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Abstract: We propose an algorithm for nonparametric estimation for
finite mixtures of multivariate random vectors that is not, but that strongly
resembles, a true EM algorithm. The vectors are assumed to have inde-
pendent coordinates conditional upon knowing which mixture component
from which they come, but otherwise their density functions are completely
unspecified. Sometimes, the density functions may be partially specified by
Euclidean parameters, a case we call semiparametric. Our algorithm is much
more flexible and easily applicable than existing algorithms in the literature;
it can be extended to any number of mixture components and any number of
vector coordinates of the multivariate observations. Thus it may be applied
even in situations where the model is not identifiable, so care is called for
when using it in situations for which identifiability is difficult to establish
conclusively. Our algorithm yields much smaller mean integrated squared
errors than an alternative algorithm in a simulation study. In another ex-
ample using a real dataset, it provides new insights that extend previous
analyses. Finally, we present two different variations of our algorithm, one
stochastic and one deterministic, and find anecdotal evidence that there is
not a great deal of difference between the performance of these two variants.

Keywords: EM algorithm, kernel density estimation, multivariate mixture,
nonparametric mixture.
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1 Introduction and motivating example

Suppose the vectors X1, . . . ,Xn are a simple random sample from a finite
mixture of m > 1 arbitrary distributions. The density of each Xi may be
written

gϕ(xi) =
m∑

j=1

λjφj(xi), (1)

where xi ∈ Rr; ϕ = (λ,φ) = (λ1, . . . , λm, φ1, . . . , φm) denotes the parame-
ter; and the λj are positive and sum to unity. We assume that the φj are
drawn from some family F of multivariate density functions (say, absolutely
continuous with respect to Lebesgue measure). Model (1) is not identifiable
if no restrictions are placed on F , where by “identifiable” we mean that gϕ

has a unique representation of the form (1) and we do not consider that
“label-switching” — i.e., reordering the m pairs (λ1, φ1), . . . , (λm, φm) —
produces a distinct representation.

A common restriction placed on F , which we adopt throughout this
article, is that each joint density φj(·) is equal to the product of its marginal
densities. In other words, the coordinates of the Xi vector are independent,
conditional on the subpopulation or component (φ1 through φm) from which
Xi is drawn. Therefore, model (1) becomes

gϕ(xi) =
m∑

j=1

λj

r∏
k=1

fjk(xik), (2)

where the function f(·), with or without subscripts, will always denote a
univariate density function. If the fjk(·) are assumed to come from a partic-
ular parametric family of densities, then standard univariate mixture model
techniques (cf. MacLachlan and Peel, 2000 or Titterington et al., 1985) may
easily be extended to the multivariate case. However, we wish to avoid the
parametric assumption; in this article, we introduce an algorithm for esti-
mating the parameter vector ϕ in model (2), where we do not assume that
fjk(·) comes from a family of densities that may be indexed by a finite-
dimensional parameter vector.

Some authors (e.g., Hall and Zhou, 2003) consider model (2) in its full
generality. Others (e.g., Hettmansperger and Thomas, 2000) consider the
special case in which the density fjk(·) does not depend on k — that is,
in which the Xi are not only conditionally independent but identically dis-
tributed as well:

gϕ(xi) =
m∑

j=1

λj

r∏
k=1

fj(xik), (3)
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What distinguishes model (2) from model (3) is the assumption in the latter
that fj1(·) = · · · = fjr(·) for all j. In some situations, however, this assump-
tion may be too restrictive; yet we may not wish to employ the fully general
model because there is reason to assume that some of the fj1(·), . . . , fjr(·)
are the same. For instance, in the water-level dataset discussed later in this
section, there are r = 8 coordinates per observation, yet because of the ex-
perimental methodology used to collect the data, it is reasonable to assume
that the eight coordinates may be organized into four blocks of two each,
where the densities within each block are identical but we do not assume a
priori that the four blocks share a common density function.

Thus, in order to encompass both the special case (3) and the more
general case (2) simultaneously in this article, we introduce one further
bit of notation: We will allow that the coordinates of Xi are conditionally
independent and there exist blocks of coordinates that are also identically
distributed. These blocks may all be of size one so that case (2) is still
covered, or there may exist only a single block of size r, which is case (3).
If we let bk denote the block to which the kth coordinate belongs, where
1 ≤ bk ≤ B and B is the total number of such blocks, then equation (2) is
replaced by

gϕ(xi) =
m∑

j=1

λj

r∏
k=1

fjbk
(xik). (4)

With so many different subscripts, the notation itself can become an im-
pediment to understanding. Thus, we will remain consistent in our use of
notation and terminology throughout the article. In particular, we use the
terms component and coordinate only to refer, respectively, to one of the dis-
tributions (subpopulations) making up the mixture and one of the repeated
measurements making up an observation. The indices i, j, k, and ` will
always denote a generic individual, component, coordinate, and block, re-
spectively. Therefore, we will always have 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ r,
and 1 ≤ ` ≤ B. (Also note that m, r, and B stand for mixture compo-
nents, repeated measurements, and blocks, and of course n has its usual
interpretation as the sample size.)

To further elucidate model (4), consider as an example an experiment
involving 405 children aged 11 to 16 years subjected to a water-level task
as described by Thomas et al. (1993). Each child is presented with eight
rectangular vessels on a sheet of paper, each tilted to one of r = 8 clock-hour
orientations: in order of presentation to the subjects, these orientations are
11, 4, 2, 7, 10, 5, 1, and 8 o’clock. Each vessel was on a separate sheet
of paper and appeared much like the small reproductions in the plots of
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Block 2:  2:00 and 8:00 orientations
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Block 3:  4:00 and 10:00 orientations
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Block 4:  5:00 and 11:00 orientations
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Figure 1: The water-level data are analyzed using our algorithm, assuming
model (4) with three mixture components (m = 3) and four coordinate blocks
(B = 4) in which opposite clock-face orientations are assumed to lead to
conditionally independent and identically distributed responses. The means
and standard deviations are for interpretation only; they are not part of the
model, which is fully nonparametric except for the mixing proportions λj.

Figure 1 (see Thomas et al., 1993, p. 40). The children’s task was to draw
a line representing the surface of still liquid in the closed, tilted vessel in
each picture. Each such line describes two points of intersection with the
sides of the vessel, and the acute angle, in degrees, formed between the
horizontal and the line passing through these two points was measured for
each response. The sign of each such measurement was taken to be the sign
of the slope of the line.

This water-level dataset and our analysis of it will be described in fur-
ther detail in Section 5.2; for now, we state only that we know of no other
algorithm currently capable of producing similar results. Some methods
have been proposed that could potentially be extended to this case (Hall et
al., 2005; Qin and Leung, 2006), but they appear to be extremely compli-
cated computationally for m > 2 or r > 3. Some other methods have been
proposed that could handle this number of components and repeated mea-
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surements — indeed, the same dataset has been analyzed by other authors
(Hettmansperger and Thomas, 2000; Elmore et al., 2004) — yet all these
methods rely on the assumption that the r = 8 coordinates are all identi-
cally distributed. Our method, by contrast, is simple to program and easily
generalizable to any values m and r for which model (2) is identifiable.

In Section 2 of this article, we offer a fuller discussion of previous work
in this area, including the vexing issue of identifiability. We introduce our
algorithm in Section 3 and describe several modifications of the basic al-
gorithm and model in Section 4. Section 5 is devoted to empirical study
of the algorithm, both through simulation studies and through analysis of
real datasets. Whenever possible in Section 5, we compare our method with
results of other known methods.

2 Identifiability and previous work

An interesting question is how restrictive the assumptions on fjbk
(·) must

be in order to ensure that the model (4) is identifiable. For instance, in the
univariate (r = 1) case, Bordes et al. (2006) and Hunter et al. (2007) found
that when fj(x) = f(x− µj) for some density f(·) that is symmetric about
zero, the mixture density gϕ(x) admits a unique representation whenever
m ≤ 3, except in certain special cases that are easily enumerable.

In the multivariate case, Hall and Zhou (2003) showed that for two com-
ponents (m = 2), model (2), the most general case of model (4) in which
bk = k for all k, is always identifiable as long as r ≥ 3, even though no
assumptions are made about the form of the densities. In fact, model (2) is
a case in which the conditions necessary for identifiability get less restrictive
as the dimension r increases; or, as Hall et al. (2005) put it, this is a case in
which “from at least one point of view, the ‘curse of dimensionality’ works
in reverse.”

We use the term “nonparametric” to describe the case in which no as-
sumptions are made about the form of the fjbk

(·) even though the parameter
λ is of course Euclidean. We reserve the term “semiparametric” for the case
in which fjbk

(·) is partly specified by a finite-valued parameter, such as the
case discussed above in which fj(x) = f(x− µj) for a symmetric but other-
wise completely unspecified density f(·). Note that Lindsay (1995) speaks of
“nonparametric mixture modeling” in a different sense: The family F from
which the component densities come is fully specified up to a parameter θ,
but the mixing distribution from which the θ are drawn, rather than having
finite support of known cardinality m as in the present article, is assumed
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to be completely unspecified a priori.
When bk = k for all k, several authors have recently addressed the prob-

lem of estimating the fjbk
in model (4). Yet the estimation methods they

propose appear to apply in only very limited cases. Qin and Leung (2006)
and Leung and Qin (2006) adapt the exponential tilt model of Anderson
(1979) and apply their methods to the cases when m = 2 and r = 2 or
r = 3. Hall et al. (2005) give estimators based on inversion of mixture
models that apply only to the case when m = 2 and r = 3. Analytical
difficulties appear to hinder the application of either of these methods be-
yond these cases. Even in the case r = 1, where restrictions as described
at the beginning of Section 2 must be placed on fj(·) in order to ensure
identifiability, the estimation methods of Bordes et al. (2006) and Hunter
et al. (2007) are difficult if not impossible to apply beyond the case m = 2.
We discuss this case in Section 4.3 and use it as the basis for the numerical
example of Section 5.3.

By contrast, in the case of continuous data when bk = 1 for all k — that
is, the case of conditionally independent and identically distributed coordi-
nates — several other authors (Hettmansperger and Thomas, 2000; Cruz-
Medina et al., 2004; Elmore et al., 2004) have developed a different estima-
tion method. This method, the cutpoint approach, discretizes the continuous
measurements by replacing each observation (xi1, . . . , xir) by a multinomial
vector (n1, . . . , np), where

na =
r∑

k=1

I{ca−1 < xik ≤ ca}, 1 ≤ a ≤ p,

and the cutpoints −∞ = c0 < c1 < · · · < cp =∞ are specified by the exper-
imenter. The cutpoint approach is completely general in the sense that it
can be applied to any number of components m and any number of repeated
measures r, just as long as r ≥ 2m − 1, a condition that guarantees iden-
tifiability (Elmore and Wang, 2003). However, some information is lost in
the discretization step and for this reason it becomes difficult to easily ob-
tain density estimates of the component densities. Furthermore, even if the
assumption of conditional independence is warranted, the extra assumption
of identically distributed coordinates may not be; and the cutpoint method
collapses when the coordinates are not identically distributed.

Here, we take a different approach and adapt an algorithm of Bordes et
al (2007). Originally, this algorithm is presented as a stochastic algorithm
for the particular univariate case of model (1) under the assumption that
φj(x) = f(x − µj) for some symmetric density f(x). We demonstrate how
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to extend the algorithm to model (4) and eliminate the stochasticity. Our
algorithm combines the best features of all the algorithms discussed previ-
ously: It is simple to program, it is applicable to any m and r as well as
any set of blocks bk, and it gives kernel-density-like estimates for each of the
fjbk

.
Yet with such flexibility also comes a bit of danger, since the identifia-

bility question for the general model (4) has not yet been settled. Hall et
al. (2005) discuss this question and give a lower bound on r, as a function of
m, that is necessary in order to guarantee identifiability: They state that r
and m should satisfy 2r−1 ≥ mr+1. Yet they do not give an explicit bound
that is sufficient to guarantee identifiability; however, Elmore et al. (2005)
prove that such a (finite) lower bound exists.

Since extending our estimation method to an arbitrary number of coordi-
nates or mixture components is very easy — unlike any previously published
algorithms for this problem — we are in a position in which practice is more
advanced than theory. Thus, it is prudent to exercise caution when trying
to fit a model for which the identifiability question is not settled. The water-
level data of Section 1 gives such an example if we take m = 3 or m = 4.
We discuss this example in more detail, and give reasons that we are fairly
confident about interpreting our results, in Section 5.2.

3 Estimating the parameters

We propose both a refinement and a generalization of the algorithm of Bor-
des et al. (2007). Although we use the term EM in connection with this
algorithm, we stress that this algorithm is not an EM algorithm in the usual
sense (Dempster et al., 1977) because there is no likelihood that this al-
gorithm may be shown to maximize. However, we retain the name “EM”
because the algorithm strongly resembles a true EM algorithm for the para-
metric mixture case, i.e., the case in which F is a family indexed by some
Euclidean parameter. For instance, as in an EM algorithm for mixtures, we
define Zij ∈ {0, 1} to be a Bernoulli random variable indicating that indi-
vidual i comes from component j. Since each individual comes from exactly
one component, this implies

∑m
j=1 Zij = 1. Thus, the complete data is the

set of all (xi,Zi), 1 ≤ i ≤ n.

3.1 The nonparametric EM algorithm

The algorithm described here is implemented in an R package (R Devel-
opment Core Team, 2007) called mixtools (Young et al., 2007), available
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online from the Comprehensive R Archive Network (CRAN). Suppose we
are given initial values ϕ0 = (λ0, f0). Then for t = 1, 2, . . ., we follow these
three steps:

1. E-step: Calculate the “posterior” probabilities (conditional on the
data and ϕt) of component inclusion,

pt
ij

def= Pϕt(Zij = 1|xi) (5)

=
λt

j

∏r
k=1 f

t
jbk

(xik)∑m
j′=1 λ

t
j′
∏r

k=1 f
t
j′bk

(xik)
(6)

for all i = 1, . . . , n and j = 1, . . . ,m.

2. M-step: Set

λt+1
j =

1
n

n∑
i=1

pt
ij (7)

for j = 1, . . . ,m.

3. Nonparametric density estimation step: For any real u, define
for each component j ∈ {1, . . . ,m} and each block ` ∈ {1, . . . , B}

f t+1
j` (u) =

1
h

∑r
k=1

∑n
i=1 p

t
ijI{bk = `}K

(
u−xik

h

)∑r
k=1

∑n
i=1 p

t
ijI{bk = `}

=
1

nhC`λ
t+1
j

r∑
k=1

n∑
i=1

pt
ijI{bk = `}K

(
u− xik

h

)
, (8)

where K(·) is a kernel density function, h is a bandwidth chosen by
the user, and

C` =
r∑

k=1

I{bk = `}

is the number of coordinates in the `th block. Note that in the case
in which bk = k for all k, equation (8) becomes

f t+1
jk (u) =

1
nhλt+1

j

n∑
i=1

pt
ijK

(
u− xik

h

)
. (9)

In the original Bordes et al (2007) algorithm, the nonparametric density
estimation step differs in that pij is replaced by z∗ij in equation (8), where
(z∗i1, . . . , z

∗
im) is a simulated multinomial random variable with a single trial
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and with probability vector given by (pi1, . . . , pim). Thus, the original algo-
rithm has a stochastic element. In various tests, we find consistent empirical
evidence that the deterministic version presented here is slightly, though not
overwhelmingly, more efficient than the stochastic version. An example of
such a comparison is given in section 5.3. Because the deterministic algo-
rithm does not require any additional overhead relative to the stochastic
algorithm, we use it here exclusively.

To initialize the algorithm, it is often easier to start with an initial n×m
matrix P0 = (p0

ij) than with an initial parameter vector ϕ0. Thus, during
the first iteration, we skip directly to the M-step. To obtain this P0 matrix,
it is possible to use (say) a k-means clustering algorithm to assign each
observation to one of the components. This procedure forces P0 to consist
of just zeros and ones, but we find that it works well in practice.

3.2 Bandwidth and kernel selection

The density estimation step in the algorithm above relies on a kernel density
K(·) and a bandwidth h. Kernel density estimation is a well-studied topic
in statistics, and for our implementation in the mixtools package, we tried
to adopt standard techniques. In particular, because much literature on this
topic suggests that the choice of a kernel function does not have a dramatic
impact on the resulting density estimate, we simply take K(t) to be the
standard normal density function.

Choosing a bandwidth is a more complicated issue, particularly since this
choice affects the density estimates dramatically. Although we do not at-
tempt a thorough exploration of this topic in the current article, we describe
here some of our experience in choosing a bandwidth.

As a default value for the bandwidth h, we simply take the entire n× r
dataset, treat it as a vector of length nr, and use the default bandwidth
selection of the density function in R — namely, a rule of thumb due to
Silverman (1986, page 48) in which

h = 0.9(nr)−1/5 min
{

SD,
IQR
1.34

}
, (10)

where SD and IQR are the standard deviation and interquartile range of all
nr data values. This is a very crude method in the nonparametric mixture
setting, and there are several reasons why it might produce an under- or over-
estimate. First, pooling all of the data implicitly treats all of the different
components as though they are from the same distribution. This can lead
to an inflation of the bandwidth, particularly if the mixture components’

9

ha
l-0

01
93

73
0,

 v
er

si
on

 2
 - 

7 
Ja

n 
20

08



centers are well-separated, because in that case, the variability of the pooled
dataset will be larger than that of the individual components. Similarly, if
the vector coordinates are not identically distributed within each component,
the bandwidth could be biased upward for the same reason.

Yet operating in the opposite direction is the fact that the expression
nr in equation (10) is an overestimate of the “true” sample size. This is
especially true when each bk equals k — where each of the r coordinates
gets a separate set of density estimates — in which case it may be sensible
to eliminate the r from the equation (10) entirely. But regardless of the
values of bk, there is also the fact that the “true” sample size from each
component is actually some fraction of n, namely, about λjn for the jth
component.

The arguments above show first of all that it would be useful to know
something about the mixture structure in order to select a bandwidth. This
suggests an iterative procedure in which the value of h is modified, and
the algorithm reapplied, after the output from the algorithm is obtained.
Secondly, there is no reason that the bandwidth should be the same for
each component or even for each block: It is easy to modify equation (8) by
replacing h by hj or hj`.

A thorough exploration of the bandwidth question is therefore a research
topic unto itself, so in the interest of simplicity we opt for the default value
(10) in the simulation studies of Section 5.1. For the water-level data dis-
cussed in Sections 1 and 5.2, where the visual appearance of the density
estimates is important for a qualitative appreciation of the results, we find
that the default value of h = 1.47 produces a “bumpy-looking” set of den-
sity estimates, so we use a larger value that gives smoother results, namely
h = 4. We provide the very simple code for this example in Section 5.2,
and we encourage interested readers to test this example using the default
bandwidth. We also find in a couple other datasets that the default (10)
gives somewhat “bumpy-looking” results, suggesting that the default value
tends to be smaller than a more optimal choice would be in general; yet our
evidence for this is only anecdotal at this point.

4 Modifications to the model and algorithm

The general model of equation (4) and the algorithm of Section 3.1 may be
modified in various ways. For example, the density-estimation bandwidth
may be allowed to change for each component, each coordinate, or both, as
mentioned in Section 3.2. We discuss some of these modifications here.

10
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4.1 Location-scale model

There are some plausible models that are more restrictive than (4) but not
as restrictive as the case in which all coordinates are identically distributed.
For instance, if in equation (4) we write ` = bk and suppose that

fj`(x) =
1
σj`

fj

(
x− µj`

σj`

)
(11)

for unknown parameters (µj ,σj , fj), j = 1, . . . ,m, then the totally non-
parametric specification of fj` becomes a semiparametric specification (note
that µj and σj are both B-vectors). To implement the semiparametric EM
algorithm in this case, equations (5) and (7) remain unchanged but it is
necessary to modify equation (8) to account for the fact that all of the co-
ordinates provide information about the form of each fj . Thus, in the case
(11), equation (8) is replaced by

f t+1
j (u) =

1
nrhλt+1

j

n∑
i=1

r∑
k=1

pt
ijK

(
u− xik + µjbk

hσjbk

)
. (12)

Furthermore, the M-step also includes updates of the µj` and σj` parameters
for each 1 ≤ j ≤ m and 1 ≤ ` ≤ B:

µt+1
j` =

n∑
i=1

r∑
k=1

pt
ijI{bk = `}xik

n∑
i=1

r∑
k=1

pt
ijI{bk = `}

=

n∑
i=1

r∑
k=1

pt
ijI{bk = `}xik

nλt+1
j C`

(13)

σt+1
j` =

[
1

nC`λ
t+1
j

n∑
i=1

r∑
k=1

pt
ijI{bk = `}(xik − µt+1

j` )2
]1/2

(14)

Naturally, it is possible to place constraints on the µj or σj vectors when
this is sensible. For instance, if the mixture is purely a location mixture,
then we might stipulate that σj = σ for each j and for some B-vector σ.
Similarly, we might stipulate that µj = µ if the mixture is purely a scale
mixture. In these latter two cases, note that we still allow the different blocks
to have different scale and location parameters, though of course this may
be restricted as well. Also note that because fj is completely unconstrained
(except in special cases like Section 4.3), each element of the µj may only
be identified up to a constant shift and each element of σj may only be
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identified up to a constant multiple. Stated differently, there is no loss of
generality in assuming that

∑
` µj` = 0 and

∑
` σj` = 1 for each j; however,

when implementing the algorithm, it is generally not necessary to enforce
these constraints.

4.2 Location-scale model, revisited

Note that we may obtain yet a different model by writing

fj`(x) =
1
σj`

f`

(
x− µj`

σj`

)
(15)

instead of equation (11). These two equations, which differ only in the
replacement of a single j by `, in fact involve assumptions that are quite
distinct. In equation (11), we are assuming that the coordinates within an
individual have the same shape of distribution (depending on the individ-
ual’s mixture component) but may differ by a location and scale factor; in
equation (15), we are assuming that individual differences, i.e., the mix-
ture components, only account for differences up to a location and scale
parameter, but otherwise the distributions of different blocks of coordinates
do not relate to one another in any way. Note also that the correspond-
ing form of equation (8) looks quite different than its earlier counterpart in
equation (12):

f t+1
` (u) =

1
nhC`

n∑
i=1

m∑
j=1

r∑
k=1

I{bk = `}pt
ijK

(
u− xik + µj`

hσj`

)
. (16)

As a special case of both (11) and (15), we may assume that all coordinates
in all components have the same distributional shape, summarized by the
density f(·), and

fj`(x) =
1
σj`

f

(
x− µj`

σj`

)
. (17)

In case (17), equation (8) becomes

f t+1(u) =
1
nrh

n∑
i=1

m∑
j=1

r∑
k=1

pt
ijK

(
u− xik + µjbk

hσjbk

)
. (18)
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4.3 Symmetric components

If we consider case (17) without repeated measures (r = 1) and for purely a
location mixture (σj = 1, j = 1, ...,m), then the model becomes

gϕ(xi) =
m∑

j=1

λjf(xi − µj). (19)

When m = 2, equation (19) is exactly the location-shifted semiparametric
mixture model that is proved identifiable by Bordes et al. (2006) and Hunter
et al. (2007) under the additional assumptions that λ1 6= 1/2 and that the
density f is symmetric about zero. This special case is also the model for
which the original (semiparametric) stochastic EM algorithm is proposed in
Bordes et al. (2007). In the non-stochastic version, equation (18) may be
combined with a symmetrization step to give

f t+1(u) =
n∑

i=1

m∑
j=1

pt
ij

2nh

[
K

(
u− xi + µj

h

)
+K

(
−u− xi + µj

h

)]
. (20)

A comparison of the stochastic and non-stochastic versions of this algorithm
is given in section 5.3.

4.4 Changing block structure

In Figure 1 summarizing the water-level results for three components (a
dataset that is discussed further in Section 5.2), we see that the largest
component, into which roughly half of the subjects fall, appears to have
roughly the same density for all four blocks. We might therefore guess that
for individuals in this component, observations xi consist of 8 independent
and identically distributed (i.i.d.) coordinates. Yet the remaining two com-
ponents’ observations do not appear to be identically distributed; the block
structure exhibited in the plots, in which the eight coordinates fall into 4
blocks of two i.i.d. observations each, seems appropriate. It is therefore
reasonable to allow the model to encompass the possibility that the block
structure could be different in each component. In other words, equation 4
would be modified slightly to produce

gϕ(xi) =
m∑

j=1

λj

r∏
k=1

fjbjk
(xik),

in which the only difference is that bk has been replaced by bjk — thus, the
block in which the kth observation falls depends on j as well.
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Though this generalization of the model is not currently implemented in
the mixtools package, it would be conceptually easy to do so. However,
there is a theoretical issue that must be addressed in this case: Label-
switching becomes a problem. By “label-switching”, we mean the result
of permuting the labels of the m components. When each component is
assumed to follow the same model, it is not important which is labeled
component 1, which is labeled component 2, etc. But if we now assume that
component 1 (say) has i.i.d. coordinates whereas components 2 and 3 have
a different block structure, then it is necessary to ensure that “component
1” always refers to a particular one of the three components. This might
be easiest to achieve in practice using a two-step approach: First, obtain
results for a model in which the block structure is assumed the same for all
three components (as depicted in Figure 1). Then, use the final posterior
probabilities of component inclusion as starting values for a second algorithm
for fitting the more general model.

5 Examples for real and simulated datasets

5.1 A simulation study

We applied the nonparametric EM algorithm (npEM) to the same synthetic
examples for which Hall et al. (2005) tested their estimation technique, a
method based on inverting the mixture model. The three simulated models,
described below, are trivariate two-component mixtures (m = 2, r = 3) with
independent repeated measures, i.e., bk = k for 1 ≤ k ≤ 3. We ran S = 300
replications of n = 500 observations each and computed the errors in terms
of the square root of the Mean Integrated Squared Error (MISE) for the
densities as in Hall et al. (2005), where

MISE =
1
S

S∑
s=1

∫ (
f̂

(s)
jk (u)− fjk(u)

)2
du, j = 1, 2 and k = 1, 2, 3;

and the integral is computed numerically. Each density f̂
(s)
jk is computed

using equation (9) together with the posterior probabilities after convergence
of the algorithm, i.e., the final values of the pt

ij ’s.
As suggested in section 3.1, we started each algorithm with an initial

n×m matrix P0 = (p0
ij), and this matrix was determined by a k-means algo-

rithm applied to each trivariate dataset, with initial cluster centers (0, 0, 0)
and (4, 4, 4). This testing protocol is adapted to this particular location-
shifted model in order to prevent label-switching among replications. In
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comparison, Hall et al. (2005) dealt with label-switching by enforcing the
constraint λ̂1 < λ̂2. After finishing our simulation, we verified that our re-
sults would not have changed if we had used the Hall et al. approach because
in every trial, we observed that λ̂1 < λ̂2.

To set up tuning parameters (including bandwidth, though their inver-
sion method has several other tuning parameters), Hall et al. (2005) used
near-optimal values derived by fitting a Gaussian model. With our method,
we used the default bandwidth described in Section 3.2.
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Figure 2: Square roots of Mean Integrated Squared Errors (MISE) are shown
on a logarithmic scale as a function of λ1, the proportion of component 1,
for three different simulated distributions for all fjk, j = 1, 2 and k = 1, 2, 3.
The results for the inversion algorithm of Hall et al. (2005) are approximated
from their plots on page 675, Fig. 2, with a small bit of noise added to
separate coincident points.

The first example is a normal model, for which the individual densi-
ties fj` are the pdf’s of N (µj`, 1), with component means µ1 = (0, 0, 0)
and µ2 = (3, 4, 5). The second example uses double exponential distribu-
tions with densities fj`(t) = exp{−|t − µj`|}/2 where µ1 = (0, 0, 0) and
µ2 = (3, 3, 3). In the third example, the individual distributions have cen-
tral or noncentral t densities on ten degrees of freedom: The first component
has a central t(10) distribution and thus µ1 = (0, 0, 0), whereas the second
component’s coordinates are noncentral t(10) distributions with noncentral-
ity parameters 3, 4, and 5. Thus, the mean of the third component is
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µ2 = (3, 4, 5) × 1.0837. Recall that in all three examples — and indeed
throughout this article — the coordinates are independently distributed
conditional on their component membership. We stress that even though
the true models in the normal and double exponential examples are special
cases of equation (17), the algorithm used for the simulation assumes only
the general model (4) with bk = k for all k.

Results given in Figure 2 show that our algorithm dramatically outper-
forms the inversion method for the three models. Note that the smallest
value of MISE for the inversion method for any example is greater than the
greatest value of MISE for our npEM algorithm; thus, the horizontal dotted
line at

√
MISE = 0.16 in Figure 2 separates the two sets of results entirely.

Because the three coordinates within each component and value of λ1 are so
similar relative to the scale of the plots, we do not distinguish among them
in Figure 2. Predictably, we can see that the MISE is much smaller for the
second component than the first when λ1 is small (which means a larger
proportion of the sample gives information about the second component),
but the values appear to converge as λ1 nears 1/2.

5.2 The Water-level data

The water-level dataset described in Section 1 is available in the mixtools
package (Young et al., 2007) in R (R core development team, 2007) by
typing data(Waterdata). These data, with n = 405 and r = 8, have been
analyzed by other authors using nonparametric mixture models based on
converting the continuous angle measurements into binomial or multinomial
data (Hettmansperger and Thomas, 2000; Elmore et al., 2004). The latter
of these two references gives quite a lengthy analysis of this dataset, which
we use as a basis of comparison for our method.

By converting the water-level data into multinomial vectors, Elmore et
al. (2004) are assuming that the eight coordinates of an observation vector
are i.i.d. conditional on the mixture component from which the vector is
drawn. Yet a more careful analysis, not possible using any previously pub-
lished method we know of, reveals that there are subtle differences among
the coordinate distributions. Grouping the coordinates into four blocks of
two i.i.d. coordinates each uses knowledge of the task (described in Section
1) and appears more appropriate here.

Figure 1 of Section 1 summarizes our three-component solution, which
may be obtained using mixtools via

blockid <- c(4,3,2,1,3,4,1,2) # blocks 1-4 refer to fig. 1
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a <- npEMindrep(Waterdata, 3, blockid=blockid, h=4)
plot(a, hist=T, breaks=5*(0:37)-92.5)

(type ?npEMindrep and ?plot.npEM for more details on these functions).
Note that “h=4” specifies the bandwidth, overriding the default value of
equation (10). Also note that because the default starting values are random,
the commands above may not result in exactly the same solution.

For the three-component solution, Figure 1 clearly shows that one com-
ponent, comprising almost 50% of the subjects, consists of individuals who
know how to complete this task; these individuals’ responses are highly
peaked around the correct answer of zero degrees. The cutpoint method
also finds a similarly shaped component and estimates its proportion at
0.440. However, the second and third components are qualitatively different
than those found by the cutpoint method, particularly the smallest com-
ponent. Using our method, we find that almost 8% of the subjects seem
to draw the line parallel to the bottom of the vessel — yet the cutpoint
approach misses this group because “parallel to the bottom” means one of
−60, −30, 30, or 60 degrees depending on the orientation the vessel. In fact,
the assumption that all eight coordinates are identically distributed leads
the cutpoint approach to conclude that the smallest component (with an
estimated 17.7% of all subjects) is roughly uniformly distributed over the
interval from −90 to 90. The more realistic model that is possible to esti-
mate with our algorithm reveals details that the cutpoint approach simply
cannot find easily.

In fact, the cutpoint approach can find the group of subjects who draw
the water level parallel to the bottom of the vessel, but it needs a four-
component model to do so. Elmore et al. (2004, Fig. 2) give a cutpoint
solution for the four-component case, and we include the analogous four-
component solution using our method here as Figure 3. (To obtain this
result using mixtools, simply change the 3 to a 4 in the second line of the
code given earlier in this section.) We stress that the means and standard
deviations reported in Figures 1 and 3 are only for aiding the interpretation
of the density estimates; they are not part of the model and depend only on
the final values of pij and the original data. Formulas for them are identical
computationally to those given for µt+1

jl and σt+1
jl in equations (13) and (14),

each of which also relies on the formula for λt+1
j in equation (7).

The cutpoint result finds one component with 3.3% of the subjects in
which the density has four sharp peaks at −60, −30, 30, and 60 degrees.
But this result masks the fact that those peaks occur in completely different
coordinates, so the implicit assumption of conditionally i.i.d. coordinates
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Block 3:  4:00 and 10:00 orientations
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Block 4:  5:00 and 11:00 orientations
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Figure 3: Results of a four-component analysis of the water-level data us-
ing our algorithm. The means and standard deviations are not part of the
nonparametric model and are included for interpretation only.

using the cutpoint approach is probably not quite appropriate here.
As stated in Section 2, a word of caution is necessary here: it has never

been proven that the general model (4) is identifiable when r = 8 and m = 3
or 4. By contrast, under the more restrictive assumptions of the cutpoint
method, we know that identifiability holds in these cases because r ≥ 2m−1
(Elmore and Wang, 2003). The necessary (but not sufficient) lower bounds
on r given by Hall et al. (2005) are r ≥ 4 when m = 3, and r ≥ 5 when
m = 4; so with r = 8 there is at least the hope of identifiability in each
case. We are encouraged in the present example by several facts: First, the
solutions we obtain, for both m = 3 and m = 4, are stable in the sense
that we obtain the same solutions repeatedly for different randomly selected
starting values for the algorithm. Furthermore, our results may be explained
qualitatively via an understanding of how the data arose, and these results
confirm and sharpen those found using a different method, the cutpoint
method, in which identifiability has been proven to hold.
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5.3 Stochastic vs. non-stochastic semiparametric EM

For Model (19) with m = 2 components, we compare the semiparametric
stochastic EM (spSEM) algorithm of Bordes et al. (2007), which is discussed
immediately following equation (9), with the deterministic semiparametric
EM (spEM) algorithm that uses equation (20).

λ µ1 µ2 λ µ1 µ2

True 0.25 -1 2 0.25 -1 2
MSE bias

spSEM 0.0044 0.1880 0.0459 -0.0246 0.0413 -0.1003
spEM 0.0042 0.1154 0.0373 -0.0229 0.0056 -0.0898

Table 1: Empirical mean squared error (MSE) and bias for (λ, µ1, µ2), based
on 10, 000 Monte-Carlo replications of Model (19) with f(·) taken to be stan-
dard normal and n = 100. The spSEM and spEM algorithms are run for
100 and 20 iterations each, respectively, starting from the true parameter
values.

The comparison is based on 10,000 Monte Carlo replications in which
we selected the bandwidth h according to the formula used by Bordes et
al. (2007), namely, h = (4/3n)1/5, or h = 0.422 when n = 100. The spEM
was allowed only 20 iterations, relative to the 100 iterations allowed the
stochastic version, since its non-stochastic sequence of estimates requires
fewer iterations to stabilize. Results are given in Table 1 and give empirical
evidence that the deterministic version is slightly more efficient than the
stochastic version.

5.4 Empirical convergence rates

Finally, we include here a simulation study whose purpose is to explore the
possible rate of convergence for the algorithm, for fixed m and r, as the
sample size n tends to infinity. Note that the plots here do not constitute
a proof of the asymptotic rate of convergence, nor even of consistency, yet
they are interesting nonetheless because they suggest that such a theoretical
result is possible.

In Figure 4, we see results for a simulation using the normal example with
m = 2 and r = 3 independent (but not identically distributed) coordinates
from Section 5.1, for which the individual densities fj` are the pdf’s of
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Figure 4: Errors as a function of sample size for one of the six densities, f21,
and its corresponding proportion λ2. On the left are the root-mean errors
along with 90% empirical confidence intervals; on the right are log-log plots
of the root-mean errors along with least-squares fits.

N (µj`, 1) with component means µ1 = (0, 0, 0) and µ2 = (3, 4, 5). We
ran 100 replications for each of the sample sizes n = 100, 200, . . . , 3500.
Bandwidths are chosen using the default method of Section 3.2. Only one
of the six fj` densities is shown, but the other five plots are nearly identical
in appearance and empirical rate. The empirical rate of −0.488 for the
Euclidean parameter λ2 is close to the optimal rate of n−1/2 for the usual
parametric case. The rate of −0.365 for the density estimate (the other
five rates range from −0.361 to −0.370) is somewhat below the optimal
rate of n−2/5 for a standard kernel density estimate. Yet as we explain in
Section 3.2, the bandwidth is probably not optimal in any sense, and indeed
the density estimation problem in the mixture setting may well be a more
difficult problem than in the non-mixture setting.
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6 Discussion

The algorithm we propose in this article is the first algorithm we have seen in
the literature for dealing with model (4) in its full generality. Furthermore,
it is quite a bit easier to code than many if not all competing algorithms in
the particular cases to which the latter are suited. Finally, we have given
empirical evidence that our algorithm produces dramatically lower error
rates than the inversion method of Hall et al. (2005) for the test cases used
in that paper, and we have explained how our algorithm gives insight into
the multivariate mixture structure of a particular dataset (the water-level
dataset) that is not possible under the more restrictive assumption that each
multivariate observation has conditionally i.i.d. coordinates.

As we point out in Section 2, the great flexibility of our method requires
some caution, since it is very easy to apply the algorithm for arbitrary m
(number of mixture components) and r (number of vector coordinates per
observation) even when model (4) is not known to be identifiable. We know
that model (4) is not identifiable for an arbitrary m and r; yet it is not yet
known where the “identifiability boundary” might lie — i.e., for which values
ρ(m) it is true that r ≥ ρ(m) implies identifiability but r ≥ ρ(m) − 1 does
not. Hall and Zhou (2003) proved that ρ(2) = 3, and Hall et al. (2005) and
Elmore et al. (2005) have made some progress towards a general solution,
but so far such a solution remains elusive.

There are several questions about our algorithm that could be further
investigated in addition to the identifiability question. For instance, Hall
et al. (2005) introduce a further generalization of model (4). Namely, they
allow some of the fj`(·) to be multivariate densities whose coordinates are
not independent. There is no difficulty in extending our algorithm to this
case in principle, though to do so requires the use of multidimensional kernel
density estimates. We have not explored this possibility yet.

Selection of an appropriate bandwidth is another area in which further
work could shed some light. We have discussed this problem at length in
Section 3.2. Indeed, selecting a bandwidth in a mixture setting like this one
appears to be a fundamentally more complicated problem than the corre-
sponding non-mixture case due to the fact that we do not have a sample
from any of the individual mixture components per se, and we do not ob-
tain information on the individual components until after the algorithm has
already been run. This suggests an iterative scheme as mentioned in Sec-
tion 3.2, but we have not yet implemented such a scheme. Related to the
bandwidth selection question is the question of whether our algorithm can
be shown to be consistent for a fixed r and m; and if so, at what rate it con-
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verges. Preliminary empirical evidence, discussed in Section 5.4, suggests
that this rate of convergence is comparable to usual rates for the Euclidean
parameters and perhaps slightly slower than usual rates for the kernel den-
sity estimates.

Finally, we reiterate that the analyses in this article may be reproduced
using the publicly-available R package called mixtools (R Development
Core Team, 2007; Young et al., 2007). Future revisions of this package may
extend its capabilities to include some of the discussion items here.
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