverage j−1

l

)
readLen+1

the (coverage j−1)th row sum of the array with entries (n,k)=
(n

k

)
readLen+1. It is a fact (see http://oeis.org/A027907

for the trinomial case) that these row sums are n 7→ Nn, i.e., in our case, the (coverage j−1)th row sum is (readLen+
1)coverage j−1.

For empirical evidence, see howManyWaysToCoverAContig.py. �
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3.3.7 The distribution

Let ContigCountsi be as defined in Assumption 2. Note that ∑l ∑c ContigCountsi,l,c = NumContigsFromTrani.

Let numPlacements(contigCountsi; tranLeni, readLen) be the number of ways to place numContigsFromTrani reads

3.3.8 Proof

specific assignments

A key thing is how to represent the contigs? The answer is that:

1. There are transcripts Trani, i ∈ {1,2, . . . ,NumTrans}.
2. For each transcript i, there are contigs Contigi, j, j ∈ {1,2, . . . ,NumContigsFromTrani}.

Thus:

P(contigs,coverage|trans,expr)

=
numTrans

∏
i=1

P(contigsi,coveragei|trani,expri)

Note that we do not know the assignment of contigs to transcripts. So we also use the representation:

1. There are transcripts Trani, i ∈ {1,2, . . . ,NumTrans}.
2. There are contigs Contig j, j ∈ {1,2, . . . ,NumContigs}.
3. There is a transcript-to-contigs map ContigsFromTrani ⊂ {1,2, . . . ,NumContigs}, with ContigsFromTrani ∩

ContigsFromTrani′ =∅ and ∪iContigsFromTrani = {1,2, . . . ,NumContigs}.

In this representation, one needs to account for the different ways to assign contig indices to transcripts. However, we
consider all of these to be equivalent so there is no need to do further normalization. Thus

P(contigs,coverage,contigsFromTrans|trans,expr)
= P(contigs,coverage|trans,expr)

=
numTrans

∏
i=1

P(contigsi,coveragei|trani,expri)

3.3.9 The distribution of Contigsi,Coveragei|Trani,Expri

In this section, all statements are understood to be asserted to hold, conditionally on {ω : Trani = trani,Expri = expri}.

We use the following shorthand notation:

1. n = numContigsFromTrani

2. J = contigsFromTrani.
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transscript: 01234567890123456789
arrangement 1: aaaaaaaaabbbbbb
arrangement 2: aaaaaaaaa bbbbbb
arrangement 3: bbbbbb aaaaaaaaa
etc

Figure 1: Illustration of our assumption that J is constant with respect to contig ordering and start positions within a transcript.
In this case, regardless of how we arrange the two contigs aaaaaaaaa and bbbbbb within the transcript, we assume that J is
constant.

3. nc,l = |{ j ∈J : coverage j = c,contigLen j = l}|.
4. n = (nc,l), thought of as a vector or matrix as appropriate.

Note that ∑c ∑l nc,l = n = |J |.

What is P(contigsi,coveragei|trani,expri)? We find the exact distribution under the following stipulations:

1. Stipulation 1: The start positions of the expri reads are distributed uniformly among the possible start positions.

2. Stipulation 2: The start positions of the expri reads are independent.

3. Stipulation 3: All reads share a common read length readLen.

4. Stipulation 4: A contig is defined to be a maximal contiguous subsequence of the transcript such that every base
is covered by at least one read.

Lemma 8. Under Stipulations 3 and 4 given above, the number of read placements such that there are (i) n contigs
and (ii) nc,l contigs with length l and coverage c is:

numPlacements(n; readLen, tranLen) =
(

n
n

)(
tranLeni +1−∑ j∈J contigLen j

n

)
∏
j∈J

(
coverage j−1

contigLen j− readLen

)
readLen+1

Lemma 9. Under Stipulations 3 and 4 given above, the total number of possible read placements is

numPlacements(readLen, tranLen) =
(

expri + tranLeni− readLen
expri

)
Theorem 10. Under the stipulations given above, the

P(contigsi,coveragei|trani,expri) =
numPlacements(n; readLen, tranLen)
numPlacements(readLen, tranLen)

=

(n
n
)(tranLeni+1−∑ j∈J contigLen j

n

)
∏ j∈J

( coverage j−1
contigLen j−readLen

)
readLen+1(expri+tranLeni−readLen

expri

)

4 Mode of the joint distribution

We want to maximize (or at least approximately maximize) the function

J(trans,expr,coverage,contigsFromTrans) = P(reads, trans,expr,contigs,coverage,contigsFromTrans)

with (reads,contigs) held fixed.

We will assume that the contigs are “correct”, i.e., are error-free contiguous subsequences of the transcripts. We will
also assume that J is constant with respect to contig ordering and start positions within a transcript; this is exactly
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true for everything except for the data likelihood, and for the RSEM-based likelihood it is almost true (or is it exactly
true?); for an example, see Figure 1.

Due to these assumptions, we do not need to explicitly write down the sequences of the transcripts that maximize the
objective. Rather, we just need to answer the questions: (i) Which contigs should be said to come from the same
transcripts as each other, and (ii) how long should these transcripts be? so as to maximize the objective J.

We also need to find the optimal coverage of the contigs. This, together with the assignment of contigs to transcripts,
will automatically give us the optimal expression of the transcripts.

We will use the following approach based on greedy coordinate ascent.

Step 1: Run RSEM, using the contigs as the reference. This will give us τ j, the MLE of the fraction of reads that come
from each contig.

Find the optimal coverage coverage∗.

1. Start with an RSEM-based estimate coverage∗ of the coverage, based on the contigs and the reads. (coverage∗ =
bτ ·numReadsc where τ is the “transcript-level expression” (based on contigs) produced by RSEM.)

2. Figure out analytically which contigs should be joined into transcripts, based on the coverage and length of
the contigs. This gives trans∗ and contigsFromTrans∗. (We never need to know explicitly the sequence of the
transcripts outside of the contigs.)

3. Sum appropriate entries of coverage∗ to get expr∗.

The tricky part is item 2. In the following two subsections, we will (i) determine how the data likelihood P(reads|trans,expr)
changes when we join contigs into a transcript, and (ii) determine how the overall joint probability changes when we
join contigs into a transcript. After that, we will (iii) formulate a simple algorithm to make high-probability transcripts
from contigs.

should be “joined together” into transcripts, and (ii) how long should the transcripts be? so as to maximize the objective
J.

Due to these assumptions, maximization of J requires us to answer the following question: Which contigs should be
“joined together” into transcripts so as to maximize the objective J?

Due to these assumptions, maximization of J involves answering two (linked) questions:

1. Which contigs should be “joined together” into transcripts so as to maximize the objective J?

Order doesn’t matter here. A transcript could be longer than the corresponding contigs.

2. What are the expression and coverage? A transcript’s expression is the sum of the coverage of its contigs.

We want an approximation of the mode that can be found as easily as possible. Our strategy is:

1. Start with an RSEM-based estimate coverage∗ of the coverage, based on the contigs and the reads. (coverage∗ =
bτ ·numReadsc where τ is the “transcript-level expression” (based on contigs) produced by RSEM.)

2. Figure out analytically which contigs should be joined into transcripts, based on the coverage and length of
the contigs. This gives trans∗ and contigsFromTrans∗. (We never need to know explicitly the sequence of the
transcripts outside of the contigs.)

3. Sum appropriate entries of coverage∗ to get expr∗.

The tricky part is item 2. In the following two subsections, we will (i) determine how the data likelihood P(reads|trans,expr)
changes when we join contigs into a transcript, and (ii) determine how the overall joint probability changes when we
join contigs into a transcript. After that, we will (iii) formulate a simple algorithm to make high-probability transcripts
from contigs.
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trans: 1: AAAAAAAAAAA
2: GGGGGGG
... [other transcripts]

trans': 12: TTTAAAAAAAAAAATTTTTTTTGGGGGGGTTTT
... [other transcripts]

Figure 2: Here we join transcripts 1 and 2 into transcript 12, with extra bases (all "T"s in this case) in between and on the ends.

4.1 How does the joint distribution change when we join two transcripts together?

Throughout this subsection, we consider two transcript sets:

1. trans, which contains transcripts with indices I ∪{1,2}, and

2. trans′, which contains transcripts with indices I ∪{12}.

Here, transcript 12 contains transcript 1 and transcript 2 as disjoint subsequences, with possibly some extra bases
added in between 1’s and 2’s sequences or on the ends, but not within 1’s or 2’s sequences. See Figure 2. The
set I contains the indices of transcripts common to both trans and trans′. Obviously, numTrans′ = numTrans− 1.
Also, expr′12 = expr1 + expr2. Also, numContigsFromTran′12 = numContigsFromTran1 +numContigsFromTran2 and
contigsFromTran′12 = contigsFromTran1∪ contigsFromTran2.

The idea, of course, is that trans is the “original transcripts” and trans′ is the “hopefully higher-probability transcripts”.
Initially, trans will be the contigs.

4.1.1 How does the data likelihood P(reads|trans,expr) change when we join two transcripts together?

Recall that P(reads|trans,expr) = PRSEM(reads|trans,expr). We use the notation P(. . .) = PRSEM(. . . |trans,expr) and
P′(. . .) = PRSEM(. . . |trans′,expr′). We want to figure out how P differs from P′.

According to RSEM’s model, the joint distribution decomposes as

N

∏
n=1

P(gn, fn,sn,on, ln,qn,rn) =
N

∏
n=1

P(gn)P( fn|gn)P(sn|gn, fn)P(ln| fn)P(on|gn)P(qn)P(rn|gn, fn,sn, ln,on,qn)

where (assuming single-end data)

1. N = numReads, indexed by n,

2. Gn is the parent transcript’s index,

3. Fn is the fragment length,

4. Sn is the start position,

5. On is the orientation,

6. Ln is the read length,

7. Qn is the quality score sequence, and

8. Rn is the read sequence.

When the parent transcript Gn = gn ∈I , the shared transcript index set, then P(gn, fn,sn,on, ln,qn,rn)=P′(gn, fn,sn,on, ln,qn,rn),
since P(gn) = P′(gn) and all the other parts of the decomposition are also the same.

What about when Gn is 1 or 2? In that case, G′n = 12. So:
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1. Gn: P′(Gn = 12) = P(Gn = 1)+P(Gn = 2), since every read that came from 1 or 2 under P comes from 12
under P′, and no other reads come from P′. Specifically, P(Gn = j) = expr j/numReads, and P′(Gn = j) =
expr′j/numReads.

2. Fn: It is difficult to say how the fragment length distribution Fn|Gn changes, since it is modelled nonpara-
metrically. However, it seems perhaps reasonable to assume, in our present analysis, that P( fn|gn) = 1( fn =
tranLengn), i.e., to pretend that every fragment consists of the entire transcript (and hence to ignore the fact that
reads come from fragments, not transcripts). This is similar to the first RSEM paper.

3. Sn: For the start position Sn, we will assume a uniform RSPD along the whole feasible length of the fragment,
i.e., the transcript. So:

P(sn|gn, fn) = (tranLengn − readLen+1)−1

P′(sn|gn, fn) = (tranLen′gn − readLen+1)−1

4. On: The orientation’s conditional distribution is the same under P and P′.
5. Ln: The read length’s conditional distribution is the same under P and P′. We will assume that the read length is

fixed at readLen.

6. Qn: The quality score’s conditional distribution is the same under P and P′.
7. Rn: The read sequence’s conditional distribution is the same under P and P′.

Putting this all together, the odds ratio of the RSEM joint distributions is

∏
N
n=1P(gn, fn,sn,on, ln,qn,rn)

∏
N
n=1P′(g′n, fn,sn,on, ln,qn,rn)

=
∏n:gn∈{1,2}P(gn)(tranLengn − readLen+1)−1

∏n:g′n=12P′(g′n)(tranLen′g′n − readLen+1)−1

=
∏ j∈{1,2}

[
(expr j/numReads)(tranLen j− readLen+1)−1

]|{n:gn= j}|[
(expr′12/numReads)(tranLen′12− readLen+1)−1

]|{n:g′n=12}|

=
∏ j∈{1,2}

[
expr j · (tranLen j− readLen+1)−1

]|{n:gn= j}|[
expr′12 · (tranLen′12− readLen+1)−1

]|{n:g′n=12}|

=
∏ j∈{1,2}

[
expr j · (tranLen j− readLen+1)−1

]expr j[
expr′12 · (tranLen′12− readLen+1)−1

]expr′12

where g′n = 12 if gn ∈ {1,2}, and g′n = gn otherwise. The penultimate identity holds because numReads does not
depend on gn. The last identity holds because |{n : gn = j}|= expr j and |{n : g′n = 12}|= expr12.

Of course, we are really interested in the log ratio of the marginal (wrt RSEM) distributions P(reads|trans,expr) and
P(reads|trans′,expr′). We will approximate the integrals via BIC:

logP(reads|trans,expr) = logP(l,r,q)

= log
∫ N

∏
n=1

P(gn, fn,sn,on, ln,qn,rn)dgd f dsdo

=
( N

∑
n=1

logP(g∗n, f ∗n ,s
∗
n,o
∗
n, ln,qn,rn)

)
− 1

2
numTrans lognumReads
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So the log odds is:

logP(reads|trans,expr)− logP(reads|trans′,expr′)
= logP(l,r,q)− logP′(l,r,q)

=
( N

∑
n=1

logP(g∗n, f ∗n ,s
∗
n,o
∗
n, ln,qn,rn)

)
− 1

2
numTrans lognumReads

−
( N

∑
n=1

logP(g′∗n , f ∗n ,s
∗
n,o
∗
n, ln,qn,rn)

)
+

1
2

numTrans′ lognumReads

= log
(

∏
N
n=1P(g∗n, f ∗n ,s

∗
n,o
∗
n, ln,qn,rn)

∏
N
n=1P(g′∗n , f ∗n ,s∗n,o∗n, ln,qn,rn

)
− 1

2
lognumReads

We have used that numTrans−numTrans′ = 1. Substituting from the joint log odds above,

logP(reads|trans,expr)− logP(reads|trans′,expr′)

= log

(
∏ j∈{1,2}

[
expr j · (tranLen j− readLen+1)−1

]expr j[
expr′12 · (tranLen′12− readLen+1)−1

]expr′12

)
− 1

2
lognumReads

=−
(

expr′12 logexpr′12− ∑
j∈{1,2}

expr j logexpr j

)
+

(
expr′12 log(tranLen′12− readLen+1)− ∑

j∈{1,2}
expr j log(tranLen j− readLen+1)

)
− 1

2
lognumReads

4.1.2 How does the prior P(trans,expr) change when we join two transcripts together?

Recall that

P(trans,expr) =
(µ0(1− p0)

r0/numReads)numTrans

numTrans!
e−µ0

numTrans

∏
i=1

(
tranLeni + r0−1

tranLeni

)
(p0/4)tranLeni

so the log odds

logP(trans,expr)− logP(trans′,expr′)

= log
(µ0(1−p0)

r0/numReads)numTrans

numTrans! e−µ0 ∏
numTrans
i=1

(tranLeni+r0−1
tranLeni

)
(p0/4)tranLeni

(µ0(1−p0)
r0/numReads)numTrans′

numTrans′! e−µ0 ∏
numTrans′
i=1

(tranLen′i+r0−1
tranLen′i

)
(p0/4)tranLen′i

Note that tranLeni = tranLen′i for all i 6∈ {1,2,12}, so there is a lot of cancellation:

· · ·= log

 (µ0(1−p0)
r0/numReads)numTrans

numTrans!
(µ0(1−p0)

r0/numReads)numTrans′

numTrans′!

·
∏i∈{1,2}

(tranLeni+r0−1
tranLeni

)
(p0/4)tranLeni(tranLen′12+r0−1

tranLen′12

)
(p0/4)tranLen′12
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Note that numTrans−numTrans′ = 1 and numTrans!/numTrans′! = numTrans. So

· · ·= log

 (µ0(1− p0)
r0/numReads)numTrans−numTrans′

numTrans!/numTrans′!
·

∏i∈{1,2}
(tranLeni+r0−1

tranLeni

)
(p0/4)tranLeni(tranLen′12+r0−1

tranLen′12

)
(p0/4)tranLen′12


= log

 µ0(1− p0)
r0

numReads ·numTrans
·

∏i∈{1,2}
(tranLeni+r0−1

tranLeni

)
(p0/4)tranLeni(tranLen′12+r0−1

tranLen′12

)
(p0/4)tranLen′12


Applying the log,

logP(trans,expr)− logP(trans′,expr′) = log
(

µ0(1− p0)
r0

numReads ·numTrans

)
+

(
− log

(
tranLen′12 + r0−1

tranLen′12

)
+ ∑

i∈{1,2}
log
(

tranLeni + r0−1
tranLeni

))

+

(
−tranLen′12 + ∑

i∈{1,2}
tranLeni

)
log(p0/4)

4.1.3 How does P(contig,coverage,contigsFromTrans|trans,expr) change when we join two transcripts together?
Try 2

Note that

P(contig,coverage,contigsFromTrans′|trans′,expr′)
P(contig,coverage,contigsFromTrans|trans,expr)

=
P(contig′(12),coverage′(12)|trans′12,expr′12)

P(contig(1),coverage(1)|trans1,expr1)P(contig(2),coverage(2)|trans2,expr2)

=

(
numContigsFromTran′12
numContigsWithStats′12

)(
tranLeni+1−∑ j∈contigsFromTran′12

contigLen j

numContigsFromTran′12
)∏ j∈contigsFromTran′12

(
coverage j−1

contigLen j−readLen)readLen+1

(
expr′12+tranLen′12−readLen

expr′12
)

∏i∈{1,2}
(numContigsFromTrani

numContigsWithStatsi
)(

tranLeni+1−∑ j∈contigsFromTrani
contigLen j

numContigsFromTrani
)∏ j∈contigsFromTrani (

coverage j−1
contigLen j−readLen)readLen+1

(expri+tranLeni−readLen
expri

)

where numContigsWithStatsi =(numContigsWithStatsi,c,l), numContigsWithStatsi,c,l = |{ j∈ contigsFromTrani : coverage j =

c,contigLen j = l}|. Note that contigsFromTran′12 = contigsFromTran1 ∪̇ contigsFromTran2 so the rightmost products
of factors cancel and we get:

=

(
numContigsFromTran′12
numContigsWithStats′12

)(
tranLen′12+1−∑ j∈contigsFromTran′12

contigLen j

numContigsFromTran′12
)

(
expr′12+tranLen′12−readLen

expr′12
)

∏i∈{1,2}
(numContigsFromTrani

numContigsWithStatsi
)(

tranLeni+1−∑ j∈contigsFromTrani
contigLen j

numContigsFromTrani
)

(expri+tranLeni−readLen
expri

)

= ρ1ρ2ρ3

We consider each of the three factors separately.
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First,

ρ1 =

(numContigsFromTran′12
numContigsWithStats′12

)
∏i∈{1,2}

(numContigsFromTrani
numContigsWithStatsi

)
=

numContigsFromTran′12!
∏c ∏l numContigsWithStats′12,c,l !

numContigsFromTran1!numContigsFromTran2!
∏c ∏l numContigsWithStats1,c,l !numContigsWithStats2,c,l !

Note that numContigsFromTran′12 = numContigsFromTran1+numContigsFromTran2 and numContigsWithStats′12,c,l =
numContigsWithStats1,c,l +numContigsWithStats2,c,l , so we can rearrange:

ρ1 =

numContigsFromTran′12!
numContigsFromTran1!numContigsFromTran2!

∏c ∏l
numContigsWithStats′12,c,l !

numContigsWithStats1,c,l !numContigsWithStats2,c,l !

=

(numContigsFromTran′12
numContigsFromTran1

)
∏c ∏l

(numContigsWithStats′12,c,l
numContigsWithStats1,c,l

)
Second,

ρ2 =

(tranLen′12+1−∑ j∈contigsFromTran′12
contigLen j

numContigsFromTran′12

)
∏i∈{1,2}

(tranLeni+1−∑ j∈contigsFromTrani contigLen j
numContigsFromTrani

)

=

(tranLen′12+1−∑ j∈contigsFromTran′12
contigLen j)!

numContigsFromTran′12!(tranLen′12+1−∑ j∈contigsFromTran′12
contigLen j−numContigsFromTran′12)!

∏i∈{1,2}
(tranLeni+1−∑ j∈contigsFromTrani contigLen j)!

numContigsFromTrani!(tranLeni+1−∑ j∈contigsFromTrani contigLen j−numContigsFromTrani)!

=
1(numContigsFromTran′12

numContigsFromTran1

)
(tranLen′12+1−∑ j∈contigsFromTran′12

contigLen j)!

(tranLen′12+1−∑ j∈contigsFromTran′12
contigLen j−numContigsFromTran′12)!

∏i∈{1,2}
(tranLeni+1−∑ j∈contigsFromTrani contigLen j)!

(tranLeni+1−∑ j∈contigsFromTrani contigLen j−numContigsFromTrani)!

=

(tranLen′12+1−∑ j∈contigsFromTran′12
contigLen j)

(numContigsFromTran′12)

∏i∈{1,2} (tranLeni+1−∑ j∈contigsFromTrani contigLen j)(numContigsFromTrani)(numContigsFromTran′12
numContigsFromTran1

)
where (n)(k) = n!/(n− k)!.
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Third,

ρ3 =

1

(
expr′12+tranLen′12−readLen

expr′12
)

∏i∈{1,2}
1

(expri+tranLeni−readLen
expri

)

=
∏i∈{1,2}

(expri+tranLeni−readLen
expri

)
(expr′12+tranLen′12−readLen

expr′12

)
=

∏i∈{1,2}
(expri+tranLeni−readLen)!
expri!(tranLeni−readLen)!

(expr′12+tranLen′12−readLen)!
expr′12!(tranLen′12−readLen)!

=

(
expr′12
expr1

)
∏i∈{1,2}

(expri+tranLeni−readLen)!
(tranLeni−readLen)!

(expr′12+tranLen′12−readLen)!
(tranLen′12−readLen)!

=

(
expr′12
expr1

)
∏i∈{1,2} (tranLeni− readLen+1)(expri)

(tranLen′12− readLen+1)(expr′12)

since expr′12 = expr1 + expr2. Here (n)(k) = n · (n+1) · · ·(n+ k−1) = (n+ k−1)!/(n−1)!, so that

(expri + tranLeni− readLen)!
(tranLeni− readLen)!

=
((tranLeni− readLen+1)+(expri)−1)!

((tranLeni− readLen+1)−1)!

= (tranLeni− readLen+1)(expri)

Thus, in summary:

P(contig,coverage,contigsFromTrans′|trans′,expr′)
P(contig,coverage,contigsFromTrans|trans,expr)

=

(numContigsFromTran′12
numContigsFromTran1

)
∏c ∏l

(numContigsWithStats′12,c,l
numContigsWithStats1,c,l

)
(tranLen′12+1−∑ j∈contigsFromTran′12

contigLen j)
(numContigsFromTran′12)

∏i∈{1,2} (tranLeni+1−∑ j∈contigsFromTrani contigLen j)(numContigsFromTrani)(numContigsFromTran′12
numContigsFromTran1

)
·
(

expr′12
expr1

)
∏i∈{1,2} (tranLeni− readLen+1)(expri)

(tranLen′12− readLen+1)(expr′12)

=

(tranLen′12+1−∑ j∈contigsFromTran′12
contigLen j)

(numContigsFromTran′12)

∏i∈{1,2} (tranLeni+1−∑ j∈contigsFromTrani contigLen j)(numContigsFromTrani)

∏c ∏l
(numContigsWithStats′12,c,l

numContigsWithStats1,c,l

) (
expr′12
expr1

)
∏i∈{1,2} (tranLeni− readLen+1)(expri)

(tranLen′12− readLen+1)(expr′12)
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The log odds is:

logP(contig,coverage,contigsFromTrans′|trans′,expr′)− logP(contig,coverage,contigsFromTrans|trans,expr)

= log

(tranLen′12 +1− ∑
j∈contigsFromTran′12

contigLen j)

(numContigsFromTran′12)


−

 ∑
i∈{1,2}

log

(tranLeni +1− ∑
j∈contigsFromTrani

contigLen j)

(numContigsFromTrani)


−

(
∑
c

∑
l

log
(

numContigsWithStats′12,c,l
numContigsWithStats1,c,l

))

+ log
(

expr′12
expr1

)
+

(
∑

i∈{1,2}
log
(
(tranLeni− readLen+1)(expri)

))

− log
(
(tranLen′12− readLen+1)(expr′12)

)
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4.1.4 Summary of the log odds

In summary,

logP(contig,coverage,contigsFromTrans, trans,expr, reads)− logP(contig,coverage,contigsFromTrans′, trans′,expr′, reads)

=

(
expr′12 logexpr′12− ∑

j∈{1,2}
expr j logexpr j

)
−
(

expr′12 log(tranLen′12− readLen+1)− ∑
j∈{1,2}

expr j log(tranLen j− readLen+1)
)

+
1
2

lognumReads

− log
(

µ0(1− p0)
r0

numReads ·numTrans

)
+

(
log
(

tranLen′12 + r0−1
tranLen′12

)
− ∑

i∈{1,2}
log
(

tranLeni + r0−1
tranLeni

))

+

(
tranLen′12− ∑

i∈{1,2}
tranLeni

)
log(p0/4)

+ log

(tranLen′12 +1− ∑
j∈contigsFromTran′12

contigLen j)

(numContigsFromTran′12)


−

 ∑
i∈{1,2}

log

(tranLeni +1− ∑
j∈contigsFromTrani

contigLen j)

(numContigsFromTrani)


−

(
∑
c

∑
l

log
(

numContigsWithStats′12,c,l
numContigsWithStats1,c,l

))

+ log
(

expr′12
expr1

)
+

(
∑

i∈{1,2}
log
(
(tranLeni− readLen+1)(expri)

))

− log
(
(tranLen′12− readLen+1)(expr′12)

)

4.2 How should one choose tranLen′?

We use the same notation from the previous subsection.

Claim: If one joins transcripts 1 and 2 into a single transcript 12, then J is maximized by setting tranLen′12 =
tranLen1 + tranLen2, i.e., by setting tranLen′12 as small as possible.

Proof: We look at all the terms of the log odds logP(contig,coverage,contigsFromTrans′, trans′,expr′, reads)−logP(contig,coverage,contigsFromTrans, trans,expr, reads)
that include tranLen′12. The terms that include tranLen′12 are:

1. First, the term−expr′12 log(tranLen′12−readLen+1) is contributed by logP(reads|trans′,expr′)−logP(reads|trans,expr).

2. Second, the terms
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(i) log
(tranLen′12+r0−1

tranLen′12

)
+ log((r0−1)!) and

(ii) tranLen′12 log(p0/4)

are contributed by logP(trans′,expr′)− logP(trans,expr). (We added the log((r0−1)!) term because part of the
log binomial coefficient this is constant wrt tranLen′12.)

3. Third, the terms

(i) log(tranLen′12 +1−∑ j∈contigsFromTran′12
contigLen j)(numContigsFromTran′12)

and

(ii) − log(tranLen′12− readLen+1)(expr′12)

are contributed by logP(contig,coverage,contigsFromTrans′|trans′,expr′)−logP(contig,coverage,contigsFromTrans|trans,expr)

We want to find the tranLen′12 that maximizes the sum of these terms. To make this easier, we will treat the tranLen′12
as a real number and take derivatives. We will also use the following shorthand:

1. t = tranLen′12.

2. x = expr′12.

3. a = readLen−1.

4. b = r0−1.

5. c = log(p0/4).

6. d = 1−∑ j∈contigsFromTran′12
contigLen j.

7. h = numContigsFromTran′12.

(Note: t,x,a,b,h are positive, while c and d are negative. Also we require that t > (1−d)+1 = d.) The objective is:

J(tranLen′12) =−expr′12 log(tranLen′12− readLen+1)+ log
(

tranLen′12 + r0−1
tranLen′12

)
+ log((r0−1)!)+ tranLen′12 log(p0/4)

+ log(tranLen′12 +1− ∑
j∈contigsFromTran′12

contigLen j)

(numContigsFromTran′12)

− log(tranLen′12− readLen+1)(expr′12)

i.e.,

J(t) =−x log(t−a)+ log
(

t +b
t

)
+ log(b!)+ tc+ log(t +d)(h)− log(t−a)(x)

Note:

1. log
(t+b

t

)
+ log(b!) = log((t +b)!)− log(t!)− log(b!)+ log(b!) = log((t +b)!)− log(t!) = log[1 ·2 · · ·(t +b)]−

log[1 ·2 · · · t] = ∑
t+b
i=1 log(i)−∑

t
i=1 log(i) = ∑

t+b
i=t+1 log(i) = ∑

b
i=1 log(t + i).

2. log(t +d)(h) = log[(t+d)!/(t+d−h)!] = log[(t+d−h+1) ·(t+d−h+2) · · ·(t+d)] =∑
h
i=1 log(t+d−h+ i).

3. log(t−a)(x) = log[(t−a) · (t−a+1) · · ·(t−a+ x−1)] = ∑
x−1
i=0 log(t−a+ i) = ∑

x
i=1 log(t−a+1+ i).

So:

J(t) =−x log(t−a)+

(
b

∑
i=1

log(t + i)

)
+ tc+

(
h

∑
i=1

log(t +d−h+ i)

)
−

(
x

∑
i=1

log(t−a+1+ i)

)
And the derivative:

J′(t) =− x
t−a

+

(
b

∑
i=1

1
t + i

)
+ c+

(
h

∑
i=1

1
t +d−h+ i

)
−

(
x

∑
i=1

1
t−a+1+ i

)
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4.3 How to choose which transcripts to merge?

For the default Trinity assembly on the real Trinity mouse data, there are about 50000 contigs. There are about
500002/2 = 1,250,000,000 pairs of contigs. Thus any approach that requires us to compute something for all pairs is
a nonstarter. This rules out looking at all pairs of contigs and deciding which ones to merge based on some pairwise
criterion.

Instead, we will (i) build an ordered list of contigs and (ii) decide which ones to merge based on the list. This requires
us to find some bounds. I.e., we want to be able to say that if two contigs differ more than a certain amount according
to the list’s ordering criterion, then combining them will be a bad idea.
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EXTRA STUFF

4.3.1 How does (Contigs,Coverage,ContigsFromTrans)|{Reads,Trans,Expr} change when we join two transcripts
together?

Recall that

P(contigs,coverage,contigsFromTrans|reads, trans,expr)
= P(numContigsFromTran|trans,expr)
·P(contigsFromTran|numContigsFromTran, trans,expr)
·P(coverage|contigsFromTran,numContigsFromTran, trans,expr)
·P(contigLen|coverage,contigsFromTrans, trans,expr)
·P(contig|contigLen,coverage,contigsFromTrans, trans,expr)

We will address each of these separately.

4.3.1.1 How does P(numContigsFromTran|trans,expr) change when we join two transcripts together? Note

logP(numContigsFromTran|trans,expr)− logP(numContigsFromTran′|trans′,expr′)

=

[
numTrans

∑
i=1

logBinomial(numContigsFromTrani|tranLeni,αi(1−αi)
readLen−ws)

]

−

[
numTrans′

∑
i=1

logBinomial(numContigsFromTran′i|tranLen′i,α
′
i (1−α

′
i )

readLen−ws)

]
= logBinomial(numContigsFromTran1|tranLen1,α1(1−α1)

readLen−ws)

+ logBinomial(numContigsFromTran2|tranLen2,α2(1−α2)
readLen−ws)

− logBinomial(numContigsFromTran′12|tranLen′12,α
′
12(1−α

′
12)

readLen−ws)

where αi = 1− (1− tranLen−1
i )expri .
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4.3.1.2 How does P(contigsFromTran|numContigsFromTran, trans,expr) change when we join two transcripts
together? Note

logP(contigsFromTran|numContigsFromTran, trans,expr)
− logP(contigsFromTran′|numContigsFromTran′, trans′,expr′)

=− log
(

numContigs
numContigsFromTrani : i = 1, . . . ,numTrans

)
+ log

(
numContigs

numContigsFromTran′i : i = 1, . . . ,numTrans′

)
=− log(numContigs!)+

numTrans

∑
i=1

log(numContigsFromTrani!)

+ log(numContigs!)−
numTrans′

∑
i=1

log(numContigsFromTran′i!)

= log(numContigsFromTran1!)+ log(numContigsFromTran2!)− log(numContigsFromTran′12!)
= log(numContigsFromTran1!)+ log(numContigsFromTran2!)− log((numContigsFromTran1 +numContigsFromTran2)!)

=− log
(

numContigsFromTran1 +numContigsFromTran2
numContigsFromTran1

)

4.3.1.3 How does P(coverage|contigsFromTran,numContigsFromTran, trans,expr) change when we join two tran-
scripts together? Note

logP(coverage|contigsFromTran,numContigsFromTran, trans,expr)
− logP(coverage|contigsFromTran′,numContigsFromTran′, trans′,expr′)

= log

(
numTrans

∏
i=1

∏ j∈contigsFromTrani
Geometric(coverage j|γi)

NegativeBinomial(expri|numContigsFromTrani,1− γi)

)

− log

(
numTrans′

∏
i=1

∏ j∈contigsFromTran′i
Geometric(coverage′j|γ ′i )

NegativeBinomial(expr′i|numContigsFromTran′i,1− γ ′i )

)

=

[
numTrans

∑
i=1

(
∑

j∈contigsFromTrani

logGeometric(coverage j|γi)
)
− logNegativeBinomial(expri|numContigsFromTrani,1− γi)

]

−

[
numTrans′

∑
i=1

(
∑

j∈contigsFromTran′i

logGeometric(coverage j|γ ′i )
)
− logNegativeBinomial(expr′i|numContigsFromTran′i,1− γ

′
i )

]
=
(

∑
j∈contigsFromTran1

logGeometric(coverage j|γ1)
)
− logNegativeBinomial(expr1|numContigsFromTran1,1− γ1)

+
(

∑
j∈contigsFromTran2

logGeometric(coverage j|γ2)
)
− logNegativeBinomial(expr2|numContigsFromTran2,1− γ2)

−
(

∑
j∈contigsFromTran′12

logGeometric(coverage j|γ ′12)
)
+ logNegativeBinomial(expr′12|numContigsFromTran′12,1− γ

′
12)

=− logNegativeBinomial(expr1|numContigsFromTran1,1− γ1)

− logNegativeBinomial(expr2|numContigsFromTran2,1− γ2)

+ logNegativeBinomial(expr′12|numContigsFromTran′12,1− γ
′
12)

where γi =(1−αi)
readLen−ws. The last equality holds because contigsFromTran′12 = contigsFromTran1∪contigsFromTran2.
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4.3.1.4 How does P(contigLen|coverage,contigsFromTrans, trans,expr) change when we join two transcripts to-
gether? Note

logP(contigLen|coverage,contigsFromTrans, trans,expr)
− logP(contigLen|coverage,contigsFromTrans′, trans′,expr′)

= log

numTrans

∏
i=1

∏ j∈contigsFromTrani

( coverage j−1
contigLen j−readLen

)
readLen+1

∑
tranLeni−numContigsFromTrani·readLen
L=0

(expri−numContigsFromTrani
L

)
readLen+1


− log

numTrans′

∏
i=1

∏ j∈contigsFromTran′i

( coverage j−1
contigLen j−readLen

)
readLen+1

∑
tranLen′i−numContigsFromTran′i·readLen
L=0

(expr′i−numContigsFromTran′i
L

)
readLen+1


= log

 ∏ j∈contigsFromTran1

( coverage j−1
contigLen j−readLen

)
readLen+1

∑
tranLen1−numContigsFromTran1·readLen
L=0

(expr1−numContigsFromTran1
L

)
readLen+1


+ log

 ∏ j∈contigsFromTran2

( coverage j−1
contigLen j−readLen

)
readLen+1

∑
tranLen2−numContigsFromTran2·readLen
L=0

(expr2−numContigsFromTran2
L

)
readLen+1


− log

 ∏ j∈contigsFromTran′12

( coverage j−1
contigLen j−readLen

)
readLen+1

∑
tranLen′12−numContigsFromTran′12·readLen
L=0

(expr′12−numContigsFromTran′12
L

)
readLen+1


=− log

(
tranLen1−numContigsFromTran1·readLen

∑
L=0

(
expr1−numContigsFromTran1

L

)
readLen+1

)

− log

(
tranLen2−numContigsFromTran2·readLen

∑
L=0

(
expr2−numContigsFromTran2

L

)
readLen+1

)

+ log

tranLen′12−numContigsFromTran′12·readLen

∑
L=0

(
expr′12−numContigsFromTran′12

L

)
readLen+1


If tranLeni > readLen · expri, then the denominators above are (readLen+1)expri−numContigsFromTrani , in which case,

logP(contigLen|coverage,contigsFromTrans, trans,expr)
− logP(contigLen|coverage,contigsFromTrans′, trans′,expr′)

=− log
(
(readLen+1)expr1−numContigsFromTran1

)
− log

(
(readLen+1)expr2−numContigsFromTran2

)
+ log

(
(readLen+1)expr′12−numContigsFromTran′12

)
=−(expr1−numContigsFromTran1) log(readLen+1)
− (expr2−numContigsFromTran2) log(readLen+1)
+(expr′12−numContigsFromTran′12) log(readLen+1)

= 0
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4.3.1.5 How does P(contig|contigLen,coverage,contigsFromTrans, trans,expr) change when we join two tran-
scripts together? Note

logP(contig|contigLen,coverage,contigsFromTrans, trans,expr)
− logP(contig|contigLen,coverage,contigsFromTrans′, trans′,expr′)

= log

numTrans

∏
i=1

(
numContigsFromTrani + tranLeni−∑

numContigsFromTrani
j=1 contigLen j

numContigsFromTrani

)−1


− log

numTrans′

∏
i=1

(
numContigsFromTran′i + tranLen′i−∑

numContigsFromTran′i
j=1 contigLen j

numContigsFromTran′i

)−1
=− log

(
numContigsFromTran1 + tranLen1−∑

numContigsFromTran1
j=1 contigLen j

numContigsFromTran1

)
− log

(
numContigsFromTran2 + tranLen2−∑

numContigsFromTran2
j=1 contigLen j

numContigsFromTran2

)

+ log
(

numContigsFromTran′12 + tranLen′12−∑
numContigsFromTran′12
j=1 contigLen j

numContigsFromTran′12

)
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4.4 Distribution of (Contigs,Coverage,ContigsFromTrans)|{Reads,Trans,Expr}

For the distribution of contigs (and their coverage and originating transcripts), we use a simple Lander-Waterman–like
approach (Lander and Waterman (1988)). (We could also use Bo’s approach, which is perhaps in some ways more
accurate; the approach here is mainly designed to make maximization easier later on.)

First, like in Bo’s current approach, we assume that the contigs (and coverage) are conditionally independent of the
reads, given the transcripts (and expression), i.e., in symbols:

(Contigs,Coverage,ContigsFromTrans)|{Reads,Trans,Expr}=D (Contigs,Coverage,ContigsFromTrans)|{Trans,Expr}

Recall that numReads and readLen are not random; these quantities will be very important for the distributions below.

Next, we decompose the conditional distribution of (Contigs,Coverage,ContigsFromTrans) as follows:

P(contigs,coverage,contigsFromTrans|trans,expr)
= P(numContigsFromTran|trans,expr)
·P(contigsFromTran|numContigsFromTran, trans,expr)
·P(coverage|contigsFromTran,numContigsFromTran, trans,expr)
·P(contigLen|coverage,contigsFromTrans, trans,expr)
·P(contig|contigLen,coverage,contigsFromTrans, trans,expr)

4.4.1 Distribution of NumContigsFromTran|{Trans,Expr}

We assume that the number of contigs from transcript i is conditionally independent of the number of contigs from
transcript j. So

P(numContigsFromTran|trans,expr) =
numTrans

∏
i=1

P(numContigsFromTrani|trani,expri)

Next, we find P(numContigsFromTrani|trani,expri). According to Lander-Waterman, if a transcript has length l and
expression x, then the probability it generates n contigs is Binomial(n|l,α(1−α)readLen−ws), where α = 1−(1− l−1)x

is the probability that at least one of the x reads starts at a particular position.

Reason: First:

1. l−1 is the probability that a particular read starts at a particular position, assuming a uniform RSPD, and assum-
ing (falsely) that reads can start even at the end of the transcript (otherwise it would be (l− readLen+ 1)−1).
(See Figure 3.)

2. So 1− l−1 is the probability that a particular read does not start at a particular position.

3. So (1− l−1)x is the probability that none of the x reads starts at a particular position, assuming that the read start
positions are independent.

4. So α = 1− (1− l−1)x is the probability that at least one of the x reads starts at a particular position.

Second: The “beginning of the end” of a contig occurs at position k if (i) at least one read starts at position k, and (ii)
no read starts at any of the subsequent readLen−ws positions. (See Figure 4.) Call this event Bk. The probability of
this event is α(1−α)readLen−ws, assuming (again) independence between read start positions.

Third: The number of contigs that come from a transcript is equal to the number of “beginning of the end” events
Bk that occur. If we (i) assume that the Bk are independent (so that, for example, “beginning of the end” events can
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01234567890123456789
-----
-----

[...]
----- 15 = 20 - 5
+++++
+++++
+++++
+++++
+++++ 19 = 20 - 1

Figure 3: What is the probability that a particular read starts from a particular position? Here transcript length is 20 and read length
is 5. Reads can start at positions 0, 1, . . . , 15, i.e., at 16 = 20−5+1 = tranLen− readLen+1 distinct positions. Assuming uniform
RSPD, the chance of starting at any of these positions is 1/(tranLen− readLen+ 1). Assuing, as we do for simplicity, that reads
can start even at positions 16, 17, . . . , 19, i.e., at 20 = tranLen distinct positions, the chance of starting at any of these positions is
1/tranLen.

01234567890123456789
----- Read occurs at position 2.
..... Read fails to occur at position 3.
..... Read fails to occur at position 4.
..... Read fails to occur at position 5.

Figure 4: Example of a contig ending. Here transcript length is 20, read length is 5, and window size is 2. The contig ends when
there is one read occurrence, followed by 3 = 5−2 = readLen−ws failures to occur.

occur even right next to each other), and (ii) we ignore edge effects (so that “beginning of the end” events have equal
probability even at the rightmost end of the transcript), then the probability of getting n contigs is Binomial(n|l,α(1−
α)readLen−ws). (Note: Assumption (i) is grossly incorrect. Assumption (ii) is perhaps not too bad if there are long
poly(A) tails. Alternatively, we could use the more complicated formulas found by Wendl and Barbazuk (2005), or
Bo’s approach, to take into account the edge effects. But this makes maximization more complicated later on.)

In summary:

P(numContigsFromTrani|trani,expri) = Binomial(numContigsFromTrani|tranLeni,αi(1−αi)
readLen−ws)

where αi = 1− (1− tranLen−1
i )expri is the probability that at least one of the expri reads starts at a particular position

in transcript i.

4.4.2 Distribution of ContigsFromTran|{NumContigsFromTran,Trans,Expr}

We assume that the chance of any particular assignment of contigs to transcripts, conditional on the number of contigs
from each transcript, is uniform over the relevant set. The relevant set is the assignments of numContigsFromTrani
contigs to transcript i, for each i, without replacement, where there are numContigs=∑

numTrans
i=1 numContigsFromTrani

contigs total. (numContigs is a deterministic function of numContigsFromTran.) The size of this set is given by the
multinomial coefficient. So:

P(contigsFromTran|numContigsFromTran, trans,expr) =
(

numContigs
numContigsFromTrani : i = 1, . . . ,numTrans

)−1
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4.4.3 Distribution of Coverage|{ContigsFromTrans,Trans,Expr}

First, we stipulate that the coverage of the contigs from transcript i is conditionally independent of both the other
transcripts and of the coverage of the contigs from other transcripts, conditional on the transcript i. Using the notation
X(i) = (X j : j ∈ ContigsFromTrani), this gives

P(coverage|contigsFromTrans, trans,expr)

=
numTrans

∏
i=1

P(coverage(i)|contigsFromTrani, trani,expri)

If we also, for the moment, assume that the coverages of contigs from transcript i are also conditionally independent,
letting Coverage′(i) be the conditionally independent version of the random variable, then

P(coverage′(i)|contigsFromTrani, trani,expri)

= ∏
j∈contigsFromTrani

P(coverage′j|contigsFromTrani, trani,expri)

and we can use Lander-Waterman to find P(coverage′j|contigsFromTrani, trani,expri).

According to Lander-Waterman,

P(coverage′j|contigsFromTrani, trani,expri) = Geometric(coverage′j|(1−αi)
readLen−ws).

Reason: Assume that contig j has already started, so there are currently c reads covering the left prefix of contig j, with
rightmost read starting at position k within the transcript. The contig ends, with total coverage c, if readLen−ws reads
do not occur, starting at position k+1; this happens with probability γi = (1−αi)

readLen−ws (see previous paragraph).
Thus, the chance of getting coverage c, for any c, is the chance that an event with probability γi (namely, the absence
of readLen−ws reads in a row) fails to occur c times. This is the geometric distribution with termination probability
γi. (We use the variant which includes 0 in the support, because if the termination event occurs in the first trial, then
read coverage is 0. It would be more accurate to exclude this possibility - that that would make the formulas slightly
more complicated.)

Above, we temporarily assumed that the coverages of contigs from transcript i are conditionally independent, but this
is certainly not true, because the sum of the coverages equals the expression, i.e., ∑ j∈ContigsFromTrani

Coveragei = Expri.
Therefore we instead assume that the coverages of contigs from transcript i are conditionally independent, conditional
not just on the transcript and its expression but also on the event that the sum of the coverages equals the expression,
i.e., the event Bi := {ω : ∑ j∈ContigsFromTrani

}:

P(coverage(i)|contigsFromTrani, trani,expri)

= P(coverage(i)|Bi,contigsFromTrani, trani,expri)P(Bi|contigsFromTrani, trani,expri)

+P(coverage(i)|Bc
i ,contigsFromTrani, trani,expri)P(B

c
i |contigsFromTrani, trani,expri)

= P(coverage(i)|Bi,contigsFromTrani, trani,expri)

The last equality holds because the conditional probability of Bi is stipulated to be 1.

It remains to specify P(coverage(i)|Bi,contigsFromTrani, trani,expri). We saw above that under the assumption of
conditional independence of the coverages, each coverage is conditionally distributed according to Geometric(γi).
Conditioning on Bi restricts the support of coverage(i), but does not otherwise change the distribution. Fact: In general,
if Xi ∼ Geometric(p) iid, then ∑

n
i=1 Xi ∼ NegativeBinomial(n,1− p). See the next paragraph for a proof. Applying
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this to our case,

P(coverage(i)|Bi,contigsFromTrani, trani,expri)

=
∏ j∈contigsFromTrani

Geometric(coverage j|γi)

NegativeBinomial(expri|numContigsFromTrani,1− γi)

Reason for the fact mentioned in the previous paragraph, that in general, if Xi ∼ Geometric(p) iid, then ∑
n
i=1 Xi ∼

NegativeBinomial(n,1− p): If X is a random variable, then let the MGF MX (t) = EetX . In general, if MX = MY then

X =D Y . If X is Geometric(p) and Y is NegativeBinomial(n,1− p), then MX (t)=
p

1−(1−p)et and MY (t)=
(

p
1−(1−p)et

)n
.

The MGF of ∑
n
i=1 Xi is:

M∑
n
i=1 Xi(t) = Eet ∑

n
i=1 Xi = E

n

∏
i=1

etXi =
n

∏
i=1

EetXi =
n

∏
i=1

MX (t) = MX (t)n = MY (t)

so ∑
n
i=1 Xi =D Y as claimed.

In summary:

P(coverage|contigsFromTrans, trans,expr)

=
numTrans

∏
i=1

P(coverage(i)|contigsFromTrani, trani,expri)

=
numTrans

∏
i=1

P(coverage(i)|Bi,contigsFromTrani, trani,expri)

=
numTrans

∏
i=1

∏ j∈contigsFromTrani
Geometric(coverage j|γi)

NegativeBinomial(expri|numContigsFromTrani,1− γi)

4.4.4 Distribution of ContigLen|{Coverage,ContigsFromTrans,Trans,Expr}

Just as for the coverage, we assume that the contig lengths for contigs from one transcript are conditionally independent
of other transcripts and their contigs:

P(contigLen|coverage,contigsFromTrans, trans,expr)

=
numTrans

∏
i=1

P(contigLen(i)|coverage(i),contigsFromTrani, transi,expri)

Also, just as for the coverage, we (i) find how the contig lengths for a particular transcript would be distributed
assuming conditional independence even among contigs from a single transcript, (ii) reinstatement of the dependence,
by restricting the domain of the joint distribution and normalizing.

Let Ai be the event {ω : Coverage(i) = coverage(i),ContigsFromTrani = contigsFromTrani,Transi = transi,Expri =
expri}.

4.4.4.1 (i) The distribution, assuming conditional independence even among contigs from a single transcript
Let ContigLen′(i) be the conditionally independent version of ContigLen(i).

Recall (a) that we are assuming that all reads from a transcript start (i) independently of each other and (ii) uniformly
along the length of the transcript, including even at the end of the transcript. I.e., the probability that a particular read
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r from transcript i starts at position k of transcript i is tranLen−1
i , independently of all other reads. Recall also (b) that,

by definition, each contig is a contiguous collection of reads, in the sense that, if one enumerates the reads involved in
this contig from left to right, there is always at least ws bases of overlap between each adjacent (in the enumeration)
read. See Figure 5 for an example.

Consider a contig j from transcript i. Due to item (b), contig j’s length contigLen′j must be between readLen and
readLen · coverage j. Moreover, each possible way to arrange the coverage j reads involved in contig j consistent with
item (b) is equally likely, due to item (a). Therefore, the conditional probability of contig j having length contigLen′j
is proportional to the number of ways the coverage j reads can be arranged into a contig of length contigLen′j. In
symbols,

P(contigLen′j|Ai) =
numArrangements(coverage j,contigLen′j, readLen)

∑
readLen·coverage j
l=readLen numArrangements(coverage j, l, readLen)

Here numArrangements need not be considered to include different permutations of read identities, since doing so
would just introduce the same factor coverage j! in both the numerator and denominator. (Cf. Figure 5.)

Claim: numArrangements(coverage j,contigLen′j, readLen) =
( coverage j−1

contigLen′j−readLen

)
readLen+1

, where

(
n
k

)
N
=


0 if n < 0 or k < 0 or k > (N−1) ·n
1 if n = 0 and k = 0

∑
N−1
j=0

(n−1
k− j

)
N

otherwise

Proof: Fix an enumeration of the coverage j reads involved in contig j from left to right, as described in item (b)
above. Each read can be thought to “newly contribute” a certain number of bases, in the sense that no previous (in
the enumeration) read covers these bases, but the read in question does cover them. See Figure 6 for an example. The
first (and leftmost) read always contributes readLen bases. Each remaining read can contribute between 0 bases (if it
completely overlaps the previous read) and readLen bases (if it starts just after the previous read), assuming that we
require window size of 0.

For each arrangement a of the reads, let x = x(a) be the corresponding “new-contribution” vector, i.e., xr is the
number of bases newly contributed by read r in the arrangement. Note that there is a 1-1 correspondence between
arrangements a and new-contribution vectors x. Thus the number of arrangements of the reads into a contig of length
contigLen′j is equal to the number of valid new-contribution vectors, i.e., the number of vectors x ∈ {readLen}×
{0, . . . , readLen}coverage j−1 such that ∑

coverage j−1
r=1 xr = contigLen′j.

How many such new-contribution vectors are there? The first read always newly covers readLen bases. Each new-
contribution vector says how to allocate the remaining contigLen′j− readLen bases among the remaining coverage j−1
reads, allowing at most readLen positions to be allocated to each read. We can think of the bases as being unlabelled,
in the sense that the new-contribution vectors do not keep track of which specific (identified) bases are newly covered
by each read, but rather just how many bases are newly covered by each read. We can think of the reads as being
labelled, in the sense that each new-contribution vector says how many bases are newly contributed by each read
which is labelled by its position within the (fixed) enumeration. Thus, the number of new-contribution vectors is the
number of distinct ways in which k := contigLen′j− readLen balls (i.e., bases) can be allocated to n := coverage j−1
urns (i.e., reads), allowing at most N−1 := readLen balls (i.e., bases) to fall in each urn (i.e., read). It is known that the
number of ways to do this is

(n
k

)
N : see comments by N-E. Fahssi from OEIS entries http://oeis.org/A008287

and http://oeis.org/A035343, and cf. also Fahssi (2012).

For empirical evidence of the claim, see howManyWaysToCoverAContig.py. �

Claim: ∑
readLen·coverage j
l=readLen numArrangements(coverage j, l, readLen) = (readLen+1)coverage j−1.
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0123456 contig
aaaaa
bbbbb

ccccc

0123456 contig
aaaaa
bbbbb
ccccc

0123456 contig
aaaaa

bbbbb
ccccc

Figure 5: All the ways to get a contig of length 7 from 3 reads of length 5, when we do not consider read identity. If we consider
read identity, then the number of ways is multiplied by 3!.

Proof: Note that
readLen·coverage j

∑
l=readLen

numArrangements(coverage j, l, readLen)

=

readLen·coverage j

∑
l=readLen

(
coverage j−1
l− readLen

)
readLen+1

=

readLen·(coverage j−1)

∑
l=0

(
coverage j−1

l

)
readLen+1

the (coverage j−1)th row sum of the array with entries (n,k)=
(n

k

)
readLen+1. It is a fact (see http://oeis.org/A027907

for the trinomial case) that these row sums are n 7→ Nn, i.e., in our case, the (coverage j−1)th row sum is (readLen+
1)coverage j−1.

For empirical evidence, see howManyWaysToCoverAContig.py. �

Plugging in from the claims,

P(contigLen′j|Ai) =
numArrangements(coverage j,contigLen′j, readLen)

∑
readLen·coverage j
l=readLen numArrangements(coverage j, l, readLen)

=

(
coverage j−1

contigLen′j− readLen

)
readLen+1

(readLen+1)−(coverage j−1)

(Note: This is essentially Eq. (2.4) in Fahssi (2012), with k := coverage j − 1, n := contigLen′j − readLen, a :=
(1,1, . . . ,1) ∈ NreadLen+1, and N := readLen+1.)

(Miscellaneous note: The mean and variance of ContigLen′j|Ai are

E(ContigLen′j|Ai) = readLen · (coverage j +1)/2

Var(ContigLen′j|Ai) = readLen · (readLen+2) · (coverage j−1)/12

See howManyWaysToCoverAContig.py.)

4.4.4.2 (ii) The distribution, with the conditional dependence reinstated by restricting the support of the joint
distribution and normalizing. When we reinstate conditional dependence, we need to take into account the fact that
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012345678901 contig
----- contributes 5 new bases

..--- contributes 3 new bases

..... contributes 0 new bases
....- contributes 1 new bases

..--- contributes 3 new bases

Figure 6: How many bases does each read contribute to a contig? Here contig length is 12 and read length is 5. Newly contributed
bases in each read are marked by -, and other bases are marked by .. For example, read 1 starts at position 0 and read 2 starts at
position 3, so read 2 contributes 3−0 = 3 bases.

∑ j∈contigsFromTrani
contigLen j ≤ tranLeni, i.e., the support is smaller than when we assumed conditional independence.

This does not affect the numerator of the pmf given in the last section, i.e., numArrangements(coverage j,contigLen′j, readLen)
[assuming that the transcript is longer than the contig], since the number of arrangements was calculated without ref-
erence to the other contigs. In other words,

P(contigLen(i)|Ai) =
∏ j∈contigsFromTrani

numArrangements(coverage j,contigLen j, readLen)
denomi

=
∏ j∈contigsFromTrani

( coverage j−1
contigLen j−readLen

)
readLen+1

denomi

for contigLen(i) such that ∑ j∈contigsFromTrani
contigLen j ≤ tranLeni.

However, since the support is smaller, the reinstatement of conditional dependence does affect the denominator.
Specifically, the denominator is

denomi = ∑
l:∑ j l j≤tranLeni

∏
j∈contigsFromTrani

numArrangements(coverage j, l j, readLen)

= ∑
l:∑ j l j≤tranLeni

∏
j∈contigsFromTrani

(
coverage j−1
l j− readLen

)
readLen+1

where the ∑ j is short for ∑ j∈contigsFromTrani
. This is the total number of ways to arrange coverage j1 reads into a contig

of length l j1 , and coverage j2 reads into a contig of length l j2 , etc., for all contigs jk from transcript i, subject to the
total length of all the contigs from transcript i being less than or equal to the length of transcript i.

In order to evaluate denomi, we use the following “Vandermonde convolution” identity from Fahssi (2012), Table 1:

∑
i+ j=n

(
r
i

)
N

(
s
j

)
N
=

(
r+ s

n

)
N

Applying this to our case,

∑
l j1+l j2=L

(
coverage j1 −1
l j1 − readLen

)
readLen+1

(
coverage j2 −1
l j2 − readLen

)
readLen+1

= ∑
l j1+l j2=L−2·readLen

(
coverage j1 −1

l j1

)
readLen+1

(
coverage j2 −1

l j2

)
readLen+1

=

(
coverage j1 + coverage j2 −2

L−2 · readLen

)
readLen+1
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and by applying this recursively

∑
l:∑ j l j=L

∏
j∈contigsFromTrani

(
coverage j−1
l j− readLen

)
readLen+1

=

(
(∑ j coverage j)−numContigsFromTrani

L−numContigsFromTrani · readLen

)
readLen+1

Thus, plugging in,

denomi = ∑
l:∑ j l j≤tranLeni

∏
j∈contigsFromTrani

(
coverage j−1
l j− readLen

)
readLen+1

=
tranLeni

∑
L=0

∑
l:∑ j l j=L

∏
j∈contigsFromTrani

(
coverage j−1
l j− readLen

)
readLen+1

=
tranLeni

∑
L=0

(
(∑ j coverage j)−numContigsFromTrani

L−numContigsFromTrani · readLen

)
readLen+1

=
tranLeni−numContigsFromTrani·readLen

∑
L=0

(
(∑ j coverage j)−numContigsFromTrani

L

)
readLen+1

=
tranLeni−numContigsFromTrani·readLen

∑
L=0

(
expri−numContigsFromTrani

L

)
readLen+1

a partial row sum. (See howManyWaysToCoverAContig.py for empirical verification of this formula.)

Recall from the definition of the polynomial coefficients
(n

k

)
N that if k > (N− 1) · n, then the coefficient is 0. Thus,

in the sum above, if L > readLen · (expri− numContigsFromTrani), then the Lth term is 0. Therefore, if tranLeni >
readLen · expri, then the partial row sum will be a full row sum, and denomi = (readLen+1)expri−numContigsFromTrani .

Thus

P(contigLen(i)|Ai) =
∏ j∈contigsFromTrani

numArrangements(coverage j,contigLen j, readLen)
denomi

=
∏ j∈contigsFromTrani

( coverage j−1
contigLen j−readLen

)
readLen+1

∑
tranLeni−numContigsFromTrani·readLen
L=0

(expri−numContigsFromTrani
L

)
readLen+1

for contigLen(i) such that ∑ j∈contigsFromTrani
contigLen j ≤ tranLeni.

In summary,

P(contigLen|coverage,contigsFromTrans, trans,expr)

=
numTrans

∏
i=1

P(contigLen(i)|coverage(i),contigsFromTrani, transi,expri)

=
numTrans

∏
i=1

∏ j∈contigsFromTrani

( coverage j−1
contigLen j−readLen

)
readLen+1

∑
tranLeni−numContigsFromTrani·readLen
L=0

(expri−numContigsFromTrani
L

)
readLen+1
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4.4.5 Distribution of Contig|{ContigLen,Coverage,NumContigsFromTrani,Trani,Expri)}

Again, we assume that the contigs from one transcript are conditionally independent of other transcripts and their
contigs:

P(contig|contigLen,coverage,contigsFromTrans, trans,expr)

=
numTrans

∏
i=1

P(contig(i)|contigLen(i),coverage(i),contigsFromTrani, transi,expri)

We stipulate that P(contig(i)|contigLen(i),coverage(i),numContigsFromTrani, trani,expri) is uniform over the relevant
set. The relevant set is defined by two constraints on the contigs: (i) each contig is a contiguous subsequence of its
transcript, and (ii) all the contigs are disjoint subsequences. Note that we do not admit the possibility that contigs
might be erroneous wrt the transcripts. So the relevant set is the set of possible contig placements subject to these
constraints.

In each contig placement, there are k = (tranLeni−∑
numContigsFromTrani
j=1 contigLen j) uncovered bases. For now, fix one

ordering of the contigs. Each uncovered base can be placed before contig 1, after contig 1, after contig 2, . . . , after
contig numContigsFromTrani, i.e., at any of n = (numContigsFromTrani +1) relative positions. The number of ways
of placing uncovered bases in such relative positions, where the different uncovered bases are treated as equivalent (so
order doesn’t matter), is equal to the number of multisets of k elements, each chosen with replacement from n choices,
namely,

(n+k−1
k

)
. See numPositions.R and Figure 7.

Therefore the conditional probability of the contig placements, and hence of the contigs, is

P(contig(i)|contigLen(i),coverage(i),numContigsFromTrani, trani,expri)

=

(
n+ k−1

k

)−1

=

(
n+ k−1

n−1

)−1

=

(
numContigsFromTrani + tranLeni−∑

numContigsFromTrani
j=1 contigLen j

numContigsFromTrani

)−1
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Column 0 Column 1 Column 2
-------- -------- --------

transcript: 012345678901234567890 01234567890123456789 0123456789012345678
contigs: xxxxxxxyyyyyzzzzzz 000

xxxxxxx yyyyyzzzzzz 001
xxxxxxxyyyyy zzzzzz 002
xxxxxxxyyyyyzzzzzz 003 xxxxxxxyyyyyzzzzzz 00
xxxxxxx yyyyyzzzzzz 011
xxxxxxx yyyyy zzzzzz 012
xxxxxxx yyyyyzzzzzz 013 xxxxxxx yyyyyzzzzzz 01
xxxxxxxyyyyy zzzzzz 022
xxxxxxxyyyyy zzzzzz 023 xxxxxxxyyyyy zzzzzz 02
xxxxxxxyyyyyzzzzzz 033 xxxxxxxyyyyyzzzzzz 03 xxxxxxxyyyyyzzzzzz 0
xxxxxxx yyyyyzzzzzz 111
xxxxxxx yyyyy zzzzzz 112 xxxxxxx yyyyyzzzzzz 11
xxxxxxx yyyyyzzzzzz 113
xxxxxxx yyyyy zzzzzz 122
xxxxxxx yyyyy zzzzzz 123 xxxxxxx yyyyy zzzzzz 12
xxxxxxx yyyyyzzzzzz 133 xxxxxxx yyyyyzzzzzz 13 xxxxxxx yyyyyzzzzzz 1
xxxxxxxyyyyy zzzzzz 222 xxxxxxxyyyyy zzzzzz 22
xxxxxxxyyyyy zzzzzz 223
xxxxxxxyyyyy zzzzzz 233 xxxxxxxyyyyy zzzzzz 23 xxxxxxxyyyyy zzzzzz 2
xxxxxxxyyyyyzzzzzz 333 xxxxxxxyyyyyzzzzzz 33 xxxxxxxyyyyyzzzzzz 3
[same, with order xzy] [same, with order xzy] [same, with order xzy]
[same, with order yxz] [same, with order yxz] [same, with order yxz]
[same, with order yzx] [same, with order yzx] [same, with order yzx]
[same, with order zxy] [same, with order zxy] [same, with order zxy]
[same, with order zyx] [same, with order zyx] [same, with order zyx]

Column 3 Column 4 Column 5
-------- -------- --------

transcript: 012345678901234567890 01234567890123456789 0123456789012345678
contigs: xxxxxxxyyyyyyyyyyy 000

xxxxxxx yyyyyyyyyyy 001
xxxxxxxyyyyyyyyyyy 002 xxxxxxxyyyyyyyyyyy 00
xxxxxxx yyyyyyyyyyy 011
xxxxxxx yyyyyyyyyyy 012 xxxxxxx yyyyyyyyyyy 01
xxxxxxxyyyyyyyyyyy 022 xxxxxxxyyyyyyyyyyy 02 xxxxxxxyyyyyyyyyyy 0
xxxxxxx yyyyyyyyyyy 111
xxxxxxx yyyyyyyyyyy 112 xxxxxxx yyyyyyyyyyy 11
xxxxxxx yyyyyyyyyyy 122 xxxxxxx yyyyyyyyyyy 12 xxxxxxx yyyyyyyyyyy 1
xxxxxxxyyyyyyyyyyy 222 xxxxxxxyyyyyyyyyyy 22 xxxxxxxyyyyyyyyyyy 2
[same, with order yx] [same, with order yx] [same, with order yx]

Figure 7: Each column shows a transcript, in the first line, and all possible contig placements, in the remaining line. Each contig
placement is shown both (i) according to which bases of the transcript each contig covers, with contig 1 = xxxxxxx, contig 2 =
yyyyy, and contig 3 = zzzzzz, and also (ii) according to its vector of relative positions of uncovered bases, where 0 = “before
contig 1” and i = “after contig i. For example, “ xxxxxxxyyyyy zzzzzz” and “002” represent the same contig placement.
We get the following number of contig placements:
- In column 0, where n = 4,k = 3, there are 20 =

(4+3−1
3
)

placements.
- In column 1, where n = 4,k = 2, there are 10 =

(4+2−1
2
)

placements.
- In column 2, where n = 4,k = 1, there are 4 =

(4+1−1
1
)

placements.
- In column 3, where n = 3,k = 3, there are 10 =

(3+3−1
3
)

placements.
- In column 4, where n = 3,k = 2, there are 6 =

(3+2−1
2
)

placements.
- In column 5, where n = 3,k = 1, there are 3 =

(3+1−1
1
)

placements.
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4.4.6 Summary of the distribution of (Contigs,Coverage,ContigsFromTrans)|{Reads,Trans,Expr}

In summary,

P(contigs,coverage,contigsFromTrans|reads, trans,expr)
= P(contigs,coverage,contigsFromTrans|trans,expr)
= P(numContigsFromTran|trans,expr)
·P(contigsFromTran|numContigsFromTran, trans,expr)
·P(coverage|contigsFromTran,numContigsFromTran, trans,expr)
·P(contigLen|coverage,contigsFromTrans, trans,expr)
·P(contig|contigLen,coverage,contigsFromTrans, trans,expr)

=

[
numTrans

∏
i=1

Binomial(numContigsFromTrani|tranLeni,αi(1−αi)
readLen−ws)

]

·

[(
numContigs

numContigsFromTrani : i = 1, . . . ,numTrans

)−1
]

·

[
numTrans

∏
i=1

∏ j∈contigsFromTrani
Geometric(coverage j|γi)

NegativeBinomial(expri|numContigsFromTrani,1− γi)

]

·

[
numTrans

∏
i=1

∏ j∈contigsFromTrani

( coverage j−1
contigLen j−readLen

)
readLen+1

∑
tranLeni−numContigsFromTrani·readLen
L=0

(expri−numContigsFromTrani
L

)
readLen+1

]

·

[
numTrans

∏
i=1

(
numContigsFromTrani + tranLeni−∑

numContigsFromTrani
j=1 contigLen j

numContigsFromTrani

)−1]
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