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S

We consider mixture models in which the components of data vectors from any given
subpopulation are statistically independent, or independent in blocks. We argue that if,
under this condition of independence, we take a nonparametric view of the problem and
allow the number of subpopulations to be quite general, the distributions and mixing
proportions can often be estimated root-n consistently. Indeed, we show that, if the data
are k-variate and there are p subpopulations, then for each p�2 there is a minimal value
of k, k

p
say, such that the mixture problem is always nonparametrically identifiable, and

all distributions and mixture proportions are nonparametrically identifiable when k�k
p
.

We treat the case p=2 in detail, and there we show how to construct explicit distribution,
density and mixture-proportion estimators, converging at conventional rates. Other values
of p can be addressed using a similar approach, although the methodology becomes rapidly
more complex as p increases.

Some key words: Bandwidth; Curve estimation; Independent marginals; Kernel methods; Nonparametric
density estimation.

1. I

Suppose a population consists of p different subpopulations, and that the sampled data
from each subpopulation are vectors of length k. It is of interest to estimate the k-variate
distributions of the subpopulation and the values of the mixing proportions. In the
conventional, parametric approach, models are fitted to the distributions of the p sub-
populations, and model parameters, as well as the mixing proportions, are estimated, for
example by maximum likelihood; see Everitt & Hand (1981, Ch. 2), Titterington et al.
(1985, Ch. 4), McLachlan & Basford (1988, Ch. 2, 4), Lindsay (1995, Ch. 3) and
McLachlan & Peel (2000, Ch. 2).
In the present paper we shall show that, for each p�2, there is a minimal k=k

p
such

that, provided k�k
p
and the marginals are independent, and the mixing proportions are

all distinct, the marginal distributions and the mixing probabilities are identifiable in a
nonparametric sense. Moreover, they are estimable root-n consistently. Implications of
the assumption of independent marginals, and ways in which it can be relaxed, will be
discussed shortly. These results imply that, from at least one point of view, the ‘curse of
dimensionality’ works in reverse.
One portion of our proof of this result is explictly constructive. We suggest a general

method that might be used to construct, from the mixture distribution, all the unknown
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marginal distributions of subpopulation components, and the mixing proportions, if the
problem does in fact have a solution. Furthermore, we prove that this method must lead
to a unique solution if k is at least as large as some finite k

p
. The definition of k

p
, here

and below, refers to our particular method; different methods may have different minimal
values of k for which nonparametric identifiability is feasible. However, finiteness of the
minimal k for one method implies finiteness for any method that gives the least possible k.
On the other hand, showing that k

p
is always finite is not so straightforward. Our

approach to solving this problem is based on algebraic geometry and uses classical
invariant theory, that is the theory of polynomial functions invariant under a group action.
Next we address the assumption that all component populations have independent

marginals. If the models are Gaussian then, even if p is as small as 2, there are k2+3k+1
unknowns to be estimated. To reduce this number it is typically assumed that the marginal
distributions are independent. In operational terms, this amounts to accepting a degree
of bias in return for a reduction in variance; see for example Rindskopt & Rindskopt
(1986), Thompson & Walter (1988), Walter (1988), Valenstein (1990), Torrance-Rynard
& Walter (1997) and Hui & Zhou (1998). The condition of independence can be imposed
on the same pragmatic grounds in a nonparametric setting.
However, the condition holds exactly in some contexts. For example, it has been

argued that observed dependencies in genetic behaviour are caused by populations being
mixtures, rather than comprising a single type; and that, when an appropriate mixture
model is employed, properties of different genes will indeed be independent within each
subpopulation. The most suitable model for genetic behaviour in such a population would
therefore be the one discussed above, where each subpopulation has independent
marginals; see for example Cardon & Palmer (2003).
In some approaches to latent class analysis in sociology, a degree of dependence is

permitted within classes which are otherwise assumed to be independent. This context
motivates a generalisation of our model for completely independent marginals, which we
now discuss.
Suppose that the set of indices {1, . . . , k} can be partitioned into disjoint subsets

S1 , . . . ,Sk∞ , where 2∏k∞∏k, and that, for each subpopulation, this partition decomposes
a data vector into k∞ mutually independent subvectors. Then, provided k∞�k

p
, the follow-

ing is true. For each subpopulation and each 1∏l∏k∞, the joint distribution of com-
ponents with indices inS

l
can be estimated root-n consistently from data from the mixture.

Also, if S
l
contains s

l
�1 indices, the joint density of components with indices in S

l
can

be estimated at the standard rate pertaining to nonparametric density estimation in s
l

dimensions. In particular, if the density of the s
l
-variate data subvector has t

l
bounded

derivatives, then the L 2 convergence rate of a density estimator, computed from a sample
of size n, is n−2tl/(sl+2tl). For a given subpopulation, by multiplying together distribution
or density estimators corresponding to the k∞ subsets of indices, we obtain estimators that
converge at the L 2 rate n−1, in the distribution case, or rate maxl n−2tl/(sl+2tl), for the
density. Furthermore, the mixing proportions can be estimated root-n consistently. For
the sake of brevity we shall not explore this setting explicitly, although doing so is
straightforward.
In related work, Hettmansperger & Thomas (2000) and Thomas & Hettmansperger

(2001) treated inference in mixtures by reducing multivariate data to binomial or multi-
nomial responses. The latter cases are effectively parametric, and can be addressed in
relatively conventional ways. Woodward et al. (1995) introduced minimum Hellinger
distance methods for estimating mixture proportions. Leroux (1992) and Chen &
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Kalbfleisch (1996) discussed maximum-penalised likelihood methods for inference about
mixtures. Lindsay (1994, 1995) described minimum Hellinger distance methods and
likelihood-based methods. There have been many studies of methods for estimating
mixture proportions; see for example Windham & Cutler (1992), who drew connections
to cluster analysis. Hall & Zhou (2003) discussed the case p=2 in the context of the
present paper, but proposed only implicit methods that are awkward to implement. By
way of contrast, the techniques here are explicit and easy to use. The case p=3 is addressed
in the 2005 Australian National University Ph.D thesis of R. Pakyari

2. D    

2·1. Inversion of mixture models

Let (p1 , . . . , pp ) denote a p-variate multinomial distribution with none of the component
probabilities vanishing, and let F

ji
, for 1∏ i∏k and 1∏ j∏p, be continuous univariate

distribution functions. The mixture model,

p
1
a
k

i=1
F
1i
+ . . .+p

p
a
k

i=1
F
pi
=W, (2·1)

implies a set of lower-dimensional submodels,

p
1
a
l

m=1
F
1i
m

+ . . .+p
p
a
l

m=1
F
pi
m

=W
i
1
...il
, (2·2)

where 1∏l∏k, 1∏ i1< . . .< il∏k, and Wi
1
...il
denotes the l-variate ‘marginal distri-

bution of W corresponding to vector components with indices i1 , . . . , il . Our ultimate goal
is to show how to estimate the univariate distributions F

ji
, and the mixing probabilities p

j
,

in (2·1), using only data from the k-variate distribution W and making no parametric
assumption about the distributions F

ji
. In § 2·2, however, our aim is to show how (2·1)

may be ‘inverted’ to express the F
ji
’s and the p

j
’s in terms of the functions W

i
1
...il
.

In the sense that the order of the p populations can always be permuted, there are
always p! solutions to this problem. Assuming that no two of the p

i
’s are identical, we

can remove this redundancy by insisting that p1< . . .<pp . Nevertheless, the potential
redundancy will always make an appearance in terms of solutions for the distributions
F
ji
and probabilities p

j
.

Our approach is to view equation (2·2) as representing kp unknown functions F
ji
,

expressed in terms of the estimable functions W
i
1
...il
, and to solve the equations for the

unknowns. If p1 , . . . , pp are given, we require at least kp such equations, and, if we are to
estimate p1 , . . . , pp as well, we need at least kp+1 equations in all. The number of different
equations of the type (2·2) is 2k−1, and so we need 2k−1�kp+1. The least value of k,
k∞
p
say, for which this is possible is given by k∞

p
=3, 4, 5, 5, 5, 6, . . . , 6 for p=2, 3, 4, . . . , 10,

respectively. The least value of k, k
p
say, for which equations (2·2) have a unique solutions

in the F
ji
’s and the p

j
’s, must satisfy k

p
�k∞
p
. In the Appendix we derive a bound in the

other direction, outlining the route taken by a proof that k
p
is no larger than a quantity

which equals {1+o (1)}6p log p as p increases.
Let D

ji
=F
ji
−W
i
and

Y
i
1
...i
r

=W
i
1
...i
r

− ∑
r−1

s=2
Y
i
1
...i
s

W
i
s+1
...i
rCArsBD−Wi1 . . . Wir ,
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where the tensor-like notation

CArsBD
indicates that the corresponding term Y

i
1
...i
s

W
i
s+1
...i
r

, and all

ArsB−1
other terms of like construction, are included at that point. Then it may be shown from
(2·2) that

p
1
a
l

m=1
D
1i
m

+ . . .+p
p
a
l

m=1
D
pi
m

=Y
i
1
...il
, (2·3)

where Y
i
1
...il
is an explicitly-defined functional of W

r
1
...r
s

, for 1∏s∏l, r1< . . .<rs
and {r1 , . . . , rs}k{i1 , . . . , il}. The simplest case is l=2, for which Yi

1
i
2

=W
i
1
i
2

−W
i
1

W
i
2

.
If we eliminate the pth population, using D

pi
=−p−1

p
W

j∏p−1
p
j
D
ji
, then we obtain,

for l�2,

p
1
a
l

m=1
D
1i
m

+ . . .+p
p−1
a
l

m=1
D
p−1,i
m

− (−p
p
)−(l−1) a

l

m=1
A ∑p−1
j=1
p
j
D
ji
mB=Yi1...il .

(2·4)

Thus, we have reduced the 2k−1 equations (2·2), involving kp unknowns F
ji
, for 1∏ j∏p

and 1∏ i∏k, to the 2k−k−1 equations (2·4), involving k( p−1) unknowns D
ji
, for

1∏ j∏p−1 and 1∏ i∏k, without losing the essential character of (2·2), which is that all
the unknowns are on the left-hand side and only directly estimable quantities are on the
right. Further ‘simplifications,’ based on other low-dimensional versions of (2·2) for l�2,
are algebraically very complex, however.

2·2. T he case p=2
Put Y

i
1
i
2

=W
i
1
i
2

−W
i
1

W
i
2

, for 1∏ i1 , i2∏k with i1N i2 , and assume that, for each
1∏ i∏k, there exist i1 and i2 , with neither value equal to i, such that Yi

1
i
2

does not vanish
identically. Then

F
1i
=±Ap2Yii1Yii2p

1
Y
i
1
i
2

BD+Wi , F2i=AAp1Yii1Yii2p
2
Y
i
1
i
2

BD+Wi . (2·5)

The + and − signs in (2·5) are of course chosen respectively; switching from (+,−) to
(−,+) amounts only to interchanging the two populations in the mixture. The quantities
of which we take the square root at (2·5) are always nonnegative, and in fact
Y
ii
1

Y
ii
2

/Y
i
1
i
2

=p
1
p
2
(F
1i
−F
2i
)2.

Formula (2·5) implies that we may express F
1i
and F

2i
as

F
1i
=A1−p1p

1
BD x1i+Wi , F2i=A p11−p

1
BD x2i+Wi , (2·6)

where x
1i
and x

2i
are known functionals of W1 , . . . , Wk and of Wi

1
i
2

, for 1∏ i1 , i2∏k. If F1i
and F

2i
are given by (2·6), then equations (2·2) with l=1 and l=2 become

x
1i
+x
2i
¬0, x

1i
1

x
1i
2

¬Y
i
1
i
2

, (2·7)
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respectively. Result (2·7) has two consequences. First, no matter how large the value of k,
the univariate and bivariate forms of (2·2) contain no information about p1 or p2 .
Secondly, Y

i
1
i
2

factorises into the product of its ‘marginals’.
As a prelude to determining p1 , and hence p2=1−p1 , from the trivariate distributions
defined by taking l=3 at (2·2), we make the following assumption.

Assumption 1. There exists a triple (i1 , i2 , i3 ), and a point (xi
1

, x
i
2

, x
i
3

), such that
Y
i
1
i
2

(x
i
1

, x
i
2

)Y
i
2
i
3

(x
i
2

, x
i
3

)Y
i
1
i
3

(x
i
1

, x
i
3

)N0.

Note that the product Y
i
1
i
2

Y
i
2
i
3

Y
i
1
i
3

is always nonnegative; it equals

(p
1
p
2
)3 (F
1i
1

−F
2i
1

)2 (F
1i
2

−F
2i
2

)2 (F
1i
3

−F
2i
3

)2 .

For any such triple (i1 , i2 , i3 ), and for the respective choices of the + and − signs in the
definition of F

ji
at (2·5),

A1−p1p
1
BD (2p1−1)=±Wi1 |Yi2i3 |+Wi2 |Yi1i3 |+Wi3 |Yi1i2 |+Wi1Wi2Wi3−Wi1i2i3(Y

i
1
i
2

Y
i
2
i
3

Y
i
1
i
3

)D
,

(2·8)

where W
i
and Y

i
1
i
2

are interpreted as W
i
(x
i
) and Y

i
1
i
2

(x
i
1

, x
i
2

), respectively. The left-hand
side of (2·8) is strictly increasing in pµ(0, 1

4
(1+5D )]. Therefore, provided we choose the

+ or − sign so that the right-hand side of (2·8) is not strictly positive, p1 is uniquely
determined as an element of (0, 1

2
]. In this way we determine the lesser of p1 and p2 , as

well as the sign we should take at (2·5) in order that this lesser value should equal p1 .

3. E p
j
, F
ji

 f
ji

 p=2
3·1. Estimators of p

j
and F

ji
Suppose that we observe k-variate dataX

m
= (X

m1
, . . . , X

mk
), for 1∏m∏n, drawn from

the mixture distribution W defined at (2·1) with p=2, and suppose for definiteness that
p1<p2 . Our estimators of Fji and pj are based on replacing Wj

1
...jl
and Y

j
1
...jl
at (2·5) and

(2·8) by their canonical estimators, and averaging over points of the sample space for
which the resulting denominators are not too close to zero. In particular, our estimator
of p1 is p@1 , the unique solution in (0, 12] of the equation

A1−p@1p@
1
BD (2p@1−1)=− 6

k(k−1)(k−2)dS
1
(e
1
)d

× K∑ ∑ ∑
i
1
<i
2
<i
3

P
S
1
(e
1
)

r@
1
(x
i
1

, x
i
2

, x
i
3

)

r@
2
(x
i
1

, x
i
2

, x
i
3

)
dx
i
1

dx
i
2

dx
i
3K , (3·1)

where the series is taken over all

Ak3B
triples {i1 , i2 , i3}k{1, . . . , k} with i1< i2< i3 , S1 (e1 ) denotes the set of (xi

1

, x
i
2

, x
i
3

) such
that r@

2
(x
i
1

, x
i
2

, x
i
3

)>e
1
, dSd denotes the l-variate content of an l-variate set S, e1>0

is a small positive constant,

r@
1
=WC
i
1

|YC
i
2
i
3

|+WC
i
2

|YC
i
1
i
3

|+WC
i
3

|YC
i
1
i
2

|+WC
i
1

WC
i
2

WC
i
3

−WC
i
1
i
2
i
3

,
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r@
2
=|YC

i
1
i
2

YC
i
2
i
3

YC
i
1
i
3

|D , WC
i
1
...il
is the empirical distribution function of the l-variate

data (X
mi
1

, . . . , X
mil
), for 1∏m∏n, and YC

i
1
i
2

=WC
i
1
i
2

−WC
i
1

WC
i
2

. Our estimator of p2 is of
course p@2=1−p@1 . Section 4 will suggest empirical methods for choosing thresholds, and
Theorem 1 will show that the rate of convergence of estimators is largely unaffected by
threshold choice.
If the sign of the triple series at (3·1) is positive then our estimator of F

1i
(x
i
) is

FC
1i
(x
i
)=WC

i
(x
i
)−GC

i
(x
i
), where

GC
i
(x
i
)=

2

(k−1)(k−2)
∑ ∑

i
1
<i
2
:i
1
NiNi
2

1

dS
2i
1
i
2

(e
2
)d

×P
S
2i1i2
(e
2
)
Kp@2YC ii1 (xi , xi1 )YC ii2 (xi , xi2 )p@1YC i

1
i
2

(x
i
1

, x
i
2

) KD dxi1dxi2 ,
the series is taken over all

Ak−12 B
pairs {i1 , i2}k{1, . . . , k} with i1< i2 and i1N iN i2 , S2i

1
i
2

(e
2
) is the set of (x

i
1

, x
i
2

) such
that |YC

i
1
i
2

(x
i
1

, x
i
2

)|>e
2
, and e2>0 is a small positive constant. In this case our estimator

of F
2i
is FC
2i
=WC
i
+ (p@1/p@2 )GC i . On the other hand, if the sign of the triple series at (3·1)

is negative then our estimators of F
1i
and F

2i
are FC

1i
=WC
i
+GC
i
and FC

2i
=WC
i
− (p@1/p@2 )GC i .

The complexity of the calculations will grow like k2 as k increases.
These estimators will generally not themselves be distribution functions. This difficulty

may be overcome by renormalising, as follows. Let FC denote either FC
1i
or FC
2i
, and put

FB (u)=maxq infv�u FC (v), 0rN sup−2<v<2
FC (v).

Then, provided sup FC>0, FB is a distribution function. In this manner we define FB
1i
and FB

2i
.

The theorem below, proved in the Appendix, shows that FC
ji
and FB

ji
are both uniformly

consistent for F
ji
, and converge at rate O

p
(n−D ).

T 1. Assume the mixture model (2·1) for p=2 and k�3, that each of the distri-
butions F

ji
is continuous, that Assumption 1 holds, and that p1<p2 . Suppose too that the

thresholds e1 and e2 satisfy

0<e
1
< max
i
1
<i
2
<i
3

max
(x
i1
,x
i2
,x
i3
)
|Y
i
1
i
2

(x
i
1

, x
i
2

)Y
i
2
i
3

(x
i
2

, x
i
3

)Y
i
1
i
3

(x
i
1

, x
i
3

)|D,

0<e
2
< min
1∏i∏k

max
i
1
<i
2
:i
1
NiNi
2

max
(x
i1
,x
i2
)
|Y
i
1
i
2

(x
i
1

, x
i
2

)|.

T hen |p@1−p1 |=Op (n−D ), and, for 1∏ i∏k and j=1, 2,

sup
−2<x<2

{|FC
ji
(x)−F

ji
(x)|+|FB

ji
(x)−F

ji
(x)|}=O

p
(n−D ).

3·2. Density estimation

Note that, by (2·5),

f
1i
=±

1

2A p
2

p
1
|Y
i
1
i
2

|BDAKYii2Y
ii
1

KDY(1,0)ii1 + KYii1Yii
2

KDY(1,0)ii2 B+wi ,
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where

Y(1,0)
i
1
i
2

=
∂
∂x
i
1

Y
i
1
i
2

(x
i
1

, x
i
2

)=W(1,0)
i
1
i
2

(x
i
1

, x
i
2

)−w
i
1

(x
i
1

)W
i
2

(x
i
2

).

Estimators of w
i
(x
i
) and W(1,0)

i
1
i
2

(x
i
1

, x
i
2

) are

w@
i
(x
i
)=
1

nh
∑
n

m=1
KAxi−Xmih B ,

WC (1,0)
i
1
i
2

(x
i
1

, x
i
2

)=
1

nh
∑
n

m=1
KAxi1−Xmi1h B I(Xmi2∏xi2 ),

where K is a kernel and h a bandwidth. Our estimator of Y(1,0)
i
1
i
2

is

YC (1,0)
i
1
i
2

=WC (1,0)
i
1
i
2

−w@
i
1

WC
i
2

,

giving the following estimator of f
1i
(x
i
):

f@
1i
(x
i
)=w@
i
(x
i
)+SC
i
(x
i
)

1

(k−1)(k−2)
∑ ∑

i
1
<i
2
:i
1
NiNi
2

1

dS
ii
1
i
2

(e
3
)d

×P
S
ii1i2
(e
3
)
q p@

2
p@
1
|YC
i
1
i
2

(x
i
1

, x
i
2

)|rDqKYC ii2 (xi , xi2 )YC
ii
1

(x
i
, x
i
1

)KDYC (1,0)ii1 (xi , xi1 )
+ KYC ii1 (xi , xi1 )YC

ii
2

(x
i
, x
i
2

)KDYC (1,0)ii2 (xi , xi2 )r dxi1dxi2 ,
where SC

i
(x
i
)=±1 according as FC

1i
(x
i
)=WC

i
(x
i
)±GC

i
(x
i
), the summation is over all

Ak−12 B
pairs {i1 , i2}k{1, . . . , k} with i1< i2 and i1N iN i2 , and S

ii
1
i
2

(e
3
) denotes the set of

(x
i
1

, x
i
2

) such that

min{|YC
ii
1

(x
i
, x
i
1

)|, |YC
ii
2

(x
i
, x
i
2

)|, |YC
i
1
i
2

(x
i
1

, x
i
2

)|}>e
3
.

Thus, S
ii
1
i
2

(e
3
) depends on the value of x

i
.

The density estimator f@
1i
has asymptotic bias and variance properties similar to those

of a conventional kernel-type estimator. In particular, its bias is of size h2 and its variance
is of size (nh)−1. Details are given in a longer version of this paper, obtainable from the
authors.

4. N 

4·1. Simulation study

The results reported here were all obtained using the following approach to choosing
tuning parameters, including both thresholds and bandwidths. Fit a Gaussian model by
maximum likelihood, assuming the components are independent; compute the resulting
estimates of marginal means and variances, and of the mixing proportions; by simulation
from the Gaussian model with parameters set equal to these estimated values, choose the
optimal values of tuning parameters; and then apply the nonparametric method suggested
in § 3.
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We shall summarise simulation studies in three cases, in each of which p=2, k=3 and
the two populations are identical except for a shift of location. Excepting location, each
component population was either a product of three standard normal distributions,
referred to below as the normal model, or a product of three Student’s t distributions with
10 degrees of freedom, referred to as the t (10) model, or a product of three double
exponential distributions with density 1

2
e−|x|, referred to as the Laplace model. In these

respective cases, the difference between the mean vectors of the two 3-variate distributions
were chosen to be (3, 4, 5), c (3, 4, 5) and (3, 3, 3), respectively, where c denotes the constant
for converting the t (10) noncentrality parameter into its mean.
Of course, only in the first case was our method for choosing tuning parameters applied

under the correct model. In each setting we took n=500. By averaging over 300 samples
we computed numerical approximations to root mean integrated squared errors, shown
in Figs 1 and 2, for estimators of the marginal distributions and marginal densities,
respectively. In each case the value is depicted as a function of the mixing proportion, p1 ,
graphed on the horizontal axis in the interval [0·1, 0·4]. Performance of the density
estimators was surprisingly constant, depending relatively little on choice of the type of
marginal distribution or on the mixing proportion.
However, in the case of distribution estimation the method has somewhat greater

difficulty with the Laplace distribution than with either of the other two. Also, when

Fig. 1: Simulation study. Root mean integrated squared errors of non-
parametric estimators of marginal distribution functions for normal, dotted
lines, t(10), solid lines, and Laplace, dot-dashed lines, models. Panels (a), (c)
and (e) depict plots of root mean integrated squared errors against the mixing
proportion p1 , for estimates of the three marginal distributions of the first
component. Panels (b), (d) and (f ) do the same for the second component.
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the method is applied to the estimation of F
2i
, performance tends to deteriorate as p1

increases from 0·1 to 0·4. There are two reasons for this. First, as p1 increases, the second
subpopulation is observed less often, and so there is less information about it. Secondly,
when p1 is relatively close to 0·5, any estimator in this setting tends to confuse the two
subpopulations; recall that the ‘first’ subpopulation is distinguished as the one that has
the smaller mixing probability. As p1 is increased beyond 0·5 this confusion diminishes,
and performance improves a little, as long as p1 is not too large. For p1>0·75, however, the
scarcity of data from the second subpopulation becomes a major issue, and performance
deteriorates badly.
The results discussed in the previous two sentences are apparent from Figs 1(a), (c)

and (e), given the symmetry of the problem; the results mentioned in the earlier two
sentences can be seen in Figs 1(b), (d) and (f ).
For brevity we do not give plots of root mean squared errors of estimators of p1 . The

plots would show relatively constant performance over all values of p1 . Indeed, given the
different nature of the problem of estimating p1 , it is clear that p@1 should be afflicted
relatively little by the difficulties noted two paragraphs above. In the case of the Laplace
model bias has little impact on the error of estimates of p1 , but for the other two models
the errors arising from bias and error-about-the-mean are similar.
In the case of the normal model, our nonparametric estimator of p1 performs very

similarly to its parametric counterpart. When the subpopulation in question is sampled

Fig. 2: Simulation study. Root mean integrated squared errors of non-
parametric estimators of marginal density functions for normal, dotted lines,
t(10), solid lines, and Laplace, dot-dashed lines, models. Panels (a), (c) and (e)
depict plots of root mean integrated squared errors against the mixing
proportion p1 , for estimates of the three marginal distributions of the first
component. Panels (b), (d) and (f ) do the same for the second component.
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from with relatively high probability, the nonparametric estimators of marginal distri-
butions tend to be superior to their parametric versions. This relationship is reversed,
however, when the subpopulation is encountered only relatively rarely.

4·2. Real-data example: L eptograpsus crabs

Campbell & Mahon (1974) collected and analysed 100 Leptograpsus crabs from each
of two species, in Fremantle, Western Australia. Five measurements of morphological
characteristics were made for each crab. To simplify our analysis we discarded the last
two of these measurements; the three measurements remaining were the width of the
frontal lip of the carapace, the rear width of the carapace and the length along the midline
of the carapace, the carapace being the outer, uppermost, hard shell of the crab.
We pooled the data from both species into a single sample of size 200, and repeatedly

resampled datasets of size n=50, without replacement, from the pooled sample. To each
dataset obtained in this way we fitted a two-population mixture model, using our non-
parametric methods to estimate the mixing proportion p and the marginal distribution
functions. Since p=2 and k=k

p
=3, we have sufficiently many components to justify a

nonparametric approach.
We also fitted a Gaussian mixture model under the assumption of independent com-

ponents, as well as a Gaussian model where the components were arbitrarily related.
These two models involved 13 and 19 parameters, respectively.
Mean squared errors were then computed by comparison with the empirical ‘truth’

represented by the pooled dataset. Of course, the true value of p was 1
2
; the true marginal

distribution functions were taken to be their empirical counterparts computed from all
200 data.
Figure 3 shows the mean integrated squared errors of estimators of marginal distri-

butions for the nonparametric approach and for both parametric methods. The mean
squared errors of estimators of the mixing proportion were 0·0011, 0·0083 and 0·0365 in
the cases of the nonparametric, 13-parameter and 19-parameter normal fits, respectively.

Fig. 3. Mean integrated squared errors of marginal distribution estimators by
fitting three models for the crabs dataset; (a) first component, (b) second

component.
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The nonparametric method gave the best results overall, followed by the Gaussian model
with independent components, and then by the more general Gaussian model. This order
is preserved if, in our sampling experiment, the average proportion of males in the samples
of size 50 is taken to lie anywhere between 0·1 and 0·9. Of course, the high variability of
a 19-parameter fit, in the case of a sample of size only 50, has strongly influenced the
result. As indicated in § 1, one of the motivations for our approach is to reduce dimension
in problems such as this.
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A

T echnical details

Derivation of upper bound for k
p
. The proof is based on properties of solutions of polynomial

equations. In broad terms, such arguments are becoming more popular in statistics; see for example
Pistone et al. (2001). In brief, our proof is as follows. Let n= (n0 , . . . , nk ) denote a vector for which
n0=1 and each other ni is either 0 or 1. Consider the polynomial function

y
n
(x)= ∑

p

j=1
a
k

i=0
xn
iji
,

where x is the matrix of values x
ji
. In view of the mixture model (2·1), we have in mind x

j0
=p
j

and x
ji
=F
ji
for 1∏ i∏k and 1∏ j∏p. However, making this specialisation obscures the argument

at this point. We consider y
n
to be a function from R(k+1)p to R.

Our constraints on n imply that there are just 2k functions y
n
. Let S

p
denote the set of all

permutations of the integers 1, . . . , p. Write B for the set of all S
p
-orbits in R(k+1)p ; that is, to

form B we identify in R(k+1)p any two points which differ by a permutation sµS
p
. Let y denote

the mapping from B to R2k sending xµR(k+1)p to the vector of the 2k entries y
n
(x). Then it may

be proved that for each fixed value of p there exists a finite integer k( p) with the property that, if
k�k( p), y is a birational transformation on to its image. In particular the coordinates of yµB
are expressible, as quotients of polynomial functions, in terms of the coordinates of y(y). Details
are given by Elmore et al. (2005).
Our proof gives an explicit value for k( p), satisfying k( p)~6p log p as p increases. This is
undoubtedly larger than the minimal value, k

p
, but it nevertheless proves that k

p
<2. The rational

function, or quotient of polynomials, form of the functions, and in particular the functions’
smoothness, implies that if we perturb the image by O

p
(n−1/2 ) then its inverse will be perturbed

by O
p
(n−1/2 ). This implies the root-n consistency of our estimators of p

j
and F

ji
.

Sketch proof of T heorem 1. Conventional methods show that, for l=1, 2, 3,

sup |WC
i
1
...il
−W
i
1
...il
|=O

p
(n−1/2 ).

Therefore, sup |YC
i
1
i
2

−Y
i
1
i
2

|=O
p
(n−1/2 ) and sup |r@

j
−r
j
|=O

p
(n−1/2 ), where r1 and r2 denote

respectively the numerator and the denominator in the ratio on the right-hand side of (2·8). From
this property and (2·8) it may be proved that the right-hand side of (3·1) equals

{(1−p1 )/p1}1/2 (2p1−1)+Op (n−1/2 ).

This result, and the definition of p@1 , imply that p@1=p1+Op (n−1/2 ).
It follows from the definition of GC

i
that sup |GC

i
−G
i
|=O

p
(n−1/2 ), where G

i
=p2 |F1i−F2i |. This

property, and the fact that F
1i
=W
i
±G
i
, where the + and − signs are taken according as these

signs are needed at (2·8) to ensure that the right-hand side there is not strictly positive, may be
used to prove, first, that sup |FC

ji
−F
ji
|=O

p
(n−1/2 ) and thence that sup |FB

ji
−F
ji
|=O

p
(n−1/2 ). %
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